
High-End Computing Trends
Speed  Scalability  Efficiency

Zhiwei Xu

Institute of Computing Technology (ICT)

Chinese Academy of Sciences

http://novel.ict.ac.cn/zxu/

zxu@ict.ac.cn

INSTITUTE OF COMPUTING

 TECHNOLOGY

http://novel.ict.ac.cn/zxu/
http://novel.ict.ac.cn/zxu/

High-End Computing Pain Points

• Foresee future research trends
– architecture, execution model, programming model

 ??
2015 2020 2025 1976

Look at the Past to See the Future

Flops

Growth

1976 to 1995 1995 to 2015

Speed Increase Annual Growth Rate Speed Increase Annual Growth Rate

China 600 times 40% 28 million times 136%

World 1550 times 47% 0.2 million times 84%

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

1.00E+13

1.00E+14

1.00E+15

1.00E+16

1.00E+17

1976 1980 1985 1990 1995 2000 2005 2010 2015

Top1 in Top500

China HPCE

China Top1

The Environment Approach

The Machine Approach

Growth trends of top HPC systems in China and in the World: before and after 1995

Flops
• Ecosystem

– Stacks

– Community

• Direction
– Goal

– Objectives

– Priority

• 2035: ??

Fundamental Challenge
First time in 70 years

• Energy efficiency improvement lags behind

speed growth  research goal: 1000 Gop/J

1.E+00

1.E+03

1.E+06

1.E+09

1.E+12

1.E+15

1.E+18

1946 1957 1964 1976 1985 1995 2005 2014

Op/s Op/kWh W

 1 Top/J

 10 Gop/J

2022-2024

High-End Computing: Three Phases

• First priority went through two phases

– Speed (flops), aka performance

– Scalability: market scalability, problem scalability

 ??
2015 2020 2025 1976

Speed

First

Scalability First Efficiency

First

Most Important Efficiency Metric

• Energy Efficiency: GOPS/W≈GOPJ

0.1

1.0

10.0

100.0

1,000.0

10,000.0

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

MFlops/W

HPCS

ASCI Earth Simulator

K-Computer

863HPC

Progressive vs. Aggressive Approaches

• Progressive approaches: 1000 GOPS/W by 2035

• Aggresive approaches: 1000 GOPS/W by 2025

– Model: equations relating speed, parallelism, power, energy

– Technology: Makimoto’s Wave

– Architecture: Elastic Processor

– Software:

• “smart” libraries

• application frameworks

2010 2013 2022

Top500 DoE Jaguar

1.76 POPS@6.75MW

0.253 GOPS/W

1.9 GOPS/W 1000 POPS@20MW

50 GOPS/W

Green500 Dawning Nebula

1.27 POPS@2.58MW

0.492 GOPS/W

3.13 GOPS/W ？

Cloud-Sea Server N/A 4 GOPS/W System: 200 GOPS/W

Processor: 1000 GOPS/W

Extending Little’s Law

to Characterize Energy Efficiency

• Focus on “threads per second” as a proxy of the performance objectives
– Subject to latency, power, energy constraints

– A thread is a schedulable sequence of instruction executions with its
own program counter

• POSIX thread, HW thread, Java thread, CUDA thread of GPU, Hadoop task, etc.

• “Threads per second” serves as the neck of the performance metrics hourglass

0 t T
Time

ii wt it

Worker threads

App Framework Thread

System thread

Thread i has a latency iw

and executes if flop

App Framework Thread

System thread

Para(t)=6

Power=P(t)

App

Framework

Thread

System

thread

Payload

Assumptions and Observations

• Assume N threads {1,…,N} are executed in a computer
system in time period [0, T], where

– power and energy are additive; inactive threads consume no power

• Definitions of some average quantities
– Throughput : threads per second, averaged over [0, T]

– Parallelism L: number of active threads, averaged over [0, T]

– Latency W: latency of a thread, averaged over {1,…,N}

– Power P: Watts consumed by the system, averaged over [0, T]

– Energy E: Joules consumed by a thread, averaged over {1,…,N}

– Work F: Payload operations per thread (e.g., flop per thread)

– Speed S: Payload operations per second

• Observations
– Little’s law:  = L / W

– New observations

•  = P / E

•  = L  (E/W)  (1/E) Throughput = Parallelism  Watts per thread  Threads per Joule

• S =   F = L  F  (E/W)  (1/E) = L  (E/W)  (F/E)

• Exaflops = 1 billion x 1 billion x (<20mW per thread) x (>1000 threads per Joule)

Zhiwei Xu: Measuring Green IT in Society.

IEEE Computer 45(5): 83-85 (2012)

Makimoto’s Wave

• Semiconductor technology will soon enter another phase
change. But what is it?

Standardization

Customization

1957 1967 1977 1987 1997 2007 2017 2027

Discrete

Circuits

Memory

P FPGA ?

SoC

SiP
ASIC IC

LSI

Makimoto’s Wave

• HFSI: Highly Flexible Super Integration
• Redundant circuits can be shut off when not in use

Standardization

Customization

1957 1967 1977 1987 1997 2007 2017 2027

Discrete

Circuits

Memory

P FPGA
HFSI

SoC

SiP
ASIC IC

LSI

Elastic Processor

• A new architecture style (FISC)

– Featuring function instructions executed by

programmable ASIC accelerators

– Targeting 1000 GOPS/W = 1 Top/J

– Needing smart libraries

RISC
ARM

FISC
Function Instruction Set Computer

CISC
Intel X86

Chip types: 10s 1K 10K

Power: 10~100W 1~10W 0.1~1W

Apps/chip: 10M 100K 10K

DianNao: A Neural Network Accelerator

• Support multiple neural network
algorithms, such as DNN, CNN,
MLP,SOM

• Pre-tape-out simulation results:
 0.98GHz, 452 GOPS, 0.485W
 931.96 GOPS/W @ 65nm

• ASPLOS 2014 Best Paper

IC Layout in GDSII
700 speedup over Intel Core i7

Architecture

Three More Accelerators

• DaDianNao: An NN supercomputer containing up to 64 chips

– MICRO’14 best paper

– 100-250 GOPS/W (@28nm)

• PuDianNao: A polyvalent machine learning accelerator

– ASPLOS’15

– 300-1200 GOPS/W

• ShiDianNao: A vision accelerator for embedded devices

(cameras)

– ISCA’15

– 2000-4000 GOPS/W (16-bit)

• Compared to 931 GOPS/W @65nm for DianNao

DaDianNao: An NN Supercomputer

• In average, 450x speedup and 150x energy
saving over K20 GPU for a 64-chip system

PuDianNao

 Area: 3.51 mm2

 Power: 596 mW

 Freq: 1 GHz

 Supporting a dozen types of ML

algorithms: CNN/DNN, LR,

Kmeans, SVM, NB, KNN, CT, …

 Area: 3.02 mm2

 Power: 485 mW

 Freq: 0.98 GHz

 Supporting CNN/DNN

DianNao

Speedup

46.38x vs. CPU

28.94x vs. GPU

1.87x vs. DianNao

Energy saving

4688.13x vs. GPU

63.48x vs. DianNao

ShiDianNao:

An Vision Accelerator for

Embedded Devices

Jim Gray’s Data Challenge: Four Phases

 1. Terasort challenge raised (sort 1TB in 1 minute)

2. Speed growth: TB/minute in 2009 (ad hoc methods)

3. Data size growth: TBPB10PB (Map-Reduce)

4. Efficiency: 1PB sorted on 190 AWS instances in 2014

151

49
33

4.95
3.48

1.03

362

975

33

234

387

1

10

100

1000

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

1TB 1PB 10PB

Hadoop

N=3658

Google

N=1000

Google

N=8000
Spark

N=190

?

?
2020

Efficiency

becomes

top priority

Execution Time

(Minutes)

Hadoop Efficiency Is Low
• Lacks a high-performance communication substrate

– Use HTTP, RPC, direct Sockets over TCP/IP to communicate

– Can MPI be used for big data?

 Speed Efficiency

(Sustained/Peak)

Energy Efficiency

(Operations per Joule)

Payload: 0.002%

 Linpack: 94.5%

Total op: 4.22%

Instruction: 4.72%

Payload: 1.55x104

 Linpack: 7.26x108

Total op: 2.20x107

Instruction: 2.45x107

16

204

Direct MPI Use not Easy or Scalable

WordCount via MapReduce：Scalable over 1GB, 1TB, 1PB …

//MapReduce

map (String lineno, String

contents) {

 for each word w in contents

{

 EmitIntermediate(w, 1);

 }

}

reduce (String key, int value) {

 increment(key, value);

}

//MPI

process mapper:

1st> load input

2nd> parse token

3rd> MPI_Send (serialization)

…

process reducer:

1st> MPI_Recv

(Deserialization)

2nd> increment

3rd> save output

…

LOC : 110 LOC: 850

Desired Sort Code via DataMPI:

Scalable and Easy to Write

init

rank/size

send

recv

finalize 33 lines of code

1 GB, 1 TB, 1PB

DataMPI.ORG
• Core

– Execution pipeline

– Key-value communication

– Native direct IO for buffer management

– Key-value based checkpoint

• Profiles

– Additional code sets

– Each profile for a typical mode

• mpidrun

– Communicator creation

– Dynamic process management

– Data-centric task scheduling

Command: $ mpidrun -f <hostfile> -O <n> -A <m> -M <mode> -jar <jarname> <classname>

<params>

Example: $ mpidrun -f ./conf/hostfile -O 64 -A 64 -M COMMON -jar ./benchmark/dmb-

benchmark.jar dmb.Sort /text/64GB-text /text/64GB-output

Hive on DataMPI

• Functionality & Productivity & Performance

 Support Intel HiBench (2 micro benchmark queries) & TPC-H (22 app queries)

 Only 0.3K LoC modified in Hive

 HiBench: 30% performance improvement on average

 TPC-H: 32% improvement on average, up to 53%

Lu Chao, Chundian Li, Fan Liang, Xiaoyi Lu, Zhiwei Xu. Accelerating Apache Hive with MPI for Data

Warehouse Systems. ICDCS 2015, Columbus, Ohio, USA, 2015

A first attempt to propose a general design for fully supporting and

accelerating data warehouse systems with MPI

Performance Benefits with 40 GB data for 22 TPC-H queries

References
• Elastic Processor

– Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo, Xiaobing Feng, Yunji Chen, and Olivier

Temam, "ShiDianNao: Shifting Vision Processing Closer to the Sensor", ISCA'15.

– Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou, Shengyuan Zhou, Olivier Temam, Xiaobing Feng, Xuehai Zhou,

and Yunji Chen, "PuDianNao: A Polyvalent Machine Learning Accelerator", ASPLOS'15.

– Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun,

and Olivier Temam, "DaDianNao: A Machine-Learning Supercomputer", MICRO'14.

– Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier Temam, "DianNao: A

Small-Footprint High-Throughput Accelerator for Ubiquitous Machine-Learning", ASPLOS'14.

• DataMPI
– Lu Chao, Chundian Li, Fan Liang, Xiaoyi Lu, Zhiwei Xu. Accelerating Apache Hive with MPI for Data Warehouse

Systems. ICDCS 2015, Columbus, Ohio, USA, 2015

– Xiaoyi Lu, Fan Liang, Bing Wang, Li Zha, Zhiwei Xu: DataMPI: Extending MPI to Hadoop-Like Big Data Computing.

IPDPS 2014: 829-838

– Xiaoyi Lu, Bing Wang, Li Zha, Zhiwei Xu: Can MPI Benefit Hadoop and MapReduce Applications? ICPP Workshops

2011: 371-379

• Energy Efficient Ternary Computing
– Zhiwei Xu: High-Performance Techniques for Big Data Computing in Internet Services. Invited speech at SC12, SC

Companion 2012: 1861-1895

– Zhiwei Xu: Measuring Green IT in Society. IEEE Computer 45(5): 83-85 (2012)

– Zhiwei Xu: How much power is needed for a billion-thread high-throughput server? Frontiers of Computer Science

6(4): 339-346 (2012)

– Zhiwei Xu, Guojie Li: Computing for the masses. Commun. ACM 54(10): 129-137 (2011)

• http://novel.ict.ac.cn/zxu/#PAPERS

http://novel.ict.ac.cn/zxu/#PAPERS
http://novel.ict.ac.cn/zxu/#PAPERS
http://novel.ict.ac.cn/zxu/#PAPERS

谢谢!
Thank you!

zxu@ict.ac.cn http://novel.ict.ac.cn/zxu/

mailto:zxu@ict.ac.cn
http://novel.ict.ac.cn/zxu/
http://novel.ict.ac.cn/zxu/
http://novel.ict.ac.cn/zxu/

