A Flexible Approach to
Staged Events

Tiago Salmito

tsalmito@inf.puc-rio.br

Ana Lucia de Moura
Noemi Rodriguez

6th International Workshop on Parallel Programming Models and
Systems Software for High-End Computing (P2S2)

October 15t 2013 — Lyon, France

Concurrency Models

O
€ © Cooperative _
(<b] -
S <
-
©
=
X
g S .

P

Coopérative Preerﬁptive

Task management

* A. Adya, J. Howell, M. Theimer, W. J. Bolosky and J. R. Douceur. Cooperative Task Management
Without Manual Stack Management. (2002)

Hybrid Concurrency Models

* Models combining threads and events

* Programing model bias:

— Hybrid event-driven
« More than one concurrent event loops

— Hybrid thread based

 Converts (user) threads to cooperative events during
runtime

— Staged event-driven
* Does not have a clear bias towards events or threads
* Pipeline processing

A f!f()f!}?;?ﬁé'

Srtack management

M?{Jffﬂf

/

The Staged Model

Inspired by SEDA

— Staged Event-Driven Architecture

Flexibility

— EXxposes both concurrency models
Characteristics:

— Applications are designed as a collection of stages
— Stages are multithreaded modules

— Asynchronous processing (event-driven communication)
Decoupled scheduling

— Local policies

— Resource aware

Stages

Stage /M:l:T
§ Dispatch
t
CEvemauem Event events E
A handler)
i o —r |
N | Scheduler <
| v vy ;
i §38 . 8 .
Observe | Thread pool ' Adjust
i | parameters

state O ___________

Controller

Stages:. Some Issues

* Coupling
— Specification
 Hinder reuse

— Execution
« Single (shared) address space

» Use of operating system threads
— Thread sharing

 Local and global state sharing
— Race conditions
— Distributed resources

Extending the Staged Model

* Objective: Decoupling
— Decisions related to the application logic and
decisions related to the execution environment

 Characteristics
— Stepwise application development
— Stage composition and reuse
— Cooperative execution with multiple threads

PCAM Design Methodology

« Partitioning
Partitioning O O (- Communication — Functional or domain
—> L0 — % decomposition
O] -
« Communication
Agglomeration
l — Data exchange

- - Agglomeration
Mapping
53}; — @g’ — Processing and
é Q @ communication granularity
Mapping

— Mapping tasks to
Processors

Stepwise development

Programming Stages
— Functional decomposition

— State isolation

 Transient state
— Domain decomposition

* Persistent state
— Atomic execution

Communication
— Connectors: Application graph
— Output ports and event queues
Agglomeration
— Clusters of stages
— Scheduling domain
Mapping
— Execution locality

Programming

Stage

Event
handler

Stage
Cs] Event
CEl handler Pl

Stage

Event
handler

Communication

2
Connector

1 sl 5
CEl;
Agglomeration
””””””””””””””””””””””””””””””””””””” Cluster
2
1 T —l > 5
3 - 4 —
Mapping
Process 1
1) ™ Process 3
a s |
Process 2
Controller
_>
s | e |

_eda

* Distributed platform for staged applications

* Implemented in C and Lua
— Scripting environment
— Use of C for CPU-intensive operations

 Declarative application description
— Application graph
— Execution configuration

Example: echo server

require 'leda'
local port=
local server=leda.stage{
handler=function ()
local server sock=assert(socket.bind("*", port))
while true do
local cli_sock=assert(server_ sock:accept())
leda.send("client",cli sock)
end
end,
init=function() require'leda.utils.socket' end,
} :push()
local reader=leda.stage{
handler=function (sock)

repeat
local msg,err=sock:receive ()

leda.send("message'" ,msq)
until msg==nil
end

}
local echo=leda.stage (function(msg) print (msg) end)
local graph=leda.graph{
server'"client". .reader,
reader"message" . .echo

}
graph:run()

12

—{)Workgen

Evaluation

Reducer

Runtime (seconds)

200
180

—
00 O b =
oo oo

Total execution time

Smple process - 24 threads

Stage 2 instances
Stage 1 instances

13

Internal statistics

Worst case scenario

Stage: Latency

HHHHHHHHHHHHHHHHHH
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
ﬁﬁﬁﬁﬁﬁﬁﬁ

Best case scenario

Stage: Latency

HHHHHHHHHHHHHHHHH
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

14

Final Remarks

* Hybrid concurrency
— Event-driven, thread based or staged

* An extension to the staged model
— Stepwise application development

» Implementation of a distributed platform for
staged applications
— Leda

A Flexible Approach to
Staged Events

Tiago Salmito

tsalmito@inf.puc-rio.br

Ana Lucia de Moura
Noemi Rodriguez

6th International Workshop on Parallel Programming Models and
Systems Software for High-End Computing (P2S2)

October 15t 2013 — Lyon, France

Extra: Runtime Architecture

Cluster 1

Cluster 2

5259

) (59

v

To/from
other
processes

>

Application @
Process1
S3
Cluster @ @@ To process 2
Idle instances
Ready queue I)s1
instances | (WWBRD S g
| s
w Thread~)| | Eventqueues| =
| = S1 5
-» Thread m)}») %
Scheduler | i» Thread) S3 | |5
| — | s e
> Thread)+ |
Thread pool || [Asynchronous
\ 4
Runtime events
Statistics | Waiting
x instances
» Controller

1/0 interfaces

