
Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

A Middleware for Concurrent Programming in MPI
Applications

Tobias Berka, Helge Hagenauer and Marian Vajteřsic

September 13, 2011

1 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

Outline

1 Introduction
Emergent Parallel Applications
The Need for Concurrency

2 Programming Model
Concurrency using Threads
Thread Collectives
In Actual Use

3 The MPI Threads API
The MPIT Interface Definition
Constructs and Features
Performance Overhead

4 Summary & Conclusions

2 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

Emergent Parallel Applications
The Need for Concurrency

Introduction

3 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

Emergent Parallel Applications
The Need for Concurrency

Emergent Parallel Applications

Parallelism is abundant in today’s data centers:

Multi-core CPUs,
High-bandwidth low-latency interconnection networks,
Accelerator hardware.

Exciting new applications in today’s information economy:

Information retrieval (i.e. search),
Online analytical processing,
Recommender systems,
Data mining.

4 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

Emergent Parallel Applications
The Need for Concurrency

Use Case: Parallel Search Engine

Requirements beyond the classic batch-job operation:

Add

Document

Update

Document

Remove

Document

Query

Documents

Data

5 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

Emergent Parallel Applications
The Need for Concurrency

Use Case: Parallel Search Engine

We group similar operations – short and long:

Add

Document

Update

Document

Remove

Document

Query

Documents

Data

Maintenance Layer

Query Layer

6 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

Emergent Parallel Applications
The Need for Concurrency

The Need for Concurrency

Multi-User Operation

Multiple users,
Single back-end,
Single data base...

⇒ We need concurrency!

Both layers can be used concurrently,
At the same time:

Answer queries,
Modify the data base,

⇒ We need concurrency!

7 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

Concurrency using Threads
Thread Collectives
In Actual Use

Programming Model

8 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

Concurrency using Threads
Thread Collectives
In Actual Use

How do we implement concurrent activities?

Operations and queues:

Data structure to describe operations,
Queue holds operations,
“Main loop” pops operations and processes them.

Threads:

One activity = one thread.

9 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

Concurrency using Threads
Thread Collectives
In Actual Use

The pros and cons...

Operations and queues:

+ Efficient,
- No true concurrency,
- Cannot process operation and receive independent messages,

Threads:

- Context switching overhead,
- Shared data requires locking,

+ Very tidy abstraction,
+ Compositional (can always add more threads).

10 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

Concurrency using Threads
Thread Collectives
In Actual Use

Use Case: Parallel Search Engine

Let’s use threads to implement these concurrent activities:

Data

Maintenance Layer

Query Layer

Add

Document

Update

Document

Remove

Document

Query

Documents

Maintenance Thread

Queue

Query Thread

Queue

11 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

Concurrency using Threads
Thread Collectives
In Actual Use

Programming Abstraction

Key abstraction: thread collective,

Goals:

Encapsulate concurrent activities,
Isolate concurrent communication,
Unify and simplify the design.

Conflicting objectives:

Safety and ease of programmability,
Performance.

12 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

Concurrency using Threads
Thread Collectives
In Actual Use

Thread Collectives

Creates a new thread within every MPI process (T1©→ T2©),

Assigns a copy of the MPI communicator (C1→ C2),

P1 P2 P3 P4

C1

C2

T1

T2

T1

T2

T1

T2

T1

T2

13 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

Concurrency using Threads
Thread Collectives
In Actual Use

Thread Collectives

Encapsulates computation: thread function(s) for T2©,

Isolates communication: communicator C2.

P1 P2 P3 P4

C1

C2

T1

T2

T1

T2

T1

T2

T1

T2

14 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

Concurrency using Threads
Thread Collectives
In Actual Use

Parallel Search Engine

P1–P4 each hold a part of all documents,

T1s: Answer queries (query layer),

T2s: Add, remove or update documents (maintenance layer).

P1 P2 P3 P4

C1

C2

T1

T2

T1

T2

T1

T2

T1

T2

15 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

Concurrency using Threads
Thread Collectives
In Actual Use

What do we get?

Simple, ready-made abstraction,

Encapsulate & isolate,

Compositional,

Caveat: synchronization and locking.

16 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

The MPIT Interface Definition
Constructs and Features
Performance Overhead

The MPI Threads API

17 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

The MPIT Interface Definition
Constructs and Features
Performance Overhead

The MPIT Interface Definition

Additional layer of middleware to provide what we need,

Designed as a library for compatability
(not a new programming lanugage),

The “MPI Threads” (MPIT) interface definition,

Written as a single C header file (157 physical SLOC1).

1According to David A. Wheeler’s “SLOCCount”.
18 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

The MPIT Interface Definition
Constructs and Features
Performance Overhead

Constructs and Features

Thread collectives,

One thread within every MPI process,
Separate MPI communicator,

Conventional threads,

Portable thread interface,
We get it “for free” – we have all of the machinery.

Process-local synchronization constructs,

Mutex locks, condition variables, semaphores and barriers,
Specifies reliable semantics.

19 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

The MPIT Interface Definition
Constructs and Features
Performance Overhead

Performance Overhead

Additional layer of indirection (1 additional function call),

Additional error and consistency checks:

Condition variable checks spurious wake-up,
Barrier verifies thread identity.

⇒ Execution time overhead.

MPIT prototype implemented on top of POSIX threads
(2,650 physical SLOC2).

2According to David A. Wheeler’s “SLOCCount”.
20 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

The MPIT Interface Definition
Constructs and Features
Performance Overhead

Thread Creation

Difference: additional indirection.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 2 4 6 8

m
il

li
se

co
n
d
s

threads

create and join threads

MPIT prototype
POSIX threads

21 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

The MPIT Interface Definition
Constructs and Features
Performance Overhead

Lock / Unlock Mutex

Difference: additional checks.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2 4 6 8

m
il

li
se

co
n
d
s

threads

lock and unlock mutex

MPIT prototype
POSIX threads

22 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

The MPIT Interface Definition
Constructs and Features
Performance Overhead

Wait / Wake on Condition Variable

Difference: indirection & checks (different time scale).

 0

 1

 2

 3

 4

 5

 6

 2 4 6 8

m
il

li
se

co
n
d
s

threads

wait / wake on condition variable

MPIT prototype
POSIX threads

23 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

Summary & Conclusions

24 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

Summary & Conclusions

Parallel programs may require additional concurrency,

New abstraction: thread collectives,

MPIT interface specification,

Performance penalty is acceptable...

...unless too many locks are used.

25 / 26

Introduction
Programming Model

The MPI Threads API
Summary & Conclusions

Thank you!

Thank you!

26 / 26

	Introduction
	Emergent Parallel Applications
	The Need for Concurrency

	Programming Model
	Concurrency using Threads
	Thread Collectives
	In Actual Use

	The MPI Threads API
	The MPIT Interface Definition
	Constructs and Features
	Performance Overhead

	Summary & Conclusions

