
NestedMP: Taming Complex
Configuration Space of Degree of
Parallelism for Nested-Parallel
Programs
Jiangzhou He, Wenguang Chen, Zhizhong Tang
Tsinghua University

Nested-Parallel Applications

● Applications with multi-level parallelism

Why Nested Parallelism for NUMA is
necessary

● Necessary for best performance
○ Outer-parallel only: hard to utilize all cores, poor load balance
○ Inner-parallel only: too fine grain, too much context-switch overhead

● Applications benefits from nested-parallelism
○ Computational Fluid Dynamics Applications
○ Derivation Computation Application
○ Strassen Matrix-Multiplication Algorithm
○ Cooley-Tukey Fast Fourier Transformation Algorithm
○ Multisort Algorithm

Challenge for Nested-Parallel Programming:
Configuration for Degree of Parallelism (1)

● Configuration space is complex
○ Should outer-level or inner-level have more degree of

parallelism?
■ If we have 8 cores, possible configuration may be 1x8, 2x4, 4x2,

8x1
○ Second-level parallelism may be asymmetrical

■ When the first-level parallelism is fixed to 2,
1+7, 2+6, ……, 7+1 are possible

○ Different phases of an application may need different
configuration

Challenge for Nested-Parallel Programming:
Configuration for Degree of Parallelism (2)

● Configuration should be adaptive
○ Parallel programs should work on processors with

different core hierarchy
○ Parallel subroutines may be invoked either

exclusively or parallel with other sequential/parallel
task

Challenge for Nested-Parallel Programming:
Locality Issue

● Performance varies by different task-core mapping schemas
● Example: NPB-MZ running on 4-way 8-core SandyBridge server,

performance varies by 135% for different mapping schemas

socket #1

socket #2

socket #3

socket #4

socket #1

socket #2

socket #3

socket #4

task of parallel
branch I

task of parallel
branch II

task of parallel
branch III

task of parallel
branch IV

efficient mapping naive mapping

● Centralized configuration: OMP_NUM_THREADS
○ Poor expressiveness
○ Low-level details is opaque to top-level application programmer

/ user
● Local configuration

○ Not easy to compute configuration in an adaptive way
○ Runtime lacks global information for optimal task-core mapping

● Fine-grained tasks and queue-based dynamic
scheduling
○ Performance loss due to locality issue

Current Method of Configuring Degree of
Parallelism in OpenMP

Our Approach

● Underlying problem of local configuration mechanism
○ Degree of parallelism configured by concrete value
○ Everything about degree of parallelism is configured at bottom

level
● We designed NestedMP

Mechanism of NestedMP
● Allocation of Threads

○ Available threads is resource, propagating along the task tree
○ All threads are available threads for root task
○ Once entering a parallel region, available threads of current

task are allocated to subtasks
○ Available threads of finished tasks can be reallocated by parent

task
● Top-down propagation makes runtime system aware of global

information
● Programmers control the policy to propagate available threads

rather than concrete numbers

Policies in NestedMP
● Threads Distribution Policy

○ Determine how to allocate/reallocated available threads among
subtasks

● Threads Requirement Policy
○ Subtask decide number of threads which is actually required (rest

threads can be reallocated by parent)
○ Task can free available threads by adjust threads requirement policy

during execution
● NestedMP has builtin policies, and it also provides

interface for users to extend

Example: Parallel Sort

Kinds of Threads Distribution Policy
All Threads Distribution Policy

task sequence
(taskseq)

high-priority first
(priority)

distributing by weight
(weight)

round robin
(rr)

user-defined
policy

general

special

Task Sequence (1)
● Task sequence is the most general builtin way to

expressthreads distribution policy
● A task sequnce is a finite or infinite sequence of tasks

When 2 threads are available: t1 gets 1, t2 gets 1
(next available thread is for t3, then t1, …)

When 12 threads are available: t1 gets 6, t2 gets 3, t3 gets 3

When 6 threads are available: t1 gets 3, t2 gets 2, t3 gets 1

Task Sequence (2)
● Task sequence can be expressed by task sequence

expression
○ Example:

● Expressiveness of task sequence
○ high-priority-first is a special case:

■ Example: (t1 t2)* t3* (Priority: t1 == t2 > t3)
○ distributing-by-weight is a special case:

■ Example: (t1 t2 t3 t1)* (Weight: 2:1:1)
○ other example:

■ t1 (t2 t3)* means first thread for t1, rest distributing even to
t2 and t3

Threads Requirement Policy
● Requirement for threads number

○ any: accept any available threads
○ seq: accept one and only one thread
○ constant: number of acceptable thread is upper-bounded by a

constant
○ power: number of acceptable threads is 1 or KPn (e.g. multisort

accepts 2n threads, here K = 1, P = 2)
● Requirement for locality

○ locality compactness level: host, socket or core
○ locality preference: compact, neutral or spread

Evaluation: Benchmarks

● Micro-benchmarks
○ FFT
○ 2D Wavelet Transform
○ Multisort
○ Matrix Multiplication
○ FFT in Batch
○ Sparse Matrix Vector Multiplication in Batch

● NBP-MZ: Scale A, B, C, D

Speedup of Micro-Benchmarks

FFT WAVELET SORT

MM FFTB SMVMB

nested (NestedMP)nested (GOMP)single-level parallel

NPB-MZ: Normalized Running Time
nested (NestedMP)nested (GOMP)single-level parallel

no
rm

al
iz

ed
 ru

nn
in

g
tim

e

NPB-MZ: Last-level Cache Miss Ratio
nested (NestedMP)nested (GOMP)

la
st

-le
ve

l c
ac

he
 m

is
s

ra
tio

Conclusion

● NestedMP
○ Easier to configure degree of parallelism
○ Configuration is adaptive for different context
○ Expose more information earlier for runtime, so

achieved better performance

