A Distributed Dataflow Model for
Task-uncoordinated Parallel
Program Execution

Lucas A. Wilson'? and Jeffery von Ronne'
!Dept. of Comp. Sci., Univ. of Texas San Antonio

’Texas Advanced Computing Center, UT Austin

P252 Workshop, Minneapolis, MN. Sept. 12, 2014

TNuwu

UTSA

Outline

Motivation
— The problem with scaling out

— Handling node failure
— What is needed?

Task-uncoordinated distributed dataflow
— The Relentless Execution Model (REM)

— Cooperative pruning

Prototype Evaluation

— Single-node

— Multi-node

— Data locality

Coming Attractions

m L. Wilson, September 2014

MOTIVATION

UTSA

The Problem with Scaling Out

e C(Clusters are the dominant
architecture in parallel
computing

* Per-node performance e T
increases according to S

10,000 \\
Moore’s Law* ~

1,000 NG
* Increases in performance ~
are generally achieved by o N

scaling out the number of 1 P
nodes in the cluster A A nxx il

0
1 10 100 1,000 10,000 100,000 1,000,000

* Unfortunately, MTTF drops e
as node count increases

Minutes

*Your mileage may vary

m L. Wilson, September 2014

TNuwu

Handling Node Failure

* MPI has little capability for handling loss of
tasks due to hardware failure

— FT-MPI provides some of this
— Charm++ performs task rescheduling
* Current Solution — Checkpoint/Restart Files
— Large amount of I/0O
— Expensive relative to computation
— As clusters scale out, checkpoint writing will

dominate wall time
TNuwu

UTSA

What is needed?

e Parallel programs need to be able to handle
periodic hardware failures

— Ideally we could elastically add/remove nodes from
an executing parallel program

— We shouldn’t spend more time checkpointing than
computing
e Parallel programs need to be able to start up in a
reasonable amount of time

— As we push towards exascale, parallel programs need
the ability to start doing useful work before the first
failure

UTSA

TNuwu

What is needed?

1,000,000
100,000
10,000
Improve
b 1,000 . .p
= failure
: K
= resilience
= 100
10
. Reduce
\ startup
cost
0
1 10 100 1,000 10,000 100,000 1,000,000

Nodes

=O=MTTF ==Startup Cost

TNuwu

© L. Wilson, September 2014

TASK-UNCOORDINATED
DISTRIBUTED DATAFLOW

UTSA

TNuwu

The Relentless Execution Model (REM)

* Each processing element executes a search agent
which performs dynamic task scheduling based
on the availability of data in a distributed,
eventually-consistent dictionary

* Dictionary labels are used to provide state
information for their associated values

 No two tasks are ever in direct communication;
all interaction is done through the dictionary

— Computational tasks are expendable
— Can be added/removed at runtime with little-to-no

TNuwu

UTSA

The Relentless Execution Model

(CORE1 .. COREN) [_CORE1 COREN
I | | |
| |
: SEARCH SEARCH(| : SEARCH SEARCH\ |
| | | |
I | | I
I | | |
| U I
| | | |
L N | L N |
| DISTRIBUTED '<_» DISTRIBUTED |
| DICTIONARY | DICTIONARY :
|\ _ J l\ _ |
/
\\ __________ _ \\

© L. Wilson, September 2014

REM Tasks

 REM search agents dynamically execute single
assignment tasks which are chained together

with data dependencies
 Why single assignment?
— Can easily form a directed acyclic graph (DAG) of

tasks

— Allows dynamic scheduling algorithm to ignore
parts of the DAG for which output labels have

been generated
TNuwu

* We call this cooperative pruning

UTSA

REM Tasks

 REM takes inspiration from SISAL’s IF1/2
intermediate representation for handling
dynamic graphs
— Conditional branches and loops are contained
within hierarchical tasks

— Top-level graph and sub-graphs are all finite, even
if the program has to execute an indeterminate
number of tasks

UTSA

TNuwu

REM Dependency Description

* REM uses a compact data dependency
description for storing task and task
dependency information

— Storing DAGs directly can be expensive

— Many scientific codes have a small number of
tasks repeated many hundreds or thousands of
times

UTSA

TNuwu

REM Dependency Description

Dependency Descriptions contain:
1) A finite set T of tasks to be performed
2) Afinite set L of labels to be used as keys in the dictionary

3) Aset RC L of result labels whose association with values
completes a program’s execution

4) A function producer: L — T that maps labels to the task
which produces the value for that label

5) A function requires :T — P(L) that maps each task to the
labels of the values required before that task can
execute

6) A function computes:T — (L+ V) (L V) that maps
each task to the partial function that it computes

UTSA

TNuwu

REM Search

* Each search agent performs a backwards, depth-first
random walk of a DAG generated by the dependency
description

— IS.tart at the final output(s) of the graph, walk back to the inputs/
eaves

 Compute-by-need

— If the label listed as a task dependency has been associated with
a value, use that value for the task

— Otherwise, execute the task responsible for computing that
dependency

* Cooperative Pruning

— The contributions of each agent are propagated to other agents
through the dictionary, allowing other agents to avoid repeating

UTSA Thouo

REM Search (2)

for all r € Result do
SOLVE(r)
end for
function SOLVE(abel)
if label & dom(Dictionary) then
task < PRODUCER(label)
Missing < {l | | € REQUIRES(task) N | & dom(Dictionary)}
for all m € Missing do
SOLVE(m)
end for
Inputs < {(l — v) | (I — v) € Dictionary N\ | € REQUIRES (task)}
Dictionary < Dictionary U COMPUTES (task)(Inputs)

TNuwu

end function

m © L. Wilson, September 2014

Example - Cooperative Pruning

© L. Wilson, September 2014

-

\
Graph has a single

output with multiple
levels and shared
dependencies

TNuwu

Example - Cooperative Pruning (2)

Agent A Agent B

Example - Cooperative Pruning (3)

Agent A chooses to
resolve a
dependency
exclusive to itself

Agent B chooses to resolve a
dependency that is shared with A
(although it does not know that)

m © L. Wilson, September 2014

Nuw

Example - Cooperative Pruning (4)

Agent A looks again at
original task, all

dependencies now

resolved

Agent B looks again at
original task, must resolve
1 additional dependency

© L. Wilson, September 2014

TNuwu

Example - Cooperative Pruning (5)

Agent A now begins
looking at the result for
new tasks to compute

Agent B moves to
complete remaining
dependency of
original task

© L. Wilson, September 2014

TNuwu

PROTOTYPE EVALUATION

UTSA

Prototype Problem

* Wrote a programtosolvethe1l-D task finDiff

time, central in space (FTCS)

approach with a three point for
stencil x=1:4999
* Prototype system uses ?=1 100
memcached for dictionary using
implementation phi (x) (t-1) as c
* Program was written in StenSAL", phi (x-1) (t-1) as 1
a DSL designed for writing stencil phi (x+1) (t-1) as r
algorithms for REM code
* Domain is 5001 elements across N = c40.0125%
e Simulation runs for 100 time '
steps (l+r-2*c)
e Initial values are generated by end code
StenSAL tasks end task

*Submitted to WOSC @ SPLASH 2014

m L. Wilson, September 2014

TNuwu

Prototype Evaluation

* All experiments were performed on Stampede at TACC

— 6,400-node dual-socket, 8-core “Sandy Bridge” Intel Xeon
E5-2650

— 6,880 Intel Xeon Phi SE10P “Knight’s Corner” coprocessor
cards
* 61 core, 244 thread contexts

— FDR Infiniband interconnect

* Fat-tree topology
e 1.2:1 oversubscription

* Testing the idea of cooperative pruning
— We should see speedup when increasing number of agents

TNuwu

UTSA

Single-Node Speedup

16
8
4
2
1
1 2 4 8 16
Threads

= Ideal =#=Single Node

© L. Wilson, September 2014

Multi-Node Speedup (1 task/socket)

Work Distribution (2 nodes)

100%

90%

80%

70%

60%

50%

40%

30%

20%

Percentage of Problem Contributed

10%

0%
1 Task per Node
W Thread 1
EThread 9
“ Thread 17
Thread 25

W Thread 0

“ Thread 8

“ Thread 16
Thread 24

2 Tasks per Node 4 Tasks per Node
W Thread 5

W Thread 13
“Thread 21

Thread 29

“ Thread 2

& Thread 10

“ Thread 18
Thread 26

W Thread 3

“ Thread 11

“ Thread 19
Thread 27

K Thread 4

K Thread 12
Thread 20
Thread 28

8 Tasks per Node

16 Tasks per Node
W Thread 6
“ Thread 14
“ Thread 22
Thread 30

W Thread 7

W Thread 15
Thread 23
Thread 31

© L. Wilson, September 2014

TN

Data Distribution & Locality

 On two nodes, data is fairly evenly distributed
— 49.84% of label/value pairs map to node 1
— 50.12% of label/value pairs map to node 2

* Unfortunately, data locality is poor

— 75.18% of all stencil updates required remote
data to be accessed

UTSA

TNuwu

COMING ATTRACTIONS

UTSA

Coming Attractions

e Testing different hashing functions for improving
locality in our simple stencil application

— Improve scaling by reducing remote accesses

— Investigating ways of automatically determining
appropriate partitioning scheme for a particular
dependency description/DAG

* |nvestigating ways to perform task coalescence on our
dependency descriptions to enable vectorization and
register reuse

e Evaluating our prototype on the Xeon Phi
— Testing single Phi, multiple Phi, and mixed Phi/Xeon on

TNuwu

UTSA

Conclusion

* Bigger clusters are coming
— Shorter MTTF
— Checkpoint/restart at scale is not feasible

e Distributed dataflow could be used to eliminate
explicit task coordination
— Elastic insertion/removal of computational agents
— Automatic recovery from data loss

* |nitial scaling tests demonstrate the viability of
this idea

— First steps on a long road
* Lots of work left to be done

TNuwu

UTSA

Questions?

Lucas A. Wilson
lucaswilson@acm.org

Jeffery von Ronne
vonronne@acm.org

