
synergy.cs.vt.edu	

An Ecosystem for the New HPC:
Heterogeneous Parallel Computing

Wu	
 FENG	

Professor	
 and	
 Elizabeth	
 &	
 James	
 E.	
 Turner	
 Fellow	

Dept.	
 of	
 Computer	
 Science	
 	

Dept.	
 of	
 Electrical	
 &	
 Computer	
 Engineering	

Health	
 Sciences	

Virginia	
 BioinformaEcs	
 InsEtute	

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

© W. Feng, September 2014
P2S2 at ICPP 2014

Japanese ‘Computnik’ Earth Simulator
Shatters U.S. Supercomputer Hegemony

synergy.cs.vt.edu	

Importance of High-Performance Computing (HPC)

Competitive Risk From Not Having Access to HEC

3%

16%

34%

47%

Could exist and compete

Could not exist as a business

Could not compete on quality &
testing issues

Could not compete on time to market
& cost

Data from Council of Competitiveness.
Sponsored Survey Conducted by IDC

Competitive Risk From Not Having Access to HPC

 Only 3% of companies could exist and
compete without HPC.
ª  200+ participating companies, including

many Fortune 500 (Proctor & Gamble and
biological and chemical companies)

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

Computnik 2.0?	

•  The Second Coming of Computnik? Computnik 2.0?	

–  No	
 …	
 “only”	
 43%	
 faster	
 than	
 the	
 previous	
 #1	
 supercomputer,	
 but	

	
 	
 	
 à	
 $20M	
 cheaper	
 than	
 the	
 previous	
 #1	
 supercomputer	

	
 	
 	
 à	
 42%	
 less	
 power	
 consumpEon	

•  The	
 Second Coming of the “Beowulf Cluster” for HPC
–  The further commoditization of HPC

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

The First Coming of the “Beowulf Cluster”

•  Utilize commodity PCs (with commodity
CPUs) to build a supercomputer

The Second Coming of
the “Beowulf Cluster”

•  Utilize commodity PCs (with commodity
CPUs) to build a supercomputer
 +

•  Utilize commodity graphics processing
units (GPUs) to build a supercomputer

© W. Feng, September 2014
P2S2 at ICPP 2014

Issue: Extracting performance with programming ease and portability à productivity

synergy.cs.vt.edu	

“Holy Grail” Vision
•  Ecosystem for the New HPC: Heterogeneous Parallel Computing

–  Enabling software that tunes parameters of hardware devices
… with respect to performance, programmability, and portability
… via a benchmark suite of dwarfs (i.e., motifs) and mini-apps

Highest-ranked commodity supercomputer
in U.S. on the Green500 (11/11)

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

An Ecosystem for Heterogeneous Parallel Computing

Software
Ecosystem

Heterogeneous Parallel Computing (HPC) Platform

Sequence
Alignment

Molecular
Dynamics

Earthquake
Modeling

Neuro-
informatics

CFD for
Mini-Drones

Applications

^

… inter-node (in brief)
 with application to BIG DATA (StreamMR)

synergy.cs.vt.edu	

Roadmap

© W. Feng, September 2014
P2S2 at ICPP 2014

Performance, Programmability, Portability

Goal: Minimize the re-writing of code, e.g., CFD for mini-drones.
CUDA à OpenCL and OpenMP à OpenACC

synergy.cs.vt.edu	

Programming GPUs

CUDA
•  NVIDIA’s proprietary framework

OpenCL
•  Open standard for heterogeneous parallel computing

(Khronos Group)
•  Vendor-neutral environment for CPUs, GPUs,

APUs, and even FPGAs

OpenACC

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

CU2CL:
CUDA-to-OpenCL Source-to-Source Translator†

•  Works as a Clang plug-in to leverage its production-quality
compiler framework.

•  Covers primary CUDA constructs found in CUDA C and
CUDA run-time API.

•  Delivers performance portability when OpenCL 1.2-equivalent
CUDA code run on same NVIDIA GPU.

•  Focuses on functional portability … for now.

© W. Feng, September 2014
P2S2 at ICPP 2014

† 	
 “CU2CL:	
 A	
 CUDA-­‐to-­‐OpenCL	
 Translator	
 for	
 MulE-­‐	
 and	
 Many-­‐core	
 Architectures,”	
 17th	

IEEE	
 Int’l	
 Conf.	
 on	
 Parallel	
 &	
 Distributed	
 Systems	
 (ICPADS),	
 Dec.	
 2011.	
 	

synergy.cs.vt.edu	

OpenCL: Write Once, Run Anywhere

© W. Feng, September 2014
P2S2 at ICPP 2014

CUDA Program

CU2CL (“cuticle”)

OpenCL-supported CPUs, GPUs, FPGAs NVIDIA GPUs

OpenCL Program

synergy.cs.vt.edu	

CU2CL Translation and Performance

•  Automatically translated OpenCL codes (via CU2CL) yield
similar execution times to manually translated OpenCL codes
(when running on the same device)

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

Application CUDA Lines Lines Manually
Changed

% Auto-
Translated

bandwidthTest 891 5 98.9

BlackScholes 347 14 96.0

matrixMul 351 9 97.4

vectorAdd 147 0 100.0

Back Propagation 313 24 92.3

Hotspot 328 2 99.4

Needleman-Wunsch 430 3 99.3

SRAD 541 0 100.0

Fen Zi: Molecular Dynamics 17,768 1,796 89.9

GEM: Molecular Modeling 524 15 97.1

IZ PS: Neural Network 8,402 166 98.0

© W. Feng, September 2014
P2S2 at ICPP 2014

Delaware

VT

AMD

synergy.cs.vt.edu	

Roadmap

© W. Feng, September 2014
P2S2 at ICPP 2014

IEEE ICPADS ’11
P2S2 ’12

Parallel Computing ‘13

Performance, Programmability, Portability

What about
performance portability?

synergy.cs.vt.edu	

Roadmap

© W. Feng, September 2014
P2S2 at ICPP 2014

Performance, Programmability, Portability

synergy.cs.vt.edu	

Computational Units Not Created Equal

•  “AMD CPU ≠ Intel CPU” and “AMD GPU ≠ NVIDIA GPU”
•  Initial performance of a CUDA-optimized N-body dwarf

© W. Feng, September 2014
P2S2 at ICPP 2014

-32%

synergy.cs.vt.edu	

C.	
 del	
 Mundo,	
 W.	
 Feng.	
 “Towards	
 a	
 Performance-­‐Portable	
 FFT	
 Library	
 for	
 Heterogeneous	
 Computing,”	
 	
 in	
 IEEE	
 IPDPS	
 ‘13.	
 Phoenix,	
 AZ,	
 USA,	
 May	
 	
 2014.	
 (Under	
 review.)	

C.	
 del	
 Mundo,	
 W.	
 Feng.	
 “Enabling	
 Efficient	
 Intra-­‐Warp	
 Communication	
 for	
 Fourier	
 Transforms	
 in	
 a	
 Many-­‐Core	
 Architecture”,	
 SC|13,	
 Denver,	
 CO,	
 Nov.	
 2013.	
 	

C.	
 del	
 Mundo,	
 V.	
 Adhinarayanan,	
 W.	
 Feng,	
 “Accelerating	
 FFT	
 for	
 Wideband	
 Channelization.”	
 in	
 IEEE	
 ICC	
 ‘13.	
 Budapest,	
 Hungary,	
 June	
 2013.	

Traditional Approach to Optimizing Compiler
Architecture-Independent
Optimization

Architecture-Aware
Optimization

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

Combined

Optimization for N-body Molecular Modeling

•  Optimization techniques on
AMD GPUs
–  Removing conditions à kernel

splitting
–  Local staging
–  Using vector types
–  Using image memory

•  Speedup over basic OpenCL
GPU implementation
–  Isolated optimizations
–  Combined optimizations

© W. Feng, September 2014
P2S2 at ICPP 2014

Isolated

MT: Max Threads; KS: Kernel Splitting; RA: Register Accumulator;
RP: Register Preloading; LM: Local Memory; IM: Image Memory;
LU{2,4}: Loop Unrolling{2x,4x}; VASM{2,4}: Vectorized Access &
Scalar Math{float2, float4}; VAVM{2,4}: Vectorized Access & Vector
Math{float2, float4}

synergy.cs.vt.edu	

AMD-Optimized N-body Dwarf

© W. Feng, September 2014
P2S2 at ICPP 2014

-32%
371x speed-up
•  12% better than NVIDIA GTX 280

synergy.cs.vt.edu	

FFT: Fast Fourier Transform

•  A spectral method that is
a critical building block
 across many disciplines

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

Summary of Optimizations

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

Optimizations

•  RP: Register Preloading
–  All data elements are first preloaded into the register file before use.
–  Computation facilitated solely on registers

•  LM-CM: Local Memory (Communication Only)
–  Data elements are loaded into local memory only for communication
–  Threads swap data elements solely in local memory

•  CGAP: Coalesced Global Access Pattern
–  Threads access memory contiguously

•  VASM{2|4}: Vector Access, Scalar Math, float{2|4}
–  Data elements are loaded as the listed vector type.
–  Arithmetic operations are scalar (float × float).

•  CM-K: Constant Memory for Kernel Arguments
–  The twiddle multiplication state of FFT is precomputed on the CPU

and stored in GPU constant memory for fast look-up.

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

Architecture-Optimized FFT

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

Architecture-Optimized FFT
(Batched, Single Precision, 1-D, 16-pt)

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

Architecture-Optimized 2D FFT (256 × 256)

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

Architecture-Optimized Lid-Driven Cavity

© W. Feng, September 2014
P2S2 at ICPP 2014

51.9

75.5

96.048

117

103.96

120.6

0

20

40

60

80

100

120

140

1

Pe
rf

or
m

an
ce

 (
G

FL
O

P
S)

Number of GPUs

NVIDIA
c2070

NVIDIA k20x

Fixed k20x

k40

AMD 7970

AMD 7990

synergy.cs.vt.edu	

Roadmap

© W. Feng, September 2014
P2S2 at ICPP 2014

GPU Computing Gems
J. Molecular Graphics & Modeling

IEEE ICPADS ’11
IEEE HPCC ’12
IEEE HPDC ‘13
IEEE ICC ’13

ACM Computing Frontiers ‘14

Performance, Programmability, Portability

synergy.cs.vt.edu	

Roadmap

FUTURE	
 WORK	

© W. Feng, September 2014
P2S2 at ICPP 2014

Performance, Programmability, Portability

synergy.cs.vt.edu	

Roadmap

© W. Feng, September 2014
P2S2 at ICPP 2014

Performance, Programmability, Portability

synergy.cs.vt.edu	

Paying For Performance

•  “The free lunch is over...” †

–  Programmers can no longer expect substantial increases in single-
threaded performance.

–  The burden falls on developers to exploit parallel hardware for
performance gains.

•  How do we lower the cost of concurrency?

© W. Feng, September 2014
P2S2 at ICPP 2014

† 	
 H.	
 Su]er,	
 “The	
 Free	
 Lunch	
 Is	
 Over:	
 A	
 Fundamental	
 Turn	
 Toward	
 Concurrency	
 in	

So^ware,”	
 Dr.	
 Dobb’s	
 Journal,	
 30(3),	
 March	
 2005.	
 	
 (Updated	
 August	
 2009.)	

synergy.cs.vt.edu	

The Berkeley View †

•  Traditional Approach
–  Applications that target existing

hardware and programming
models

•  Berkeley Approach
–  Hardware design that keeps

future applications in mind
–  Basis for future applications?

13 computational dwarfs
A computational dwarf is a pattern of
communication & computation that is
common across a set of applications.

© W. Feng, September 2014
P2S2 at ICPP 2014

†	
 	
 Asanovic,	
 K.,	
 et	
 al.	
 The	
 Landscape	
 of	
 Parallel	
 CompuEng	
 Research:	
 A	
 View	
 from	
 Berkeley.	

Tech.	
 Rep.	
 UCB/EECS-­‐2006-­‐183,	
 University	
 of	
 California,	
 Berkeley,	
 Dec.	
 2006.	
 	

Dense Linear
Algebra

Sparse Linear
Algebra

Spectral
Methods

N-Body
Methods

Structured
Grids

Unstructured
Grids

Monte Carlo à
MapReduce

Combinational Logic
Graph Traversal
Dynamic Programming
Backtrack & Branch+Bound
Graphical Models
Finite State Machine

and

synergy.cs.vt.edu	

Example of a Computational Dwarf: N-Body

•  Computational Dwarf: Pattern of computation & communication
 … that is common across a set of applications

•  N-Body problems are studied in
–  Cosmology, particle physics, biology, and engineering

•  All have similar structures
•  An N-Body benchmark can
 provide meaningful insight

 to people in all these fields
•  Optimizations may be
 generally applicable as well

© W. Feng, September 2014
P2S2 at ICPP 2014

GEM:
Molecular Modeling

RoadRunner Universe:
Astrophysics

synergy.cs.vt.edu	

First Instantiation: OpenDwarfs
(formerly “OpenCL and the 13 Dwarfs”)	

•  Goal
–  Provide common algorithmic methods, i.e., dwarfs, in a language that is

“write once, run anywhere” (CPU, GPU, or even FPGA), i.e., OpenCL

•  Part of a larger umbrella project (2008-2018), funded by the
 NSF Center for High-Performance Reconfigurable Computing (CHREC)

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

Roadmap

© W. Feng, September 2014
P2S2 at ICPP 2014

ACM ICPE ’12:
OpenCL & the 13 Dwarfs

IEEE Cluster ’11, FPGA ’11,
IEEE ICPADS ’11, SAAHPC ’11,
IEEE ICPADS ‘13, IEEE ASAP ‘14

Performance, Programmability, Portability

synergy.cs.vt.edu	

Roadmap

© W. Feng, September 2014
P2S2 at ICPP 2014

Performance, Programmability, Portability

synergy.cs.vt.edu	

Performance & Power Modeling

•  Goals
–  Robust framework
–  Very high accuracy (Target: < 5% prediction error)
–  Identification of portable predictors for performance and power
–  Multi-dimensional characterization

§  Performance à sequential, intra-node parallel, inter-node parallel
§  Power à component level, node level, cluster level

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

Problem Formulation:
LP-Based Energy-Optimal DVFS Schedule

•  Definitions
–  A DVFS system exports n { (fi, Pi) } settings.
–  Ti : total execution time of a program running at setting i

•  Given a program with deadline D, find a DVS schedule (t1*, …,
tn*) such that
–  If the program is executed for ti seconds at setting i, the total energy usage E is

minimized, the deadline D is met, and the required work is completed.

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

Single-Coefficient β Performance Model	

•  Our Formulation
–  Define the relative performance slowdown δ as
 T(f) / T(fMAX) – 1
–  Re-formulate two-coefficient model

 as a single-coefficient model:

–  The coefficient β is computed at run-time using a regression method on the
past MIPS rates reported from the built-in PMU.

© W. Feng, September 2014
P2S2 at ICPP 2014

C.	
 Hsu	
 and	
 W.	
 Feng.	

“A	
 Power-­‐Aware	
 Run-­‐Time	

System	
 for	
 High-­‐Performance	

CompuEng,”	
 SC|05,	
 Nov.	
 2005.	

synergy.cs.vt.edu	

β – Adaptation on NAS Parallel Benchmarks

C. Hsu and W. Feng.
“A Power-Aware Run-Time System
for High-Performance Computing,”
SC|05, Nov. 2005.

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

Need for Better Performance & Power Modeling

•  S

© W. Feng, September 2014
P2S2 at ICPP 2014

Source: Virginia Tech

synergy.cs.vt.edu	

Search for Reliable Predictors

•  Re-visit performance counters used for prediction
–  Applicability of performance counters across generations of

architecture

•  Performance counters monitored
–  NPB and PARSEC benchmarks
–  Platform: Intel Xeon E5645 CPU (Westmere-EP)

© W. Feng, September 2014
P2S2 at ICPP 2014

Context switches (CS) Instruction issued (IIS)

L3 data cache misses (L3 DCM) L2 data cache misses (L2 DCM)

L2 instruction cache misses (L2 ICM) Instruction completed (TOTINS)

Outstanding bus request cycles
(OutReq)

Instruction queue write cycles
(InsQW)

synergy.cs.vt.edu	

synergy.cs.vt.edu	

Roadmap

© W. Feng, September 2014
P2S2 at ICPP 2014

Performance, Programmability, Portability

ACM/IEEE SC ’05
ICPP ’07

IEEE/ACM CCGrid ‘09
IEEE GreenCom ’10

ACM CF ’11
IEEE Cluster ‘11

ISC ’12
IEEE ICPE ‘13

synergy.cs.vt.edu	

Roadmap

© W. Feng, September 2014
P2S2 at ICPP 2014

Performance, Programmability, Portability

Performance Portability

Performance Portability

synergy.cs.vt.edu	

What is Heterogeneous Task Scheduling?

•  Automatically spreading tasks across heterogeneous compute
resources
–  CPUs, GPUs, APUs, FPGAs, DSPs, and so on

•  Specify tasks at a higher level (currently OpenMP extensions)
•  Run them across available resources automatically

•  A run-time system that intelligently uses what is available
resource-wise and optimize for performance portability
–  Each user should not have to implement this for themselves!

© W. Feng, September 2014
P2S2 at ICPP 2014

Goal

synergy.cs.vt.edu	

Heterogeneous Task Scheduling

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

How to Heterogeneous Task Schedule (HTS)

•  Accelerated OpenMP offers heterogeneous task scheduling with
–  Programmability
–  Functional portability, given underlying compilers
–  Performance portability

•  How?
–  A simple extension to Accelerated OpenMP syntax for programmability
–  Automatically dividing parallel tasks across arbitrary heterogeneous

compute resources for functional portability
§  CPUs
§  GPUs
§  APUs

–  Intelligent runtime task scheduling for performance portability

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

pragma acc_region_loop \

acc_copyin(in1[0:end],in2[0:end]) \

acc_copyout(out[0:end]) \

acc_copy(pow[0:end]) \

hetero(<cond>[,<scheduler>[,<ratio>\

[,<div>]]])

for (i=0; i<end; i++){

out[i] = in1[i] * in2[i];

pow[i] = pow[i]*pow[i];

}

1

Programmability: Why Accelerated OpenMP?

Traditional OpenMP OpenMP Accelerator Directives

Our Proposed Extension

pragma omp parallel for \

shared(in1,in2,out,pow)

for (i=0; i<end; i++){

out[i] = in1[i]*in2[i];

pow[i] = pow[i]*pow[i];

}

1

pragma acc_region_loop \

acc_copyin(in1[0:end],in2[0:end])\

acc_copyout(out[0:end]) \

acc_copy(pow[0:end])

for (i=0; i<end; i++){

out[i] = in1[i] * in2[i];

pow[i] = pow[i]*pow[i];

}

1

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

Programmability:
Code Transformation
•  Manual

–  Add 20 lines
–  Must manually split problem and reassemble results

•  Automatic
–  Add 1 clause
–  Splitting and assembly are automatic

pragma omp acc_region_loop private(i) \

firstprivate(nco,no,ncl) default(none) \

acc_copyin(fc[0:ncl*nco]) present(fo) \

acc_copyout(m[0:no])

// hetero(1,dynamic)

for (i=0; i<no; i++) {

m[i] = findc(no,ncl,nco,fo,fc,i);

}

1

Our Proposed Extension

Manual

splitter * s = split_init(no, SPLIT_DYNAMIC, NULL, NULL);

int *m_c = (int*)malloc(sizeof(int)*no);

for(int d_it=0; d_it < s->d_end; d_it++)

{

s = split_next(no, d_it);

pragma omp parallel num_threads(2)

{

if(omp_get_thread_num()>0)

{//CPU OpenMP code

split_cpu_start(s);

pragma omp parallel shared(fo,fc,m_c,s) \

num_threads(omp_get_thread_limit()-1) \

firstprivate(no,ncl,nco) private(i)

{

pragma omp for

for (i=s->cts; i<s->cte; i++) {

m_c[i] = findc(no,ncl,nco,fo,fc,i);

}

}

split_cpu_end(s);

}else{//GPU OpenMP code

split_gpu_start(s);

int gts = s->gts, gte = s->gte;

pragma omp acc_region_loop private(i) \

firstprivate(nco,no,ncl,gts,gte)\

acc_copyin(fc[0:ncl*nco]) \

acc_copyout(m[0:no]) \

present(fo) default(none)

for (i=gts; i<gte; i++) {

m[i] = findc(no,ncl,nco,fo,fc,i);

}

split_gpu_end(s);

}

}

}

memcpy(m+s->d_ccs,m_c+s->d_ccs,

(s->d_cce-s->d_ccs)*sizeof(int));

free(m_c);

1

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

OpenMP Accelerator Behavior

Original/Master thread Worker threads Parallel region Accelerated region

#pragma omp parallel …

#pragma omp acc_region …

Kernels

© W. Feng, September 2014
P2S2 at ICPP 2014

Implicit barrier

synergy.cs.vt.edu	

DESIRED OpenMP Accelerator Behavior

Original/Master thread Worker threads Parallel region Accelerated region

© W. Feng, September 2014
P2S2 at ICPP 2014

#pragma omp parallel num_threads(2)

#pragma omp acc_region …

#pragma omp parallel …

synergy.cs.vt.edu	

Work-share a Region Across the Whole System

Original/Master thread Worker threads Parallel region Accelerated region

#pragma omp acc_region …

#pragma omp parallel …

OR

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

CoreTSAR: Scheduling and Load-Balancing by Adaptation

•  Measure computational suitability at runtime
•  Compute new distribution of work through a linear

optimization approach
•  Re-distribute work before each pass

OpenMP implementation with coscheduling. This goal imposes de-
sign constraints. Most importantly, it must not require any changes,
even for memory movement, to the loop body beyond those for Ac-
celerated OpenMP. For example, no pragmas or API calls may be
inserted into the loop, nor memory access patterns be changed, as
task scheduling systems often require. All information necessary
for CoreTSAR to provide the correct data for any range of itera-
tions to any device’s memory space must be provided in the direc-
tive outside the loop. Further, we must preserve data consistency
outside the region: main memory must hold the same values when
the loop exits as it would have with Accelerated OpenMP.

Our design has two main components: the scheduling and task
inference portion; and the memory specification and management
portion. We now detail both and provide an example of their use.

3.1 Assigning Tasks
With homogeneous iterations and resources, the OpenMP static
schedule yields high performance. Since iterations can vary in run-
time, OpenMP supports additional schedule types (dynamic and
guided) to improve load balance. These schedules target hetero-
geneous iterations on homogeneous resources that have low con-
currency control costs. However, they are less appropriate for het-
erogeneous resources due to varying costs and synchronization re-
quirements. Since CoreTSAR targets heterogeneous resources with
distributed memories, we provide different schedules.

Our adaptive scheduler assigns iterations at the beginning of
parallel regions, or sub-regions. This approach reduces locking
overhead but does not balance load dynamically. To provide bal-
anced schedules, CoreTSAR predicts the time to compute an itera-
tion on each resource based on previous passes.

CoreTSAR tracks the average time to complete an iteration on
each device, which it uses to predict the amount of work each de-
vice can complete in the next pass. For example, consider a system
with two CPU cores and one GPU (one CPU core must control the
GPU). If the CPU core completes 10 iterations in the same time that
the GPU takes to copy in data, complete 40 iterations, and to copy
back the results, then the CPU should be assigned 20% of the iter-
ations in the next pass. We thus determine the relationship between
compute units and can compute the amount of work to provide each
device to balance their loads. However, we must extend this simple
approach to more than two devices and choose an initial split.

3.2 Applying Ratios
We use a linear program to extend our approach to arbitrary device
counts, a version of which was discussed briefly in our previous
work [22]. The linear program computes the iterations to assign
to each device based on their time per iteration. Figure 2 lists its
variables (Equation 1), objective function (Equation 2) and accom-
panying constraints (Equations 3-6). The program minimizes the
total deviation between the predicted runtimes for all devices. We
assume that performance of an average iteration does not change
across region instances. Thus, the time for a device to finish its
work in the next pass equals the time per iteration from the previ-
ous pass multiplied by its assigned iteration count. In practice this
assumption holds well: although the cost of iterations varies, the
same iteration in different passes often has similar performance,
rendering accuracy within a few percent for our tests.

3.3 Static Scheduling
On the first entry into a region, our static schedule uses the linear
program to assign iterations. To increase portability, we compute
default relative times per iteration at runtime rather than using a
precomputed static value (the user can also specify the ratio). Our
default assumes that one instruction cycle on a GPU core takes
the same time as one cycle on a single SIMD lane of a CPU.

I = total iterations available

ij = iterations for compute unit j

fj = fraction of iterations for compute unit j

pj = recent time/iteration for compute unit j (1)

n = number of compute devices

t+j (or t�j) = time over (or under) equal

min(
n�1X

j=1

t+1 + t�1 · · ·+ t+n�1 + t�n�1) (2)

nX

j=0

ij = I (3)

i2 ⇤ p2 � i1 ⇤ p1 = t+1 � t�1 (4)

i3 ⇤ p3 � i1 ⇤ p1 = t+2 � t�2 (5)

...

in ⇤ pn � i1 ⇤ p1 = t+n�1 � t�n�1 (6)

Figure 2: Linear program variables, objective and constraints

While this assumption does not hold in general, we can portably
compute an initial time per iteration for each device. We compute
the time per iteration for a GPU as pg = 1

m/s and for CPU cores as
1 � pg (where m is the number of multiprocessors on a GPU and
s the SIMD width of a CPU core; in the case of multiple GPUs,
we use the largest value). For applications that are not dominated
by floating-point computation, we have considered models that
include several other factors, including memory bandwidth and
integer performance, none of which have significantly changed our
results.

3.4 Adaptive Scheduling
Our adaptive schedules (Adaptive, Split and Quick) use the static
schedule for the first pass. We then use the time that each device
takes to complete its iterations in the preceding pass as input to
our linear program for the next pass. We include all recurring data
transfer and similar overheads required to execute an iteration on a
particular device (but not one-time overheads such as the copying
of persistent data). Thus, we incorporate those overheads into the
cost of the iteration and naturally account for them. The Adaptive
schedule trains on the first instance of the region and then each
subsequent instance. The Split schedule accommodates regions that
may only run once or that may benefit from scheduling more often.
It breaks each region instance into several evenly split sub-regions,
based on the div input. Each time a sub-region completes, we use
the linear program to split the next. This schedule can provide better
load balance at the cost of increased scheduling and kernel launch
overhead. Thus, it is impractical for short regions and overhead
sensitive applications. The Quick schedule balances between the
Split and Adaptive schedules by executing a small sub-region for its
first training phase, similarly to Split. It then immediately schedules
all remaining iterations of the first region instance and uses the
Adaptive schedule for any subsequent instances. This schedule suits
applications that cannot tolerate a full instance using the static
schedule or the overhead of extra scheduling steps in every pass.

3.5 Memory Management
Moving exactly the data required is essential to efficient and correct
region execution across multiple memory spaces. Thus, we allow
the user to specify the association between a loop iteration and in-

3 2013/1/6

CoreTSAR: Task-Size Adapting Runtime A:7

Original With GPU back−off

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Adaptive
Split

1 2 3 4 1 2 3 4
Number of GPUs

Pe
rc

en
ta

ge
 o

f t
im

e
in

 e
ac

h
ph

as
e

Program phase Compute Scheduling

(a) Percentage of time spent on computation
and scheduling

min(
n�1X

j=1

t+j + t�j) (7)

nX

j=1

fj = 1 (8)

f2 ⇤ p2 � f1 ⇤ p1 = t+1 � t�1 (9)

f3 ⇤ p3 � f1 ⇤ p1 = t+2 � t�2 (10)

...

fn ⇤ pn � f1 ⇤ p1 = t+n�1 � t�n�1 (11)

(b) Modified objective and constraints

Fig. 5: Linear program optimization and performance

exactly that linear program. In order to ensure the solve itself is efficient, CoreTSAR
employs the lp solve library[Berkelaar et al. 2003], an optimized linear program solver
that can refine an existing solved tableau for a new set of inputs. This incremental ap-
proach reduces overhead since each pass tends to have similar inputs.

//items in {} are optional

#pragma acc region \

hetero(<cond>{,<devices>{,<sched.>{,<ratio>{,<div>}}}})\

pcopy{in/out}(<var>[<cond>:<num>{:<boundary>}])\

persist(<var>)

#pragma acc depersist(<var>)

hetero() inputs
<cond> Boolean, true=coschedule, false=ignore

<devices> Allowable devices (cpu/gpu/all)
<scheduler> Scheduler to use for this region

<ratio> Initial split between CPU and GPU.
<div> How many times to divide the iteration space

pcopy() and {de}persist() inputs
<var> Variable to copy.

<size> Size of each “item” in the array/matrix.
<cond> Whether this dimension should be copied.
<num> Number of items in this dimension.

<boundary> Number of boundary elements required.

Fig. 3: Our proposed extension

Figure ?? represents the time spent
in CoreTSAR scheduling 1,900 passes
through a region, or 19,000 schedul-
ing iterations with the split scheduler.
The original linear model has exponen-
tial time complexity as the number of
devices increases. In the worst case,
the split schedule with four GPUs, the
scheduling takes nearly 3⇥ longer than
the 40-second compute phase.

Two issues reduce solver performance.
The input has widely distributed val-
ues, which leads to numerical instability
and slows convergence due to frequent
floating-point error corrections. Also, all
outputs require integer values, which re-
quires the solver to refine an optimal so-
lution into an optimal integer solution
across those values, which significantly
increases computational complexity.

To alleviate these issues we remove integer output requirements by computing the
percentage of iterations to assign to each device. This choice also keeps nearly all val-
ues between zero and one, improving numerical stability. Figure ?? shows the new
objective function (Equation 7) and constraints (Equations 8-11). These changes pro-
duce the optimized results in Figure ??. With this version, the time in CoreTSAR can
actually decrease as the number of GPUs increases due to the consistency of GPU per-
formance across passes. Despite the larger matrix, the solution converges faster since
it deviates less from the previous solution.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

Heterogeneous Scheduling: Issues and Solutions

•  Issue: Launching overhead is high on GPUs
–  Using a work-queue, many GPU kernels may need to be run

•  Solution: Schedule only at the beginning of a region
–  The overhead is only paid once or a small number of times

•  Issue: Without a work-queue, how do we balance load?
–  The performance of each device must be predicted

•  Solution: Allocate different amounts of work
–  For the first pass, predict a reasonable initial division of work. We use

a ratio between the number of CPU and GPU cores for this.
–  For subsequent passes, use the performance of previous passes to

predict following passes.

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

Benchmarks

•  NAS CG – Many passes (1,800 for C class)
–  The Conjugate Gradient benchmark from the NAS Parallel

Benchmarks

•  GEM – One pass
–  Molecular Modeling, computes the electrostatic potential along the

surface of a macromolecule

•  K-Means – Few passes
–  Iterative clustering of points

•  Helmholtz – Few passes, GPU unsuitable
–  Jacobi iterative method implementing the Helmholtz equation

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

Experimental Setup

•  System
–  12-core AMD Opteron 6174 CPU
–  NVIDIA Tesla C2050 GPU
–  Linux 2.6.27.19
–  CCE compiler with OpenMP accelerator extensions

•  Procedures
–  All parameters default, unless otherwise specified
–  Results represent 5 or more runs

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

CoreTSAR Results Across Schedulers

Application

Sp
ee

du
p

ov
er

 1
2−

co
re

 C
PU

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

cg

cg

0

2

4

6

8

gem

gem

0.0

0.2

0.4

0.6

0.8

1.0
helmholtz

helmholtz

0.0

0.5

1.0

1.5

kmeans

kmeans

Scheduler
CPU GPU Static Dynamic Split Quick

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

Roadmap

© W. Feng, September 2014
P2S2 at ICPP 2014

IEEE IPDPS ’12
ISC ‘14

Performance, Programmability, Portability

synergy.cs.vt.edu	

Roadmap

Much work still to be done.
•  OpenCL and the 13 Dwarfs Beta release pending
•  Source-to-Source Translation CU2CL only & no optimization
•  Architecture-Aware Optimization Only manual optimizations
•  Performance & Power Modeling Preliminary & pre-multicore
•  Affinity-Based Cost Modeling Empirical results; modeling in progress
•  Heterogeneous Task Scheduling Preliminary with OpenMP

© W. Feng, September 2014
P2S2 at ICPP 2014

An Ecosystem for
Heterogeneous
Parallel Computing

^

synergy.cs.vt.edu	

Performance, Programmability, and Portability (3 Ps)

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

Performance, Programmability, and Portability (3 Ps)

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

An Ecosystem for Heterogeneous Parallel Computing

Software
Ecosystem

Heterogeneous Parallel Computing (HPC) Platform

Sequence
Alignment

Molecular
Dynamics

Earthquake
Modeling

Neuro-
informatics

Avionic
Composites

Applications

Intra-Node

^

… from Intra-Node to Inter-Node

synergy.cs.vt.edu	

Programming CPU-GPU Clusters (e.g., MPI+CUDA)

GPU	

device	

memory	

GPU	

device	

memory	

CPU	

main	

memory	

CPU	

main	

memory	

Network

Rank = 0 Rank = 1

if(rank == 0)
{
 cudaMemcpy(host_buf, dev_buf, D2H)
 MPI_Send(host_buf,)
}

if(rank == 1)
{
 MPI_Recv(host_buf,)
 cudaMemcpy(dev_buf, host_buf, H2D)
}

Node 1 Node 2

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

Goal of Programming CPU-GPU Clusters (MPI + Any Acc)

GPU	

device	

memory	

GPU	

device	

memory	

CPU	

main	

memory	

CPU	

main	

memory	

Network

Rank = 0 Rank = 1

if(rank == 0)
{
 MPI_Send(any_buf,);
}

if(rank == 1)
{
 MPI_Recv(any_buf,);
}

© W. Feng, September 2014
P2S2 at ICPP 2014

IEEE HPCC ’12
ACM HPDC ‘13

synergy.cs.vt.edu	

“Virtualizing” GPUs …

Compute Node

Physical
GPU

Application

Native OpenCL Library

OpenCL API

Traditional Model

Compute Node

Physical
GPU

VOCL Proxy

OpenCL
API

Our Model

Native OpenCL Library
Compute Node

Virtual GPU

Application

VOCL Library

OpenCL API

MPI

Compute Node

Physical
GPU

VOCL Proxy

OpenCL
API Native OpenCL Library

Virtual GPU
MPI

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

© W. Feng, September 2014

P2S2 at ICPP 2014

synergy.cs.vt.edu	

Funding Acknowledgements

© W. Feng, September 2014
P2S2 at ICPP 2014

Microsoft featured our “Big Data in the Cloud”
grant in U.S. Congressional Testimony

synergy.cs.vt.edu	

Conclusion
•  An ecosystem for heterogeneous parallel computing

–  Enabling software that tunes parameters of hardware devices
… with respect to performance, programmability, and portability
… via a benchmark suite of dwarfs (i.e., motifs) and mini-apps

Highest-ranked commodity supercomputer
in U.S. on the Green500 (11/11)

© W. Feng, September 2014
P2S2 at ICPP 2014

synergy.cs.vt.edu	

http://synergy.cs.vt.edu/

http://www.mpiblast.org/

http://sss.cs.vt.edu/

http://www.green500.org/

http://myvice.cs.vt.edu/

http://www.chrec.org/

http://accel.cs.vt.edu/

“Accelerators ‘R Us”!

Wu	
 Feng,	
 wfeng@vt.edu,	
 540-­‐231-­‐1192	

© W. Feng, September 2014
P2S2 at ICPP 2014

