Performance Gaps between OpenMP and
OpenCL for Multi-core CPUs

Jie Shen, Jianbin Fang,
Henk Sips, and Ana Lucia Varbanescu

Parallel and Distributed Systems Group
Delft University of Technology, The Netherlands

-I,-;U Delft P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

1

Introduction

» Multi-core CPU and GPU programming keeps gaining popularity for

parallel computing

» OpenCL has been proposed to tackle multi-/many-core diversity in a

unified way
* OpenCL (Open Computing Language), KHRONOS Group

» The first open standard for cross-platform parallel programming

KHRCONOS

GROUP

OpenCL

The Open Standard for Heterogeneous
Parallel Programming

-i-‘u Delft P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs 2

Introduction

* OpenCL programming model

|
|

o0 08 | 80 B8 u

28 88 88 88 Host A host program

B0 08 8888

00 86888 e ||

\ ||
\
Processing Element Compute Unit Compute Device Compute kernels

s _ -
TU Delft P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs 3

Introduction

* OpenCL programming model

Host

A host program

CRCRE g
EeEE
CRC R
EeeE
T EEE
EEeE
EEEE
LR g

Processing Element Compute Unit Compute Device

5 5 [
: ///IIII
sEmE

EEEN .
Work-g roup Work-item

Compute
kernels

TU Delft P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs 4

Motivation

» OpenCL shares core parallelism approach with CUDA

» A research hotspot in GPGPU -> A large amount of free OpenCL code
« E.g., Parboil, SHOC, Rodinia benchmarks

« Major CPU vendors’ support Apr 2012 AMD SDK 2.7
ARM 15t SDK ! | N
¥ 1 May 2012
OpenCL 1.2
Feb 2012 Intel SDK 2012
AMD/ATI Jun 2011
Dec 2008 “PK 2.0 Nov 2011
1 Dec 2009 'Mtel SDK 1.1
OpenCL 1.0
'I,';U Delft P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs 5

Motivation

» OpenCL cross-platform portability
When porting OpenCL code from GPUs to CPUs ?

* Functional correctness ?

 Parallelized performance ?

* Compared with sequential code

@ € <

 Similar/better performance ?

« Compared with a regular CPU parallel programming model (e.g., OpenMP)

-i-‘u Delft P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs 6

Motivation

» Reference: Regular parallel OpenMP code

« Not aggressively optimized

e Comparison: OpenCL and OpenMP performance on CPUs

e Target. Where do the performance gaps come from?

Host-Device data transfers

Memory access patterns and cache utilization

\

Floating-point operations

Implicit and explicit vectorization

-I,-;U Delft P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs 7

Experimental Setup

 Benchmark

B O
* Rodinia benchmark suite Rdlnla

* Equivalent implementations in OpenMP, CUDA and OpenCL

» Hardware platforms

Name Processor # Cores # HW Threads
N8 2.40GHz Intel Xeon E5620 (2x hyper-threaded) | 2x quad-core 16
D6 2.67GHz Intel Xeon X5650 (2x hyper-threaded) | 2x six-core 24
MC 2.10GHz AMD Opteron 6172 (Magnycours) 4x twelve-core 48

* OpenCL SDKs
e Intel OpenCL SDK 1.1

< AMD APP SDK 2.5
= We have updated the compilers to Intel OpenCL SDK 2012 / AMD APP SDK 2.7 in the extended version of P2S2

-I,-;U Delft P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs 8

Compare parallel part wall clock time?

« Wall clock time = Initialization + H2D (Host to Device data transfer)

+ kernel executiont + D2H (Device to Host data transfer)

—_— é}@ time warm-up

Sequential

H2D

Parallel
Kernel
Execution

D2H

Sequential ~H2D — Implicit

Parallel
Section

Parallel

~D2H —> Implicit

-I(-;U Delft P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs 9

Initial Results

e H2D + kernel execution + D2H

5

= - —]
S *° PRap mzm V/
o 4 PR=1 ----- :% :
= 35 7 -
s 3 1 -
T 25} Vi
oC ; \é
S 2T ‘Q; Qé OpenMP performs
z 157 S; S; better
= 1 ------ -t 'Y/ """" = "\/- ——————————
= J J
Dq*_, O.g : KH Eﬂ % Q; m N/ % “Qf Open(éL performs
' ‘ etter
S8 &, { Ry Sp S
RO %’SD‘\O/W@(?OO%I/ 9 /7,9'9 e
O s 06,
'I(';U Delft P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs 10

H2D and D2H on CPUs

CPUs: H2D and D2H are not necessary GPUs: Explicit H2D and D2H

» Use zero copy
« Zero copy memory objects: accessible for both the host and the device
* H2D: (1) CL_MEM_ALLOC_HOST _PTR; (2) CL_MEM_USE_HOST_PTR
+ D2H: CL_MEM_ALLOC_HOST_PTR

'I,';U Delft P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs 11

H2D and D2H on CPUs

» Use zero copy

1600 ——— - 1600 - .
H2D e H2D zxxees
1400 | Kernel sy 1400 Kernel sy
D2H xxxx3 D2H xxxx3
»w 1200 w 1200 |
E E
o 1000 o 1000 |
£ 800 £ 800
c After S After
= 600 = 600
3 Before o Before
LLi 400 r L 400 r p
200 200 r \)(
v 4, & v 4, & v <, & 1, 1, &
O@ @//60 So O’b, @//60 S o% @//60 So O’Z) Q/%C’ 6N
512X512 1024X1024 2048X2048 512X512 1024X1024 2048X2048
(a) Intel OpenCL SDK 1.1 (b) AMD APP SDK 2.5

Fig.1 Execution time (ms) comparison with/without zero copy.

'I,';U Delft P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs 12

Compare Kernel Execution time !

- Data transfers use zero copy

Sequential Zero copy

TR

Kernel
Execution

Parallel

Zero copy

— $5

1(-;U Delft P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

K-means Results

» OpenCL: a swap kernel remaps the data array

Performance Ratio (OMP/OCL)

- . S0 7
from row-major to column major * e gl

N/
rS
Q%gﬁqgc
00’@,

= OpenMP: no data layout swapping

Swap el r7771 SWapavp [AWARAW
NoSwap|e =~y NoSwapaump

3500 ——Before VX

W |
3000 L - % 7/ N | Table 1 K-means performance differences
z N 7
E 2500 t % Datacet Intel AMD
£ 2000 - 2 g SDK SDK
& 1500 % % 200K [52.1% |52.2%
3 1000 After [/ 7
5 ' \)ﬁqk 4 482K | 76.1% |80.4%
500 N
N % A 800K | 79.6% | 81.6%
0 AN 7 /
200K 482K 800K
Fig.2 K-means OpenCL execution time (ms) with/without the swap kernel.
-I,-;U Delft P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs 14

S o] B]
K-means Results R
o 3
5 25} i
g 2
= Process a 2D dataset element by element S s .
6 1 """"""""" . - " .l
. . . E, 05+ [/ . gé g]
¢ Column-major: GPU-friendly (memory coalescing) 0 Mp!gg,%%ngg‘c
* 2y //,O,er
« Row-major: CPU-friendly (cache locality)
» Tune the memory access patterns according to the target platforms
el =T e | alemene
1200 | : :] 1400 | 5 =] 450 _] . ﬁl
% son: % | % 250:
i wl o 600 f i 200 |
200 +]— 200 + :zz :
0 ..2(.].0K 48éK .’ BO;L)K 0 200K 48éK - 800K 0 206Km 482K€I. SOIOK
(a) N8 (b) D6 (c) MC
Fig.3 Execution time (ms) comparison of K-means after removing the swap kernel in OpenCL:
(a) N8, (b) D6, (c) MC.
-i-‘u Delft P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs 15

CFD Results

« CFD also changes row-major to column-major

Performance Ratio (OMP/OCL)

* Change back to row-major

N/ f 7 1 A
R N
* 2y I/;O,e,

* Improve performance only slightly (within 10%)

= Apply -cl-fast-relaxed-math compiler option

80000 | ROWo 77772
Row+Fast) g o 7
- Row+Fastayp ? After
E 60000 o e % 1 = Intel and AMD have different specific
e 50000 7 _ _
= 77 %? iImplementations of -cl-fast-relaxed math
c 40000 After Y3 7R
S 30000 | N % 2 % - Performance improvements
x
2 50000 | K\’/ / ? 2 % - OpenCL(Intel): 11%~47.7%
2 /
10000 % / 2 % 7 * OpenMP(similar options): 20%~40%
0 IN\/EEANNN7/ BN/
097K 193K 0.2M

Fig.4 CFD OpenCL execution time (ms) with/without —cl-fast-relaxed-math.

'I,';U Delft P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs 16

CFD Results

 Effect of branching

Performance Ratio (OMP/OCL)

]

Kol PSS
0 ea%? %pl}go

* Make N work-items execute in parallel in the SIMD unit -> Speedup: 1.6x~1.8x

* OpenCL: Intel implicit vectorization module ol

» Kernels with divergent data-dependent branches -> executing all branch paths

* OpenMP: Dedicated branch prediction (in hardware)

Table 2 OpenCL and OpenMP have different performance ratios between two datasets with similar sizes

Dataset fvcorr.domn. 93K missile.domn.0.2M Performnace
(aricraft wings) (missile) Ratio
g
OpenCL, 42438.00 ms 80339.00 ms 1.89
OpenMP 45065.88 ms 62589.57 ms 1.38
-i-;U Delft P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs 17

PathFinder Results

» OpenMP: Coarse-grained parallelization

Performance Ratio (OMP/OCL)

. /Ry . 1
 Each thread processes consecutive data elements o Lot MBI U1 1 on 11 4%

] |
S@p A/Ot@gopokM@éUoA"[’i/ pe,%gé?,qgc
* 2y I/;O,er

« OpenCL: Fine-grained parallelization

* One work-item processes one data element

T T T T T 1000 T T
2 OMP/OCL o, OpenMP
i 800 ¢}
.9 4 B E W
3 E 700}
Q e 600 |
& = 500
£ S
S = 400 t+
= o
o 2 300 f
“ o0 b
100 |
O 1

1 ! 1 1 1

7z 3 7 & (o) 7

L % Y D "00 2, %,
T % O A

Fig.4 PathFinder OpenMP/OpenCL performance ratio and OpenMP execution time (ms)
with different dataset sizes.

'I,';U Delft P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs 18

PathFinder Results

= Improve cache utilization explicitly

Performance Ratio (OMP/OCL)

/
]

[/
N7 IEN NG IRN /N

i 4

* MergeN: Merge N work-items into one N A,{Sggo%g?w%%igc
» VectorN: Explicit vectorization (using the vector type)
1600 — . . - - 1000 :
No-Optine -~ Before OMP 525222 .
1400 Merged g —— " 900 1 OCL-Merge16),g s
—_ Mergel16,o —— \@ 800 + OCL-Mergel16p\p zzzzzzz /
g 1200 ¢ NO'OptAMD ----- - 7) 700 L ‘ %
o 1000 | Mergedayp —— After E N/
= i Merge16AMD —B— GEJ 600 r %
5 800 r *é 500 r o %
S 600 f =B | NN
8 ool S 300 | Y &Y
N u N7
100 g
Zn 2 7, & Py & 7 2 S Ty Sy e Oy O, 7
Q (@) (@) Q S LY 7 < Oy, O, Oy O, 6y < Ty
Fig.5 PathFinder OpenCL with MergeN optimization and execution time comparison with
OpenMP on N8.
] _
: - 19
TU Delft P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

Conclusion

* Where do the performance gaps come from?

 Incorrect usage of the multi-core CPUs (Users are negligent)
« Explicit H2D and D2H data transfers

« Column-major memory accesses

 Parallelism granularity (OpenCL is not properly mappted on CPUS)

» Fine-grained parallelism approach can lead to poor CPU cache utilization

* OpenCL compilers are not fully mature
« Intel implicit vectorization module with branches

 Intel and AMD have different fast floating-point optimizations
= OpenCL code can be tuned to match OpenMP’s regular performance

» More than 80% of the test cases

» OpenCL is, performance-wise, a good alternative for mutli-core CPUs

'I("U Delft P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs 20

Conclusion

» OpenCL and OpenMP can act as performance indicators

* OpenMP: locality-friendly coarse-grained parallelism

* OpenCL: fine-grained parallelism, vectorization
 This paper: OpenMP is an indicator, and OpenCL is tuned
e Future work
* Tune OpenMP to match the performance indicated by OpenCL

» Develop user-friendly performance (semi-)auto-tuning tools for OpenCL

'I,';U Delft P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs 21

Contacts: J.Shen@tudelft.nl
http://www.pds.ewi.tudelft.nl/

Parallel and Distributed Systems Group

Delft University of Technology, The Netherlands

'I,';U Delft P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs 22

