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Introduction

» Multi-core CPU and GPU programming keeps gaining popularity for

parallel computing

» OpenCL has been proposed to tackle multi-/many-core diversity in a

unified way
* OpenCL (Open Computing Language), KHRONOS Group

» The first open standard for cross-platform parallel programming

KHRCONOS

GROUP

OpenCL

The Open Standard for Heterogeneous
Parallel Programming
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Introduction

* OpenCL programming model
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Introduction

* OpenCL programming model
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Motivation

» OpenCL shares core parallelism approach with CUDA

» A research hotspot in GPGPU -> A large amount of free OpenCL code
« E.g., Parboil, SHOC, Rodinia benchmarks

« Major CPU vendors’ support Apr 2012 AMD SDK 2.7
ARM 15t SDK ! | N
¥ 1 May 2012
OpenCL 1.2
Feb 2012 Intel SDK 2012
AMD/ATI Jun 2011
Dec 2008 “PK 2.0 Nov 2011
1 Dec 2009 'Mtel SDK 1.1
OpenCL 1.0
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Motivation

» OpenCL cross-platform portability
When porting OpenCL code from GPUs to CPUs ?

* Functional correctness ?

 Parallelized performance ?

* Compared with sequential code

@ € <

 Similar/better performance ?

« Compared with a regular CPU parallel programming model (e.g., OpenMP)
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Motivation

» Reference: Regular parallel OpenMP code

« Not aggressively optimized

e Comparison: OpenCL and OpenMP performance on CPUs

e Target. Where do the performance gaps come from?

Host-Device data transfers

Memory access patterns and cache utilization

\

Floating-point operations

Implicit and explicit vectorization
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Experimental Setup

 Benchmark

B O
* Rodinia benchmark suite Rdlnla

* Equivalent implementations in OpenMP, CUDA and OpenCL

» Hardware platforms

Name Processor # Cores # HW Threads
N8 2.40GHz Intel Xeon E5620 (2x hyper-threaded) | 2x quad-core 16
D6 2.67GHz Intel Xeon X5650 (2x hyper-threaded) | 2x six-core 24
MC 2.10GHz AMD Opteron 6172 (Magnycours) 4x twelve-core 48

* OpenCL SDKs
e Intel OpenCL SDK 1.1

< AMD APP SDK 2.5
= We have updated the compilers to Intel OpenCL SDK 2012 / AMD APP SDK 2.7 in the extended version of P2S2
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Compare parallel part wall clock time?

« Wall clock time = Initialization + H2D (Host to Device data transfer)

+ kernel executiont + D2H (Device to Host data transfer)

—_— é}@ time warm-up

Sequential

H2D

Parallel
Kernel
Execution

D2H

Sequential ~H2D — Implicit

Parallel
Section

Parallel

~D2H —> Implicit
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Initial Results

e H2D + kernel execution + D2H
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H2D and D2H on CPUs

CPUs: H2D and D2H are not necessary GPUs: Explicit H2D and D2H

» Use zero copy
« Zero copy memory objects: accessible for both the host and the device
* H2D: (1) CL_MEM_ALLOC_HOST _PTR; (2) CL_MEM_USE_HOST_PTR
+ D2H: CL_MEM_ALLOC_HOST_PTR
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H2D and D2H on CPUs

» Use zero copy

1600 ——— - 1600 - .
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(a) Intel OpenCL SDK 1.1 (b) AMD APP SDK 2.5

Fig.1 Execution time (ms) comparison with/without zero copy.
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Compare Kernel Execution time !

- Data transfers use zero copy

Sequential Zero copy

TR

Kernel
Execution

Parallel

Zero copy

— $5

1(-;U Delft P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs




K-means Results

» OpenCL: a swap kernel remaps the data array

Performance Ratio (OMP/OCL)
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= OpenMP: no data layout swapping

Swap el r7771 SWapavp [AWARAW
NoSwap|e =~y NoSwapaump

3500 ——Before VX

W |
3000 L - % 7/ N | Table 1 K-means performance differences
z N 7
E 2500 t % Datacet Intel AMD
£ 2000 - 2 g SDK  SDK
& 1500 % % 200K [52.1% |52.2%
3 1000 After [/ 7
5 ' \)ﬁqk 4 482K | 76.1% |80.4%
500 N
N % A 800K | 79.6% | 81.6%
0 AN 7 /
200K 482K 800K
Fig.2 K-means OpenCL execution time (ms) with/without the swap kernel.
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« Row-major: CPU-friendly (cache locality)
» Tune the memory access patterns according to the target platforms
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Fig.3 Execution time (ms) comparison of K-means after removing the swap kernel in OpenCL:
(a) N8, (b) D6, (c) MC.
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CFD Results

« CFD also changes row-major to column-major

Performance Ratio (OMP/OCL)

* Change back to row-major

N/ f 7 1 A
R N
* 2y I/;O,e,

* Improve performance only slightly (within 10%)

= Apply -cl-fast-relaxed-math compiler option
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10000 % / 2 % 7 * OpenMP(similar options): 20%~40%
0 IN\/EEANNN7/ BN/
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Fig.4 CFD OpenCL execution time (ms) with/without —cl-fast-relaxed-math.
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CFD Results

 Effect of branching

Performance Ratio (OMP/OCL)

]

Kol PSS
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* Make N work-items execute in parallel in the SIMD unit -> Speedup: 1.6x~1.8x

* OpenCL: Intel implicit vectorization module ol

» Kernels with divergent data-dependent branches -> executing all branch paths

* OpenMP: Dedicated branch prediction (in hardware)

Table 2 OpenCL and OpenMP have different performance ratios between two datasets with similar sizes

Dataset fvcorr.domn. 93K missile.domn.0.2M Performnace
(aricraft wings) (missile) Ratio
g
OpenCL, 42438.00 ms 80339.00 ms 1.89
OpenMP 45065.88 ms 62589.57 ms 1.38
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PathFinder Results

» OpenMP: Coarse-grained parallelization

Performance Ratio (OMP/OCL)
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« OpenCL: Fine-grained parallelization

* One work-item processes one data element
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Fig.4 PathFinder OpenMP/OpenCL performance ratio and OpenMP execution time (ms)
with different dataset sizes.
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PathFinder Results

= Improve cache utilization explicitly

Performance Ratio (OMP/OCL)

/
]

[/
N7 IEN NG IRN /N

i 4

* MergeN: Merge N work-items into one N A,{Sggo%g?w%%igc
» VectorN: Explicit vectorization (using the vector type)
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Fig.5 PathFinder OpenCL with MergeN optimization and execution time comparison with
OpenMP on N8.
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Conclusion

* Where do the performance gaps come from?

 Incorrect usage of the multi-core CPUs (Users are negligent)
« Explicit H2D and D2H data transfers

« Column-major memory accesses

 Parallelism granularity (OpenCL is not properly mappted on CPUS)

» Fine-grained parallelism approach can lead to poor CPU cache utilization

* OpenCL compilers are not fully mature
« Intel implicit vectorization module with branches

 Intel and AMD have different fast floating-point optimizations
= OpenCL code can be tuned to match OpenMP’s regular performance

» More than 80% of the test cases

» OpenCL is, performance-wise, a good alternative for mutli-core CPUs

'I("U Delft P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs 20




Conclusion

» OpenCL and OpenMP can act as performance indicators

* OpenMP: locality-friendly coarse-grained parallelism

* OpenCL: fine-grained parallelism, vectorization
 This paper: OpenMP is an indicator, and OpenCL is tuned
e Future work
* Tune OpenMP to match the performance indicated by OpenCL

» Develop user-friendly performance (semi-)auto-tuning tools for OpenCL
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