
National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign

Hardware/Software

Divergence in

Accelerator Computing

Volodymyr Kindratenko

Innovative Systems Laboratory

How do you envision the role of accelerators in

parallel computing and high performance

computing in the next decade including the

role in the exascale systems?

• As means to claim the highest peak performance, but not as means

to achieve the highest efficiency at scale 

• Tianhe-1A was #1 on Top-500 in 2010

• Its Rmax was about 54% of its Rpeak

• Accelerators will play a minimal role in extreme-scale systems

• Sure, systems such as Titan and BW will have a lot of them

• But we have yet to see what performance the application scientists will

achieve on these systems using GPUs at scale

• Accelerators will play a substantial role for small-scale systems

• A system with O(10) of GPUs can replace a cluster with O(1000) CPU

cores for applications that can sustain strict scaling limitations imposed

due to accelerators

How do you view the hardware/software

divergence in accelerator Computing?

• It is getting worse

• We know how to build O(1M) CPU cores systems

• But we do not know how to write software that can take

advantage of such systems

• Accelerators add another layer of complexity to already

overly complex systems

• Heterogeneity in hardware also means greater degree of

divergence in software: host code, accelerator code,

communication layer, etc.

Which accelerator (hardware) do you think will

have advantages in the next 10 years and most

likely win the battle in the next decade and

why?

• Intel Many Integrated Core (MIC) Architecture –like accelerators will

eventually win the battle.

• The architecture is sound (many cores, wide vector units, high

memory bandwidth)

• Programming model is very flexible, ranging from kernel offload co-

processor to running entire application on the MIC

• Programming tools are conventional: icc, idb, vtune

• Programing languages are familiar: C/C++ with pragmas and

libraries

• Software development effort on MIC is comparable with

performance tuning effort rather than with code reimplementation

• Oh yes, when the “war” is over, what we consider today to be an

accelerator, will be in our mainstream processor

• Why not NVIDIA GPUs?

• Market forces are working against NVIDIA

• With the introduction of APUs, Intel and AMD are taking

away the low-end discrete GPU market from NVIDIA

• Without this low-end mass-market, NVIDIA will have a harder

time justifying the expense of developing high-end GPUs

• Market for high-end (HPC) GPUs is too small to sustain NRC

• Software development efforts necessary to efficiently utilize

GPUs are substantial, despite all the efforts by NVIDIA and its

partners developing tools and compilers

• Programming model (kernel offload co-processor) is inherently

limited

• NVIDIA CUDA SDK is great, but it locks the developers into a

particular (incompatible with the rest of the world) software-

hardware environment

• Other approaches, such as OpenCL, have yet to deliver

performance levels achievable with CUDA

What programming model/library of

accelerated computing do you think will have

advantages in the next 10 years and most likely

win the battle in the next decade and why?

• Anything that is easy to use without sacrificing

performance

• Libraries for applications which heavily rely on standard libs (fft,

linear algebra, …)

• Kernel offload for codes with distinct, well-defined and dense

computational kernels

What research challenges do you envision will

be most critical and should be addressed in

the coming years for the success of

accelerator computing?

• Ease of use

• Programmer’s productivity

• Automation (auto parallelization, auto-vectorization,

auto-tuning, …)

• Communication bottleneck

