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High-End Computing Pain Points 

• Foresee future research trends 
– architecture, execution model, programming model 
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Look at the Past to See the Future 

Flops 

Growth 

1976 to 1995 1995 to 2015 

Speed Increase Annual Growth Rate Speed Increase Annual Growth Rate 

China 600 times 40% 28 million times 136% 

World 1550 times 47% 0.2 million times 84% 

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

1.00E+13

1.00E+14

1.00E+15

1.00E+16

1.00E+17

1976 1980 1985 1990 1995 2000 2005 2010 2015

Top1 in Top500

China HPCE

China Top1

The Environment Approach 

The Machine Approach 

Growth trends of top HPC systems in China and in the World: before and after 1995 

Flops 
• Ecosystem 

– Stacks 

– Community 

• Direction 
– Goal 

– Objectives 

– Priority 

• 2035: ?? 



Fundamental Challenge 
First time in 70 years 

• Energy efficiency improvement lags behind 

speed growth  research goal: 1000 Gop/J 
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High-End Computing: Three Phases 

• First priority went through two phases  

– Speed (flops), aka performance 

– Scalability: market scalability, problem scalability 
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Most Important Efficiency Metric 

• Energy Efficiency: GOPS/W≈GOPJ 

0.1

1.0

10.0

100.0

1,000.0

10,000.0

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

MFlops/W

HPCS 

ASCI Earth Simulator 

K-Computer 

863HPC 



Progressive vs. Aggressive Approaches 

• Progressive approaches: 1000 GOPS/W by 2035 

• Aggresive approaches: 1000 GOPS/W by 2025 

– Model: equations relating speed, parallelism, power, energy 

– Technology: Makimoto’s Wave 

– Architecture: Elastic Processor 

– Software: 

• “smart” libraries 

• application frameworks 

2010 2013 2022 

Top500 DoE Jaguar 

1.76 POPS@6.75MW 

0.253 GOPS/W 

1.9 GOPS/W 1000 POPS@20MW 

50 GOPS/W 

Green500 Dawning Nebula 

1.27 POPS@2.58MW 

0.492 GOPS/W 

3.13 GOPS/W ？ 

Cloud-Sea Server N/A 4 GOPS/W System: 200 GOPS/W 

Processor: 1000 GOPS/W 



Extending Little’s Law  

to Characterize Energy Efficiency 

• Focus on “threads per second” as a proxy of the performance objectives 
– Subject to latency, power, energy constraints  

– A thread is a schedulable sequence of instruction executions with its 
own program counter 

• POSIX thread, HW thread, Java thread, CUDA thread of GPU, Hadoop task, etc. 

• “Threads per second” serves as the neck of the performance metrics hourglass 
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Assumptions and Observations 

• Assume N threads {1,…,N} are executed in a computer 
system in time period [0, T], where  

– power and energy are additive; inactive threads consume no power 

• Definitions of some average quantities 
– Throughput : threads per second, averaged over [0, T] 

– Parallelism L:  number of active threads, averaged over [0, T] 

– Latency W: latency of a thread, averaged over {1,…,N}  

– Power P: Watts consumed by the system, averaged over [0, T] 

– Energy E: Joules consumed by a thread, averaged over {1,…,N} 

– Work F: Payload operations per thread (e.g., flop per thread) 

– Speed S: Payload operations per second 

• Observations 
– Little’s law:  = L / W 

– New observations 

•  = P / E 

•  = L  (E/W)  (1/E)    Throughput = Parallelism  Watts per thread  Threads per Joule 

• S =   F = L  F  (E/W)  (1/E) = L  (E/W)  (F/E) 

• Exaflops = 1 billion x 1 billion x (<20mW per thread) x (>1000 threads per Joule) 

Zhiwei Xu: Measuring Green IT in Society. 

IEEE Computer 45(5): 83-85 (2012) 



Makimoto’s Wave 

• Semiconductor technology will soon enter another phase 
change. But what is it? 
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Makimoto’s Wave 

• HFSI: Highly Flexible Super Integration 
• Redundant circuits can be shut off when not in use 
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Elastic Processor 

• A new architecture style (FISC) 

– Featuring function instructions executed by 

programmable ASIC accelerators 

– Targeting 1000 GOPS/W = 1 Top/J 

– Needing smart libraries 

RISC 
ARM 

FISC 
Function Instruction Set Computer  

CISC 
Intel X86 

Chip types:  10s   1K   10K 

Power:   10~100W  1~10W   0.1~1W 

Apps/chip:  10M   100K   10K 



DianNao: A Neural Network Accelerator 

• Support multiple neural network 
algorithms, such as DNN, CNN, 
MLP,SOM 

• Pre-tape-out simulation results: 
 0.98GHz, 452 GOPS, 0.485W 
 931.96 GOPS/W @ 65nm 

 

• ASPLOS 2014 Best Paper 

IC Layout in GDSII  
700 speedup over Intel Core i7 

Architecture 



Three More Accelerators 

• DaDianNao: An NN supercomputer containing up to 64 chips 

– MICRO’14 best paper 

– 100-250 GOPS/W (@28nm) 

• PuDianNao: A polyvalent machine learning accelerator 

– ASPLOS’15 

– 300-1200 GOPS/W 

• ShiDianNao: A vision accelerator for embedded devices 

(cameras) 

– ISCA’15 

– 2000-4000 GOPS/W (16-bit)  

• Compared to 931 GOPS/W @65nm for DianNao 

 



DaDianNao: An NN Supercomputer 

• In average, 450x speedup and 150x energy 
saving over K20 GPU for a 64-chip system 



PuDianNao 

 Area: 3.51 mm2 

 Power: 596 mW 

 Freq: 1 GHz 

 Supporting a dozen types of ML 

algorithms: CNN/DNN, LR, 

Kmeans, SVM, NB, KNN, CT, … 

 Area: 3.02 mm2 

 Power: 485 mW 

 Freq: 0.98 GHz 

 Supporting CNN/DNN 

DianNao 



Speedup 

46.38x vs. CPU 

28.94x vs. GPU 

1.87x vs. DianNao 

Energy saving 

4688.13x vs. GPU 

63.48x vs. DianNao 

ShiDianNao:  

An Vision Accelerator for 

Embedded Devices 



Jim Gray’s Data Challenge: Four Phases 

 1. Terasort challenge raised (sort 1TB in 1 minute)  

2. Speed growth: TB/minute in 2009 (ad hoc methods) 

3. Data size growth: TBPB10PB (Map-Reduce) 

4. Efficiency: 1PB sorted on 190 AWS instances in 2014 
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Hadoop Efficiency Is Low  
• Lacks a high-performance communication substrate 

– Use HTTP, RPC, direct Sockets over TCP/IP to communicate 

– Can MPI be used for big data? 

 Speed Efficiency  

(Sustained/Peak) 

 

  

   

 

 

Energy Efficiency  

(Operations per Joule) 

 

Payload:  0.002% 

 Linpack:  94.5% 

Total op:  4.22% 

Instruction:  4.72% 

Payload:  1.55x104 

 Linpack:  7.26x108 

Total op:  2.20x107 

Instruction:  2.45x107 

16 

204 



Direct MPI Use not Easy or Scalable 

WordCount via MapReduce：Scalable over 1GB, 1TB, 1PB … 

//MapReduce 

map (String lineno, String 

contents) { 

       for each word w in contents 

{ 

             EmitIntermediate(w, 1); 

      } 

} 

 

reduce (String key, int value) { 

       increment(key, value); 

} 

 

//MPI 

process mapper: 

1st> load input 

2nd> parse token 

3rd> MPI_Send (serialization) 

… 

 

process reducer: 

1st> MPI_Recv 

(Deserialization) 

2nd> increment 

3rd> save output 

… 

LOC : 110 LOC: 850 



Desired Sort Code via DataMPI: 

Scalable and Easy to Write 

init 

rank/size 

send 

recv 

finalize 33 lines of code 

1 GB, 1 TB, 1PB 



DataMPI.ORG  
• Core  

– Execution pipeline 

– Key-value communication 

– Native direct IO for buffer management 

– Key-value based checkpoint 

• Profiles  

– Additional code sets 

– Each profile for a typical mode  

• mpidrun 

– Communicator creation 

– Dynamic process management 

– Data-centric task scheduling 

Command: $ mpidrun -f <hostfile> -O <n> -A <m> -M <mode> -jar <jarname> <classname> 

<params> 

Example:  $ mpidrun -f ./conf/hostfile -O 64 -A 64 -M COMMON -jar ./benchmark/dmb-

benchmark.jar dmb.Sort /text/64GB-text /text/64GB-output 



  

Hive on DataMPI 

• Functionality & Productivity & Performance 

 Support Intel HiBench (2 micro benchmark queries) & TPC-H (22 app queries) 

 Only 0.3K LoC modified in Hive 

 HiBench: 30% performance improvement on average 

 TPC-H: 32% improvement on average, up to 53% 

Lu Chao, Chundian Li, Fan Liang, Xiaoyi Lu, Zhiwei Xu. Accelerating Apache Hive with MPI for Data 

Warehouse Systems. ICDCS 2015, Columbus, Ohio, USA, 2015 

A first attempt to propose a general design for fully supporting and 

accelerating data warehouse systems with MPI 

Performance Benefits with 40 GB data for 22 TPC-H queries 
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谢谢! 
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