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Emergent Parallel Applications

Parallelism is abundant in today’s data centers:

Multi-core CPUs,
High-bandwidth low-latency interconnection networks,
Accelerator hardware.

Exciting new applications in today’s information economy:

Information retrieval (i.e. search),
Online analytical processing,
Recommender systems,
Data mining.
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Use Case: Parallel Search Engine

Requirements beyond the classic batch-job operation:
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Use Case: Parallel Search Engine

We group similar operations – short and long:
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The Need for Concurrency

Multi-User Operation

Multiple users,
Single back-end,
Single data base...

⇒ We need concurrency!

Both layers can be used concurrently,
At the same time:

Answer queries,
Modify the data base,

⇒ We need concurrency!
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How do we implement concurrent activities?

Operations and queues:

Data structure to describe operations,
Queue holds operations,
“Main loop” pops operations and processes them.

Threads:

One activity = one thread.
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The pros and cons...

Operations and queues:

+ Efficient,
- No true concurrency,
- Cannot process operation and receive independent messages,

Threads:

- Context switching overhead,
- Shared data requires locking,

+ Very tidy abstraction,
+ Compositional (can always add more threads).
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Use Case: Parallel Search Engine

Let’s use threads to implement these concurrent activities:
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Programming Abstraction

Key abstraction: thread collective,

Goals:

Encapsulate concurrent activities,
Isolate concurrent communication,
Unify and simplify the design.

Conflicting objectives:

Safety and ease of programmability,
Performance.
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Thread Collectives

Creates a new thread within every MPI process ( T1©→ T2©),

Assigns a copy of the MPI communicator (C1→ C2),
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Thread Collectives

Encapsulates computation: thread function(s) for T2©,

Isolates communication: communicator C2.
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Parallel Search Engine

P1–P4 each hold a part of all documents,

T1s: Answer queries (query layer),

T2s: Add, remove or update documents (maintenance layer).
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What do we get?

Simple, ready-made abstraction,

Encapsulate & isolate,

Compositional,

Caveat: synchronization and locking.

16 / 26



Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

The MPIT Interface Definition
Constructs and Features
Performance Overhead

The MPI Threads API

17 / 26



Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

The MPIT Interface Definition
Constructs and Features
Performance Overhead

The MPIT Interface Definition

Additional layer of middleware to provide what we need,

Designed as a library for compatability
(not a new programming lanugage),

The “MPI Threads” (MPIT) interface definition,

Written as a single C header file (157 physical SLOC1).

1According to David A. Wheeler’s “SLOCCount”.
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Constructs and Features

Thread collectives,

One thread within every MPI process,
Separate MPI communicator,

Conventional threads,

Portable thread interface,
We get it “for free” – we have all of the machinery.

Process-local synchronization constructs,

Mutex locks, condition variables, semaphores and barriers,
Specifies reliable semantics.
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Performance Overhead

Additional layer of indirection (1 additional function call),

Additional error and consistency checks:

Condition variable checks spurious wake-up,
Barrier verifies thread identity.

⇒ Execution time overhead.

MPIT prototype implemented on top of POSIX threads
(2,650 physical SLOC2).

2According to David A. Wheeler’s “SLOCCount”.
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Thread Creation

Difference: additional indirection.
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Lock / Unlock Mutex

Difference: additional checks.
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Wait / Wake on Condition Variable

Difference: indirection & checks (different time scale).
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Summary & Conclusions

Parallel programs may require additional concurrency,

New abstraction: thread collectives,

MPIT interface specification,

Performance penalty is acceptable...

...unless too many locks are used.
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Thank you!
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