
1P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

Performance Gaps between OpenMP and
OpenCL for Multi-core CPUs
Jie Shen, Jianbin Fang,
Henk Sips, and Ana Lucia Varbanescu

Parallel and Distributed Systems Group
Delft University of Technology, The Netherlands

2P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

Introduction
• Multi-core CPU and GPU programming keeps gaining popularity for

parallel computing

• OpenCL has been proposed to tackle multi-/many-core diversity in a

unified way

• OpenCL (Open Computing Language), KHRONOS Group

• The first open standard for cross-platform parallel programming

3P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

Introduction
• OpenCL programming model

Compute kernels

A host program

4P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

Introduction

Compute
kernels

A host program

• OpenCL programming model

5P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

Motivation
• OpenCL shares core parallelism approach with CUDA

• A research hotspot in GPGPU -> A large amount of free OpenCL code

• E.g., Parboil, SHOC, Rodinia benchmarks

• Major CPU vendors’ support

Dec 2008

Dec 2009
OpenCL 1.0

Nov 2011
Jun 2011AMD/ATI

SDK 2.0

Feb 2012
OpenCL 1.2

Intel SDK 1.1

Apr 2012
ARM 1st SDK

Intel SDK 2012
May 2012

AMD SDK 2.7

6P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

Motivation
• OpenCL cross-platform portability

When porting OpenCL code from GPUs to CPUs ?

• Functional correctness ?

• Parallelized performance ?

• Compared with sequential code

• Similar/better performance ?

• Compared with a regular CPU parallel programming model (e.g., OpenMP)

7P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

Motivation
• Reference: Regular parallel OpenMP code

• Not aggressively optimized

• Comparison: OpenCL and OpenMP performance on CPUs

• Target: Where do the performance gaps come from?

Host-Device data transfers

Memory access patterns and cache utilization

Floating-point operations

Implicit and explicit vectorization

8P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

Experimental Setup
• Benchmark

• Rodinia benchmark suite

• Equivalent implementations in OpenMP, CUDA and OpenCL

• Hardware platforms

• OpenCL SDKs
• Intel OpenCL SDK 1.1

• AMD APP SDK 2.5
• We have updated the compilers to Intel OpenCL SDK 2012 / AMD APP SDK 2.7 in the extended version of P2S2

Name Processor # Cores # HW Threads

N8 2.40GHz Intel Xeon E5620 (2x hyper-threaded) 2x quad-core 16

D6 2.67GHz Intel Xeon X5650 (2x hyper-threaded) 2x six-core 24

MC 2.10GHz AMD Opteron 6172 (Magnycours) 4x twelve-core 48

9P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

• Wall clock time = Initialization + H2D (Host to Device data transfer)

+ kernel executiont + D2H (Device to Host data transfer)

Sequential

Parallel
OpenCL

D2H

Kernel
Execution

H2D

INIT

Sequential

Parallel
OpenMP

≈D2H

Parallel
Section

≈H2D Implicit

Implicit

One time warm-up

Compare parallel part wall clock time?

10P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

Initial Results
• H2D + kernel execution + D2H

OpenMP performs
better

OpenCL performs
better

11P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

CPU

Host

Device

CPUs: H2D and D2H are not necessary

CPUHost

GPUDevice

GPUs: Explicit H2D and D2H

H2D and D2H on CPUs

• Use zero copy

• Zero copy memory objects: accessible for both the host and the device

• H2D: (1) CL_MEM_ALLOC_HOST_PTR; (2) CL_MEM_USE_HOST_PTR

• D2H: CL_MEM_ALLOC_HOST_PTR

12P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

• Use zero copy

H2D and D2H on CPUs

(a) Intel OpenCL SDK 1.1 (b) AMD APP SDK 2.5

Before
After

Before
After

Fig.1 Execution time (ms) comparison with/without zero copy.

13P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

• Data transfers use zero copy

Sequential

Parallel
OpenCL

D2H

Kernel
Execution

H2D

INIT
Zero copy

Zero copy

Compare Kernel Execution time !

14P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

K-means Results
• OpenCL: a swap kernel remaps the data array

from row-major to column major

• OpenMP: no data layout swapping

Dataset Intel
SDK

AMD
SDK

200K 52.1% 52.2%

482K 76.1% 80.4%

800K 79.6% 81.6%

Fig.2 K-means OpenCL execution time (ms) with/without the swap kernel.

Table 1 K-means performance differences
Before

After

15P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

K-means Results
• Process a 2D dataset element by element

• Column-major: GPU-friendly (memory coalescing)

• Row-major: CPU-friendly (cache locality)

• Tune the memory access patterns according to the target platforms

Fig.3 Execution time (ms) comparison of K-means after removing the swap kernel in OpenCL:
(a) N8, (b) D6, (c) MC.

(a) N8 (b) D6 (c) MC

16P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

CFD Results
• CFD also changes row-major to column-major

• Change back to row-major

• Improve performance only slightly (within 10%)

• Apply -cl-fast-relaxed-math compiler option

Fig.4 CFD OpenCL execution time (ms) with/without –cl-fast-relaxed-math.

Before

After

Before
After

• Intel and AMD have different specific

implementations of -cl-fast-relaxed math

• Performance improvements

• OpenCL(Intel): 11%~47.7%

• OpenMP(similar options): 20%~40%

17P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

CFD Results
• Effect of branching

• OpenCL: Intel implicit vectorization module

• Make N work-items execute in parallel in the SIMD unit -> Speedup: 1.6x~1.8x

• Kernels with divergent data-dependent branches -> executing all branch paths

• OpenMP: Dedicated branch prediction (in hardware)

Dataset fvcorr.domn.193K
(aricraft wings)

missile.domn.0.2M
(missile)

Performnace
Ratio

OpenCLIntel 42438.00 ms 80339.00 ms 1.89

OpenMP 45065.88 ms 62589.57 ms 1.38

Table 2 OpenCL and OpenMP have different performance ratios between two datasets with similar sizes

18P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

PathFinder Results
• OpenMP: Coarse-grained parallelization

• Each thread processes consecutive data elements

• OpenCL: Fine-grained parallelization

• One work-item processes one data element

Fig.4 PathFinder OpenMP/OpenCL performance ratio and OpenMP execution time (ms)
with different dataset sizes.

19P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

PathFinder Results
• Improve cache utilization explicitly

• MergeN: Merge N work-items into one

• VectorN: Explicit vectorization (using the vector type)

Fig.5 PathFinder OpenCL with MergeN optimization and execution time comparison with
OpenMP on N8.

Before

After

20P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

Conclusion
• Where do the performance gaps come from?

• Incorrect usage of the multi-core CPUs (Users are negligent)

• Explicit H2D and D2H data transfers

• Column-major memory accesses

• Parallelism granularity (OpenCL is not properly mappted on CPUs)

• Fine-grained parallelism approach can lead to poor CPU cache utilization

• OpenCL compilers are not fully mature

• Intel implicit vectorization module with branches

• Intel and AMD have different fast floating-point optimizations

• OpenCL code can be tuned to match OpenMP’s regular performance

• More than 80% of the test cases

• OpenCL is, performance-wise, a good alternative for mutli-core CPUs

21P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

Conclusion
• OpenCL and OpenMP can act as performance indicators

• OpenMP: locality-friendly coarse-grained parallelism

• OpenCL: fine-grained parallelism, vectorization

• This paper: OpenMP is an indicator, and OpenCL is tuned

• Future work

• Tune OpenMP to match the performance indicated by OpenCL

• Develop user-friendly performance (semi-)auto-tuning tools for OpenCL

22P2S2 2012: Performance Gaps between OpenMP and OpenCL for Multi-core CPUs

Contacts: J.Shen@tudelft.nl
http://www.pds.ewi.tudelft.nl/

Parallel and Distributed Systems Group
Delft University of Technology, The Netherlands

