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The Problem with Scaling Out
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Handling Node Failure

* MPI has little capability for handling loss of
tasks due to hardware failure

— FT-MPI provides some of this
— Charm++ performs task rescheduling
* Current Solution — Checkpoint/Restart Files
— Large amount of I/0O
— Expensive relative to computation
— As clusters scale out, checkpoint writing will

dominate wall time
TNuwu
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What is needed?

e Parallel programs need to be able to handle
periodic hardware failures

— Ideally we could elastically add/remove nodes from
an executing parallel program

— We shouldn’t spend more time checkpointing than
computing
e Parallel programs need to be able to start up in a
reasonable amount of time

— As we push towards exascale, parallel programs need
the ability to start doing useful work before the first
failure
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What is needed?
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TASK-UNCOORDINATED
DISTRIBUTED DATAFLOW
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The Relentless Execution Model (REM)

* Each processing element executes a search agent
which performs dynamic task scheduling based
on the availability of data in a distributed,
eventually-consistent dictionary

* Dictionary labels are used to provide state
information for their associated values

 No two tasks are ever in direct communication;
all interaction is done through the dictionary

— Computational tasks are expendable
— Can be added/removed at runtime with little-to-no
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The Relentless Execution Model
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REM Tasks

 REM search agents dynamically execute single
assignment tasks which are chained together

with data dependencies
 Why single assignment?
— Can easily form a directed acyclic graph (DAG) of

tasks

— Allows dynamic scheduling algorithm to ignore
parts of the DAG for which output labels have

been generated
TNuwu
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REM Tasks

 REM takes inspiration from SISAL’s IF1/2
intermediate representation for handling
dynamic graphs
— Conditional branches and loops are contained
within hierarchical tasks

— Top-level graph and sub-graphs are all finite, even
if the program has to execute an indeterminate
number of tasks
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REM Dependency Description

* REM uses a compact data dependency
description for storing task and task
dependency information

— Storing DAGs directly can be expensive

— Many scientific codes have a small number of
tasks repeated many hundreds or thousands of
times
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REM Dependency Description

Dependency Descriptions contain:
1) A finite set T of tasks to be performed
2) Afinite set L of labels to be used as keys in the dictionary

3) Aset RC L of result labels whose association with values
completes a program’s execution

4) A function producer: L — T that maps labels to the task
which produces the value for that label

5) A function requires :T — P(L) that maps each task to the
labels of the values required before that task can
execute

6) A function computes:T — (L+ V) (L V) that maps
each task to the partial function that it computes
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REM Search

* Each search agent performs a backwards, depth-first
random walk of a DAG generated by the dependency
description

— IS.tart at the final output(s) of the graph, walk back to the inputs/
eaves

 Compute-by-need

— If the label listed as a task dependency has been associated with
a value, use that value for the task

— Otherwise, execute the task responsible for computing that
dependency

* Cooperative Pruning

— The contributions of each agent are propagated to other agents
through the dictionary, allowing other agents to avoid repeating
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REM Search (2)

for all r € Result do
SOLVE(r)
end for
function SOLVE(abel)
if label & dom(Dictionary) then
task < PRODUCER(label)
Missing < {l | | € REQUIRES(task) N | & dom(Dictionary)}
for all m € Missing do
SOLVE(m)
end for
Inputs < {(l — v) | (I — v) € Dictionary N\ | € REQUIRES (task)}
Dictionary < Dictionary U COMPUTES (task)(Inputs)

TNuwu
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Example - Cooperative Pruning
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Graph has a single
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Example - Cooperative Pruning (2)

Agent A Agent B




Example - Cooperative Pruning (3)

Agent A chooses to
resolve a
dependency
exclusive to itself

Agent B chooses to resolve a
dependency that is shared with A
(although it does not know that)
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Example - Cooperative Pruning (4)

Agent A looks again at
original task, all

dependencies now

resolved

Agent B looks again at
original task, must resolve
1 additional dependency
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Example - Cooperative Pruning (5)

Agent A now begins
looking at the result for
new tasks to compute

Agent B moves to
complete remaining
dependency of
original task
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PROTOTYPE EVALUATION
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Prototype Problem

* Wrote a programtosolvethe1l-D task finDiff

time, central in space (FTCS)

approach with a three point for
stencil x=1:4999
* Prototype system uses ?=1 100
memcached for dictionary using
implementation phi (x) (t-1) as c
* Program was written in StenSAL", phi (x-1) (t-1) as 1
a DSL designed for writing stencil phi (x+1) (t-1) as r
algorithms for REM code
* Domain is 5001 elements across N = c40.0125%
e Simulation runs for 100 time '
steps (l+r-2*c)
e Initial values are generated by end code
StenSAL tasks end task

*Submitted to WOSC @ SPLASH 2014
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Prototype Evaluation

* All experiments were performed on Stampede at TACC

— 6,400-node dual-socket, 8-core “Sandy Bridge” Intel Xeon
E5-2650

— 6,880 Intel Xeon Phi SE10P “Knight’s Corner” coprocessor
cards
* 61 core, 244 thread contexts

— FDR Infiniband interconnect

* Fat-tree topology
e 1.2:1 oversubscription

* Testing the idea of cooperative pruning
— We should see speedup when increasing number of agents

TNuwu
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Single-Node Speedup
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Multi-Node Speedup (1 task/socket)




Work Distribution (2 nodes)
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Data Distribution & Locality

 On two nodes, data is fairly evenly distributed
— 49.84% of label/value pairs map to node 1
— 50.12% of label/value pairs map to node 2

* Unfortunately, data locality is poor

— 75.18% of all stencil updates required remote
data to be accessed
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Coming Attractions

e Testing different hashing functions for improving
locality in our simple stencil application

— Improve scaling by reducing remote accesses

— Investigating ways of automatically determining
appropriate partitioning scheme for a particular
dependency description/DAG

* |nvestigating ways to perform task coalescence on our
dependency descriptions to enable vectorization and
register reuse

e Evaluating our prototype on the Xeon Phi
— Testing single Phi, multiple Phi, and mixed Phi/Xeon on
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Conclusion

* Bigger clusters are coming
— Shorter MTTF
— Checkpoint/restart at scale is not feasible

e Distributed dataflow could be used to eliminate
explicit task coordination
— Elastic insertion/removal of computational agents
— Automatic recovery from data loss

* |nitial scaling tests demonstrate the viability of
this idea

— First steps on a long road
* Lots of work left to be done
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Questions?

Lucas A. Wilson
lucaswilson@acm.org

Jeffery von Ronne
vonronne@acm.org




