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Concurrency Models
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Hybrid Concurrency Models

* Models combining threads and events

* Programing model bias:

— Hybrid event-driven
« More than one concurrent event loops

— Hybrid thread based

 Converts (user) threads to cooperative events during
runtime

— Staged event-driven
* Does not have a clear bias towards events or threads
* Pipeline processing
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The Staged Model

Inspired by SEDA

— Staged Event-Driven Architecture

Flexibility

— EXxposes both concurrency models
Characteristics:

— Applications are designed as a collection of stages
— Stages are multithreaded modules

— Asynchronous processing (event-driven communication)
Decoupled scheduling

— Local policies

— Resource aware
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Stages:. Some Issues

* Coupling
— Specification
 Hinder reuse

— Execution
« Single (shared) address space

» Use of operating system threads
— Thread sharing

 Local and global state sharing
— Race conditions
— Distributed resources



Extending the Staged Model

* Objective: Decoupling
— Decisions related to the application logic and
decisions related to the execution environment

 Characteristics
— Stepwise application development
— Stage composition and reuse
— Cooperative execution with multiple threads



PCAM Design Methodology
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Stepwise development

Programming Stages
— Functional decomposition

— State isolation

 Transient state
— Domain decomposition

* Persistent state
— Atomic execution

Communication
— Connectors: Application graph
— Output ports and event queues
Agglomeration
— Clusters of stages
— Scheduling domain
Mapping
— Execution locality
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_eda

* Distributed platform for staged applications

* Implemented in C and Lua
— Scripting environment
— Use of C for CPU-intensive operations

 Declarative application description
— Application graph
— Execution configuration



Example: echo server

require 'leda'
local port=
local server=leda.stage{
handler=function ()
local server sock=assert(socket.bind("*", port))
while true do
local cli_sock=assert(server_ sock:accept())
leda.send("client",cli sock)
end
end,
init=function() require'leda.utils.socket' end,
} :push()
local reader=leda.stage{
handler=function (sock)

repeat
local msg,err=sock:receive ()

leda.send("message'" ,msq)
until msg==nil
end

}
local echo=leda.stage (function(msg) print (msg) end)
local graph=leda.graph{
server'"client". .reader,
reader"message" . .echo

}
graph:run()

12



—{)Workgen

Evaluation

Reducer

Runtime (seconds)

200
180

—
00 O b =
oo oo

Total execution time

Smple process - 24 threads

Stage 2 instances
Stage 1 instances

13




Internal statistics

Worst case scenario

Stage: Latency
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Best case scenario

Stage: Latency
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Final Remarks

* Hybrid concurrency
— Event-driven, thread based or staged

* An extension to the staged model
— Stepwise application development

» Implementation of a distributed platform for
staged applications
— Leda
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Extra: Runtime Architecture

Cluster 1

Cluster 2

5259

) (59

v

To/from
other
processes

>

Application @
Process1
S3
Cluster @ @@ To process 2
Idle instances
Ready queue I )s1
instances | (WWBRD S g
| s
w Thread~ )| | Eventqueues| =
| = S1 5
-»  Thread m)}» ) %
Scheduler | i»  Thread ) S3 | |5
| — | s e
> Thread )+ |
Thread pool || [ Asynchronous
\ 4
Runtime events
Statistics | Waiting
x instances
» Controller

1/0 interfaces



