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Japanese ‘Computnik’ Earth Simulator 
Shatters U.S. Supercomputer Hegemony 
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Importance of High-Performance Computing (HPC) 

Competitive Risk From Not Having Access to HEC

3%

16%

34%

47%

Could exist and compete

Could not exist as a business

Could not compete on quality &
testing issues

Could not compete on time to market
& cost

Data from Council of Competitiveness.  
Sponsored Survey Conducted by IDC 

Competitive Risk From Not Having Access to HPC 

  Only 3% of companies could exist and 
compete without HPC. 
ª  200+ participating companies, including 

many Fortune 500 (Proctor & Gamble and 
biological and chemical companies) 
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Computnik 2.0?	
  

•  The Second Coming of Computnik?  Computnik 2.0?	
  
–  No	
  …	
  “only”	
  43%	
  faster	
  than	
  the	
  previous	
  #1	
  supercomputer,	
  but	
  
	
   	
   	
  à	
  $20M	
  cheaper	
  than	
  the	
  previous	
  #1	
  supercomputer	
  
	
   	
   	
  à	
  42%	
  less	
  power	
  consumpEon	
  

•  The	
  Second Coming of the “Beowulf Cluster” for HPC 
–  The further commoditization of HPC 
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The First Coming of the “Beowulf Cluster” 

•  Utilize commodity PCs (with commodity 
CPUs) to build a supercomputer 

The Second Coming of  
the “Beowulf Cluster” 

•  Utilize commodity PCs (with commodity 
CPUs) to build a supercomputer 
       + 

•  Utilize commodity graphics processing 
units (GPUs) to build a supercomputer 

© W. Feng, September 2014               
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Issue:  Extracting performance with programming ease and portability à productivity  
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“Holy Grail” Vision 
•  Ecosystem for the New HPC:  Heterogeneous Parallel Computing 

 

 
 

–  Enabling software that tunes parameters of hardware devices                  
… with respect to performance, programmability, and portability             
… via a benchmark suite of dwarfs (i.e., motifs) and mini-apps 

 

Highest-ranked commodity supercomputer 
in U.S. on the Green500 (11/11) 
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An Ecosystem for Heterogeneous Parallel Computing 

Software 
Ecosystem 

Heterogeneous Parallel Computing (HPC) Platform 

Sequence 
Alignment 

Molecular 
Dynamics 

Earthquake 
Modeling 

Neuro- 
informatics 

CFD for  
Mini-Drones 

Applications 

^ 

… inter-node (in brief) 
  with application to BIG DATA (StreamMR) 
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Roadmap 
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Performance, Programmability, Portability 

Goal: Minimize the re-writing of code, e.g., CFD for mini-drones. 
CUDA à OpenCL and OpenMP à OpenACC 
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Programming GPUs 

CUDA 
•  NVIDIA’s proprietary framework 
 

OpenCL 
•  Open standard for heterogeneous parallel computing 

(Khronos Group) 
•  Vendor-neutral environment for CPUs, GPUs,  

APUs, and even FPGAs 
 

OpenACC 
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CU2CL:  
CUDA-to-OpenCL Source-to-Source Translator† 

•  Works as a Clang plug-in to leverage its production-quality 
compiler framework.  

•  Covers primary CUDA constructs found in CUDA C and 
CUDA run-time API. 

•  Delivers performance portability when OpenCL 1.2-equivalent 
CUDA code run on same NVIDIA GPU. 

•  Focuses on functional portability … for now. 
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† 	
  “CU2CL:	
  A	
  CUDA-­‐to-­‐OpenCL	
  Translator	
  for	
  MulE-­‐	
  and	
  Many-­‐core	
  Architectures,”	
  17th	
  
IEEE	
  Int’l	
  Conf.	
  on	
  Parallel	
  &	
  Distributed	
  Systems	
  (ICPADS),	
  Dec.	
  2011.	
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OpenCL:  Write Once, Run Anywhere 

© W. Feng, September 2014               
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CUDA Program 

CU2CL (“cuticle”) 

OpenCL-supported CPUs, GPUs, FPGAs NVIDIA GPUs 

OpenCL Program 
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CU2CL Translation and Performance 

•  Automatically translated OpenCL codes (via CU2CL) yield 
similar execution times to manually translated OpenCL codes 
(when running on the same device) 

© W. Feng, September 2014               
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Application CUDA Lines Lines Manually 
Changed 

% Auto-
Translated 

bandwidthTest 891 5 98.9 

BlackScholes 347 14 96.0 

matrixMul 351 9 97.4 

vectorAdd 147 0 100.0 

Back Propagation 313 24 92.3 

Hotspot 328 2 99.4 

Needleman-Wunsch 430 3 99.3 

SRAD 541 0 100.0 

Fen Zi: Molecular Dynamics 17,768 1,796 89.9 

GEM: Molecular Modeling 524 15 97.1 

IZ PS: Neural Network 8,402 166 98.0 

© W. Feng, September 2014               
P2S2 at ICPP 2014 

Delaware 

VT 

AMD 
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Roadmap 
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IEEE ICPADS ’11 
P2S2 ’12 

Parallel Computing ‘13 

Performance, Programmability, Portability 

What about  
performance portability? 
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Roadmap 
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Performance, Programmability, Portability 
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Computational Units Not Created Equal 

•  “AMD CPU ≠ Intel CPU” and “AMD GPU ≠ NVIDIA GPU” 
•  Initial performance of a CUDA-optimized N-body dwarf 

© W. Feng, September 2014               
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C.	
  del	
  Mundo,	
  W.	
  Feng.	
  “Towards	
  a	
  Performance-­‐Portable	
  FFT	
  Library	
  for	
  Heterogeneous	
  Computing,”	
  	
  in	
  IEEE	
  IPDPS	
  ‘13.	
  Phoenix,	
  AZ,	
  USA,	
  May	
  	
  2014.	
  (Under	
  review.)	
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  Efficient	
  Intra-­‐Warp	
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  Architecture”,	
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C.	
  del	
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  V.	
  Adhinarayanan,	
  W.	
  Feng,	
  “Accelerating	
  FFT	
  for	
  Wideband	
  Channelization.”	
  in	
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  ICC	
  ‘13.	
  Budapest,	
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  June	
  2013.	
  

Traditional Approach to Optimizing Compiler 
Architecture-Independent 
Optimization 

Architecture-Aware 
Optimization 
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Combined 

Optimization for N-body Molecular Modeling 

•  Optimization techniques on 
AMD GPUs 
–  Removing conditions à kernel 

splitting 
–  Local staging 
–  Using vector types 
–  Using image memory  

•  Speedup over basic OpenCL 
GPU implementation 
–  Isolated optimizations 
–  Combined optimizations 

© W. Feng, September 2014               
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Isolated 

MT: Max Threads; KS: Kernel Splitting; RA: Register Accumulator;  
RP: Register Preloading; LM: Local Memory; IM: Image Memory;  
LU{2,4}: Loop Unrolling{2x,4x}; VASM{2,4}: Vectorized Access &  
Scalar Math{float2, float4}; VAVM{2,4}: Vectorized Access & Vector 
Math{float2, float4} 
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AMD-Optimized N-body Dwarf 

© W. Feng, September 2014               
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-32% 
371x speed-up 
•  12% better than NVIDIA GTX 280 
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FFT:  Fast Fourier Transform 

•  A spectral method that is  
a critical building block 
 across many disciplines 

© W. Feng, September 2014               
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Summary of Optimizations 

© W. Feng, September 2014               
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Optimizations 

•  RP:  Register Preloading 
–  All data elements are first preloaded into the register file before use. 
–  Computation facilitated solely on registers 

•  LM-CM:  Local Memory (Communication Only) 
–  Data elements are loaded into local memory only for communication 
–  Threads swap data elements solely in local memory 

•  CGAP:  Coalesced Global Access Pattern 
–  Threads access memory contiguously 

•  VASM{2|4}:  Vector Access, Scalar Math, float{2|4} 
–  Data elements are loaded as the listed vector type.  
–  Arithmetic operations are scalar (float × float).  

•  CM-K:  Constant Memory for Kernel Arguments 
–  The twiddle multiplication state of FFT is precomputed on the CPU 

and stored in GPU constant memory for fast look-up. 

© W. Feng, September 2014               
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Architecture-Optimized FFT 

© W. Feng, September 2014               
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Architecture-Optimized FFT  
(Batched, Single Precision, 1-D, 16-pt) 
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Architecture-Optimized 2D FFT (256 × 256) 

© W. Feng, September 2014               
P2S2 at ICPP 2014 



synergy.cs.vt.edu	
  

Architecture-Optimized Lid-Driven Cavity  

© W. Feng, September 2014               
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Roadmap 
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GPU Computing Gems 
J. Molecular Graphics & Modeling 

IEEE ICPADS ’11 
IEEE HPCC ’12 
IEEE HPDC ‘13 
IEEE ICC ’13 

ACM Computing Frontiers ‘14 

Performance, Programmability, Portability 
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Roadmap 

FUTURE	
  WORK	
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Performance, Programmability, Portability 
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Roadmap 
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Performance, Programmability, Portability 



synergy.cs.vt.edu	
  

Paying For Performance 

•  “The free lunch is over...” † 

–  Programmers can no longer expect substantial increases in single-
threaded performance. 

–  The burden falls on developers to exploit parallel hardware for 
performance gains. 

•  How do we lower the cost of concurrency? 

© W. Feng, September 2014               
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† 	
  H.	
  Su]er,	
  “The	
  Free	
  Lunch	
  Is	
  Over:	
  A	
  Fundamental	
  Turn	
  Toward	
  Concurrency	
  in	
  
So^ware,”	
  Dr.	
  Dobb’s	
  Journal,	
  30(3),	
  March	
  2005.	
  	
  (Updated	
  August	
  2009.)	
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The Berkeley View † 

•  Traditional Approach 
–  Applications that target existing 

hardware and programming 
models 

•  Berkeley Approach 
–  Hardware design that keeps 

future applications in mind 
–  Basis for future applications?  

13 computational dwarfs 
A computational dwarf is a pattern of 
communication & computation that is 
common across a set of applications.  

© W. Feng, September 2014               
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†	
  	
  Asanovic,	
  K.,	
  et	
  al.	
  The	
  Landscape	
  of	
  Parallel	
  CompuEng	
  Research:	
  A	
  View	
  from	
  Berkeley.	
  
Tech.	
  Rep.	
  UCB/EECS-­‐2006-­‐183,	
  University	
  of	
  California,	
  Berkeley,	
  Dec.	
  2006.	
  	
  

Dense Linear 
Algebra 

Sparse Linear 
Algebra 

Spectral  
Methods 

N-Body 
Methods 

Structured  
Grids 

Unstructured  
Grids 

Monte Carlo à  
MapReduce 

Combinational Logic 
Graph Traversal 
Dynamic Programming 
Backtrack & Branch+Bound 
Graphical Models 
Finite State Machine 

and 
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Example of a Computational Dwarf:  N-Body 

•  Computational Dwarf:  Pattern of computation & communication  
 … that is common across a set of applications  

•  N-Body problems are studied in 
–  Cosmology, particle physics, biology, and engineering 

•  All have similar structures 
•  An N-Body benchmark can  
  provide meaningful insight  

 to people in all these fields 
•  Optimizations may be  
  generally applicable as well 

© W. Feng, September 2014               
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GEM:  
Molecular Modeling 

RoadRunner Universe: 
Astrophysics 
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First Instantiation:  OpenDwarfs 
(formerly “OpenCL and the 13 Dwarfs”)	
  

•  Goal 
–  Provide common algorithmic methods, i.e., dwarfs, in a language that is 

“write once, run anywhere” (CPU, GPU, or even FPGA), i.e., OpenCL 
 
 
 

 

•  Part of a larger umbrella project (2008-2018), funded by the  
  NSF Center for High-Performance Reconfigurable Computing (CHREC) 

© W. Feng, September 2014               
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Roadmap 
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ACM ICPE ’12:   
OpenCL & the 13 Dwarfs 

IEEE Cluster ’11, FPGA ’11,  
IEEE ICPADS ’11, SAAHPC ’11, 
IEEE ICPADS ‘13, IEEE ASAP ‘14 

Performance, Programmability, Portability 
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Roadmap 
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Performance, Programmability, Portability 
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Performance & Power Modeling 

•  Goals 
–  Robust framework 
–  Very high accuracy (Target:  < 5% prediction error)  
–  Identification of portable predictors for performance and power 
–  Multi-dimensional characterization 

§  Performance à sequential, intra-node parallel, inter-node parallel 
§  Power à component level, node level, cluster level 

© W. Feng, September 2014               
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Problem Formulation:   
LP-Based Energy-Optimal DVFS Schedule 

•  Definitions 
–  A DVFS system exports n  { (fi, Pi ) } settings. 
–  Ti :  total execution time of a program running at setting i 

•  Given a program with deadline D, find a DVS schedule (t1*, …, 
tn*) such that  
–  If the program is executed for ti seconds at setting i, the total energy usage E is 

minimized, the deadline D is met, and the required work is completed. 

© W. Feng, September 2014               
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Single-Coefficient β  Performance Model	



•  Our Formulation 
–  Define the relative performance slowdown δ as  
    T(f) / T(fMAX) – 1 
–  Re-formulate two-coefficient model 

 as a single-coefficient model: 

 
 
 

–  The coefficient β  is computed at run-time using a regression method on the 
past MIPS rates reported from the built-in PMU. 

© W. Feng, September 2014               
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C.	
  Hsu	
  and	
  W.	
  Feng.	
  
“A	
  Power-­‐Aware	
  Run-­‐Time	
  
System	
  for	
  High-­‐Performance	
  
CompuEng,”	
  SC|05,	
  Nov.	
  2005.	
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β – Adaptation on NAS Parallel Benchmarks 

C. Hsu and W. Feng. 
“A Power-Aware Run-Time System 
for High-Performance Computing,” 
SC|05, Nov. 2005. 

© W. Feng, September 2014               
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Need for Better Performance & Power Modeling 

•  S 

© W. Feng, September 2014               
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Source: Virginia Tech 
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Search for Reliable Predictors 

•  Re-visit performance counters used for prediction 
–  Applicability of performance counters across generations of 

architecture 

•  Performance counters monitored 
–  NPB and PARSEC benchmarks 
–  Platform: Intel Xeon E5645 CPU (Westmere-EP) 

© W. Feng, September 2014               
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Context switches (CS) Instruction issued (IIS) 

L3 data cache misses (L3 DCM) L2 data cache misses (L2 DCM) 

L2 instruction cache misses (L2 ICM) Instruction completed (TOTINS) 

Outstanding bus request cycles 
(OutReq) 

Instruction queue write cycles 
(InsQW) 
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Roadmap 
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Performance, Programmability, Portability 

ACM/IEEE SC ’05 
ICPP ’07 

IEEE/ACM CCGrid ‘09 
IEEE GreenCom ’10 

ACM CF ’11 
IEEE Cluster ‘11 

ISC ’12 
IEEE ICPE ‘13  
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Roadmap 
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Performance, Programmability, Portability 

Performance Portability 

Performance Portability 
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What is Heterogeneous Task Scheduling? 

•  Automatically spreading tasks across heterogeneous compute 
resources 
–  CPUs, GPUs,  APUs, FPGAs, DSPs, and so on 

•  Specify tasks at a higher level (currently OpenMP extensions) 
•  Run them across available resources automatically 
 
 

•  A run-time system that intelligently uses what is available 
resource-wise and optimize for performance portability 
–  Each user should not have to implement this for themselves! 

© W. Feng, September 2014               
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Goal 
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Heterogeneous Task Scheduling 
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How to Heterogeneous Task Schedule (HTS) 

•  Accelerated OpenMP offers heterogeneous task scheduling with 
–  Programmability 
–  Functional portability, given underlying compilers 
–  Performance portability 

•  How? 
–  A simple extension to Accelerated OpenMP syntax for programmability 
–  Automatically dividing parallel tasks across arbitrary heterogeneous 

compute resources for functional portability 
§  CPUs 
§  GPUs 
§  APUs 

–  Intelligent runtime task scheduling for performance portability 

© W. Feng, September 2014               
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# pragma acc_region_loop \

acc_copyin(in1[0:end],in2[0:end]) \

acc_copyout(out[0:end]) \

acc_copy(pow[0:end]) \

hetero(<cond>[,<scheduler>[,<ratio>\

[,<div>]]])

for (i=0; i<end; i++){

out[i] = in1[i] * in2[i];

pow[i] = pow[i]*pow[i];

}

1

Programmability:  Why Accelerated OpenMP? 

Traditional OpenMP OpenMP Accelerator Directives 

Our Proposed Extension 

# pragma omp parallel for \

shared(in1,in2,out,pow)

for (i=0; i<end; i++){

out[i] = in1[i]*in2[i];

pow[i] = pow[i]*pow[i];

}

1

# pragma acc_region_loop \

acc_copyin(in1[0:end],in2[0:end])\

acc_copyout(out[0:end]) \

acc_copy(pow[0:end])

for (i=0; i<end; i++){

out[i] = in1[i] * in2[i];

pow[i] = pow[i]*pow[i];

}

1

© W. Feng, September 2014               
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Programmability: 
Code Transformation 
•  Manual 

–  Add 20 lines 
–  Must manually split problem and reassemble results 

•  Automatic 
–  Add 1 clause 
–  Splitting and assembly are automatic 

 
# pragma omp acc_region_loop private(i) \

firstprivate(nco,no,ncl) default(none) \

acc_copyin(fc[0:ncl*nco]) present(fo) \

acc_copyout(m[0:no])

// hetero(1,dynamic)

for (i=0; i<no; i++) {

m[i] = findc(no,ncl,nco,fo,fc,i);

}

1

Our Proposed Extension 

Manual 

splitter * s = split_init(no, SPLIT_DYNAMIC, NULL, NULL);

int *m_c = (int*)malloc(sizeof(int)*no);

for(int d_it=0; d_it < s->d_end; d_it++)

{

s = split_next(no, d_it);

# pragma omp parallel num_threads(2)

{

if(omp_get_thread_num()>0)

{//CPU OpenMP code

split_cpu_start(s);

# pragma omp parallel shared(fo,fc,m_c,s) \

num_threads(omp_get_thread_limit()-1) \

firstprivate(no,ncl,nco) private(i)

{

# pragma omp for

for (i=s->cts; i<s->cte; i++) {

m_c[i] = findc(no,ncl,nco,fo,fc,i);

}

}

split_cpu_end(s);

}else{//GPU OpenMP code

split_gpu_start(s);

int gts = s->gts, gte = s->gte;

# pragma omp acc_region_loop private(i) \

firstprivate(nco,no,ncl,gts,gte)\

acc_copyin(fc[0:ncl*nco]) \

acc_copyout(m[0:no]) \

present(fo) default(none)

for (i=gts; i<gte; i++) {

m[i] = findc(no,ncl,nco,fo,fc,i);

}

split_gpu_end(s);

}

}

}

memcpy(m+s->d_ccs,m_c+s->d_ccs,

(s->d_cce-s->d_ccs)*sizeof(int));

free(m_c);

1
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OpenMP Accelerator Behavior 

Original/Master thread Worker threads Parallel region Accelerated region 

#pragma omp parallel … 

#pragma omp acc_region … 

Kernels 

© W. Feng, September 2014               
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Implicit barrier 
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DESIRED OpenMP Accelerator Behavior 

Original/Master thread Worker threads Parallel region Accelerated region 

© W. Feng, September 2014               
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#pragma omp parallel num_threads(2) 

#pragma omp acc_region … 

#pragma omp parallel … 
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Work-share a Region Across the Whole System 

Original/Master thread Worker threads Parallel region Accelerated region 

#pragma omp acc_region … 

#pragma omp parallel … 

OR 

© W. Feng, September 2014               
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CoreTSAR:  Scheduling and Load-Balancing by Adaptation 

•  Measure computational suitability at runtime 
•  Compute new distribution of work through a linear 

optimization approach 
•  Re-distribute work before each pass 

OpenMP implementation with coscheduling. This goal imposes de-
sign constraints. Most importantly, it must not require any changes,
even for memory movement, to the loop body beyond those for Ac-
celerated OpenMP. For example, no pragmas or API calls may be
inserted into the loop, nor memory access patterns be changed, as
task scheduling systems often require. All information necessary
for CoreTSAR to provide the correct data for any range of itera-
tions to any device’s memory space must be provided in the direc-
tive outside the loop. Further, we must preserve data consistency
outside the region: main memory must hold the same values when
the loop exits as it would have with Accelerated OpenMP.

Our design has two main components: the scheduling and task
inference portion; and the memory specification and management
portion. We now detail both and provide an example of their use.

3.1 Assigning Tasks
With homogeneous iterations and resources, the OpenMP static
schedule yields high performance. Since iterations can vary in run-
time, OpenMP supports additional schedule types (dynamic and
guided) to improve load balance. These schedules target hetero-
geneous iterations on homogeneous resources that have low con-
currency control costs. However, they are less appropriate for het-
erogeneous resources due to varying costs and synchronization re-
quirements. Since CoreTSAR targets heterogeneous resources with
distributed memories, we provide different schedules.

Our adaptive scheduler assigns iterations at the beginning of
parallel regions, or sub-regions. This approach reduces locking
overhead but does not balance load dynamically. To provide bal-
anced schedules, CoreTSAR predicts the time to compute an itera-
tion on each resource based on previous passes.

CoreTSAR tracks the average time to complete an iteration on
each device, which it uses to predict the amount of work each de-
vice can complete in the next pass. For example, consider a system
with two CPU cores and one GPU (one CPU core must control the
GPU). If the CPU core completes 10 iterations in the same time that
the GPU takes to copy in data, complete 40 iterations, and to copy
back the results, then the CPU should be assigned 20% of the iter-
ations in the next pass. We thus determine the relationship between
compute units and can compute the amount of work to provide each
device to balance their loads. However, we must extend this simple
approach to more than two devices and choose an initial split.

3.2 Applying Ratios
We use a linear program to extend our approach to arbitrary device
counts, a version of which was discussed briefly in our previous
work [22]. The linear program computes the iterations to assign
to each device based on their time per iteration. Figure 2 lists its
variables (Equation 1), objective function (Equation 2) and accom-
panying constraints (Equations 3-6). The program minimizes the
total deviation between the predicted runtimes for all devices. We
assume that performance of an average iteration does not change
across region instances. Thus, the time for a device to finish its
work in the next pass equals the time per iteration from the previ-
ous pass multiplied by its assigned iteration count. In practice this
assumption holds well: although the cost of iterations varies, the
same iteration in different passes often has similar performance,
rendering accuracy within a few percent for our tests.

3.3 Static Scheduling
On the first entry into a region, our static schedule uses the linear
program to assign iterations. To increase portability, we compute
default relative times per iteration at runtime rather than using a
precomputed static value (the user can also specify the ratio). Our
default assumes that one instruction cycle on a GPU core takes
the same time as one cycle on a single SIMD lane of a CPU.

I = total iterations available

ij = iterations for compute unit j

fj = fraction of iterations for compute unit j

pj = recent time/iteration for compute unit j (1)

n = number of compute devices

t+j (or t�j ) = time over (or under) equal

min(
n�1X

j=1

t+1 + t�1 · · ·+ t+n�1 + t�n�1) (2)

nX

j=0

ij = I (3)

i2 ⇤ p2 � i1 ⇤ p1 = t+1 � t�1 (4)

i3 ⇤ p3 � i1 ⇤ p1 = t+2 � t�2 (5)

...

in ⇤ pn � i1 ⇤ p1 = t+n�1 � t�n�1 (6)

Figure 2: Linear program variables, objective and constraints

While this assumption does not hold in general, we can portably
compute an initial time per iteration for each device. We compute
the time per iteration for a GPU as pg = 1

m/s and for CPU cores as
1 � pg (where m is the number of multiprocessors on a GPU and
s the SIMD width of a CPU core; in the case of multiple GPUs,
we use the largest value). For applications that are not dominated
by floating-point computation, we have considered models that
include several other factors, including memory bandwidth and
integer performance, none of which have significantly changed our
results.

3.4 Adaptive Scheduling
Our adaptive schedules (Adaptive, Split and Quick) use the static
schedule for the first pass. We then use the time that each device
takes to complete its iterations in the preceding pass as input to
our linear program for the next pass. We include all recurring data
transfer and similar overheads required to execute an iteration on a
particular device (but not one-time overheads such as the copying
of persistent data). Thus, we incorporate those overheads into the
cost of the iteration and naturally account for them. The Adaptive
schedule trains on the first instance of the region and then each
subsequent instance. The Split schedule accommodates regions that
may only run once or that may benefit from scheduling more often.
It breaks each region instance into several evenly split sub-regions,
based on the div input. Each time a sub-region completes, we use
the linear program to split the next. This schedule can provide better
load balance at the cost of increased scheduling and kernel launch
overhead. Thus, it is impractical for short regions and overhead
sensitive applications. The Quick schedule balances between the
Split and Adaptive schedules by executing a small sub-region for its
first training phase, similarly to Split. It then immediately schedules
all remaining iterations of the first region instance and uses the
Adaptive schedule for any subsequent instances. This schedule suits
applications that cannot tolerate a full instance using the static
schedule or the overhead of extra scheduling steps in every pass.

3.5 Memory Management
Moving exactly the data required is essential to efficient and correct
region execution across multiple memory spaces. Thus, we allow
the user to specify the association between a loop iteration and in-
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min(
n�1X

j=1

t+j + t�j ) (7)

nX

j=1

fj = 1 (8)

f2 ⇤ p2 � f1 ⇤ p1 = t+1 � t�1 (9)

f3 ⇤ p3 � f1 ⇤ p1 = t+2 � t�2 (10)

...

fn ⇤ pn � f1 ⇤ p1 = t+n�1 � t�n�1 (11)

(b) Modified objective and constraints

Fig. 5: Linear program optimization and performance

exactly that linear program. In order to ensure the solve itself is efficient, CoreTSAR
employs the lp solve library[Berkelaar et al. 2003], an optimized linear program solver
that can refine an existing solved tableau for a new set of inputs. This incremental ap-
proach reduces overhead since each pass tends to have similar inputs.

//items in {} are optional

#pragma acc region \

hetero(<cond>{,<devices>{,<sched.>{,<ratio>{,<div>}}}})\

pcopy{in/out}(<var>[<cond>:<num>{:<boundary>}])\

persist(<var>)

#pragma acc depersist(<var>)

hetero() inputs
<cond> Boolean, true=coschedule, false=ignore

<devices> Allowable devices (cpu/gpu/all)
<scheduler> Scheduler to use for this region

<ratio> Initial split between CPU and GPU.
<div> How many times to divide the iteration space

pcopy() and {de}persist() inputs
<var> Variable to copy.

<size> Size of each “item” in the array/matrix.
<cond> Whether this dimension should be copied.
<num> Number of items in this dimension.

<boundary> Number of boundary elements required.

Fig. 3: Our proposed extension

Figure ?? represents the time spent
in CoreTSAR scheduling 1,900 passes
through a region, or 19,000 schedul-
ing iterations with the split scheduler.
The original linear model has exponen-
tial time complexity as the number of
devices increases. In the worst case,
the split schedule with four GPUs, the
scheduling takes nearly 3⇥ longer than
the 40-second compute phase.

Two issues reduce solver performance.
The input has widely distributed val-
ues, which leads to numerical instability
and slows convergence due to frequent
floating-point error corrections. Also, all
outputs require integer values, which re-
quires the solver to refine an optimal so-
lution into an optimal integer solution
across those values, which significantly
increases computational complexity.

To alleviate these issues we remove integer output requirements by computing the
percentage of iterations to assign to each device. This choice also keeps nearly all val-
ues between zero and one, improving numerical stability. Figure ?? shows the new
objective function (Equation 7) and constraints (Equations 8-11). These changes pro-
duce the optimized results in Figure ??. With this version, the time in CoreTSAR can
actually decrease as the number of GPUs increases due to the consistency of GPU per-
formance across passes. Despite the larger matrix, the solution converges faster since
it deviates less from the previous solution.
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Heterogeneous Scheduling:  Issues and Solutions 

•  Issue:  Launching overhead is high on GPUs 
–  Using a work-queue, many GPU kernels may need to be run 

•  Solution:  Schedule only at the beginning of a region 
–  The overhead is only paid once or a small number of times 

•  Issue:  Without a work-queue, how do we balance load? 
–  The performance of each device must be predicted 

•  Solution:  Allocate different amounts of work 
–  For the first pass, predict a reasonable initial division of work.  We use 

a ratio between the number of CPU and GPU cores for this. 
–  For subsequent passes, use the performance of previous passes to 

predict following passes. 
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Benchmarks 

•  NAS CG – Many passes (1,800 for C class) 
–  The Conjugate Gradient benchmark from the NAS Parallel 

Benchmarks 

•  GEM – One pass 
–  Molecular Modeling, computes the electrostatic potential along the 

surface of a macromolecule 

•  K-Means – Few passes 
–  Iterative clustering of points 

•  Helmholtz – Few passes, GPU unsuitable 
–  Jacobi iterative method implementing the Helmholtz equation 
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Experimental Setup 

•  System 
–  12-core AMD Opteron 6174 CPU 
–  NVIDIA Tesla C2050 GPU 
–  Linux 2.6.27.19 
–  CCE compiler with OpenMP accelerator extensions 

•  Procedures 
–  All parameters default, unless otherwise specified 
–  Results represent 5 or more runs 
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CoreTSAR Results Across Schedulers 

Application
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Roadmap 
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Roadmap 

Much work still to be done. 
•  OpenCL and the 13 Dwarfs  Beta release pending 
•  Source-to-Source Translation  CU2CL only & no optimization 
•  Architecture-Aware Optimization  Only manual optimizations 
•  Performance & Power Modeling  Preliminary & pre-multicore  
•  Affinity-Based Cost Modeling  Empirical results; modeling in progress 
•  Heterogeneous Task Scheduling  Preliminary with OpenMP 
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Performance, Programmability, and Portability (3 Ps) 
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Performance, Programmability, and Portability (3 Ps) 
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An Ecosystem for Heterogeneous Parallel Computing 

Software 
Ecosystem 

Heterogeneous Parallel Computing (HPC) Platform 

Sequence 
Alignment 

Molecular 
Dynamics 

Earthquake 
Modeling 

Neuro- 
informatics 

Avionic 
Composites 

Applications 

Intra-Node 

^ 

… from Intra-Node to Inter-Node 
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Programming CPU-GPU Clusters (e.g., MPI+CUDA) 

GPU	
  
device	
  
memory	
  

GPU	
  
device	
  
memory	
  

CPU	
  
main	
  

memory	
  

CPU	
  
main	
  

memory	
  

Network 

Rank = 0 Rank = 1 

if(rank == 0) 
{ 
  cudaMemcpy(host_buf, dev_buf, D2H) 
  MPI_Send(host_buf, .. ..) 
} 

if(rank == 1) 
{ 
  MPI_Recv(host_buf, .. ..) 
  cudaMemcpy(dev_buf, host_buf, H2D) 
} 

Node 1 Node 2 
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Goal of Programming CPU-GPU Clusters (MPI + Any Acc) 

GPU	
  
device	
  
memory	
  

GPU	
  
device	
  
memory	
  

CPU	
  
main	
  

memory	
  

CPU	
  
main	
  

memory	
  

Network 

Rank = 0 Rank = 1 

if(rank == 0) 
{ 
  MPI_Send(any_buf, .. ..); 
} 

if(rank == 1) 
{ 
  MPI_Recv(any_buf, .. ..); 
} 
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“Virtualizing” GPUs … 

Compute Node 

Physical 
GPU 

Application 

Native OpenCL Library 

OpenCL API 

Traditional Model 

Compute Node 

Physical 
GPU 

VOCL Proxy 

OpenCL 
API 

Our Model 

Native OpenCL Library 
Compute Node 

Virtual GPU 

Application 

VOCL Library 

OpenCL API 

MPI 

Compute Node 

Physical 
GPU 

VOCL Proxy 

OpenCL 
API Native OpenCL Library 

Virtual GPU 
MPI 
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Conclusion 
•  An ecosystem for heterogeneous parallel computing 

 

 
 

–  Enabling software that tunes parameters of hardware devices                 
… with respect to performance, programmability, and portability             
… via a benchmark suite of dwarfs (i.e., motifs) and mini-apps 

 

Highest-ranked commodity supercomputer 
in U.S. on the Green500 (11/11) 
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“Accelerators ‘R Us”!
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