
Hakan Akkan*, Michael Lang¶, Lorie Liebrock*

Presented by: Abhishek Kulkarni¶

* New Mexico Tech
¶ Ultrascale Systems Research Center

New Mexico Consortium
Los Alamos National Laboratory

STEPPING TOWARDS A NOISELESS
LINUX ENVIRONMENT

ROSS 2012 | June 29 2012 | Venice, Italy

Motivation
• HPC applications are unnecessarily interrupted by the OS

far too often

• OS noise (or jitter) includes interruptions that increase an
application’s time to solution

• Asymmetric CPU roles (OS cores vs Application cores)

• Spatio-temporal partitioning of resources (Tessellation)

• LWK and HPC Oses improve performance at scale

Stepping Towards A Noiseless Linux Environment 29 June 2012 2

Image: The Case of the Missing Supercomputer Performance, Petrini et. Al, 2003

OS noise exacerbates at scale
• OS noise can cause a significant slowdown of the app
• Delays the superstep since synchronization must wait for

the slowest process: max(wi)

29 June 2012 Stepping Towards A Noiseless Linux Environment 3

Noise co-scheduling
• Co-scheduling the noise across the machine so all

processes pay the price at the same time

29 June 2012 Stepping Towards A Noiseless Linux Environment 4

Image: The Case of the Missing Supercomputer Performance, Petrini et. Al, 2003

Noise Resonance
•  Low frequency, Long duration noise

•  System services, daemons
•  Can be moved to separate cores

• High frequency, Short duration noise
•  OS clock ticks
•  Not as easy to synchronize - usually much more frequent and

shorter than the computation granularity of the application

• Previous research
•  Tsafrir, Brightwell, Ferreira, Beckman, Hoefler

•  Indirect overhead is generally not acknowledged
•  Cache and TLB pollution
•  Other scalability issues: locking during ticks

29 June 2012 Stepping Towards A Noiseless Linux Environment 5

*Sancho, et. al

29 June 2012 Stepping Towards A Noiseless Linux Environment 6

Some applications are memory and network bandwidth limited!

Recent Work
•  Tilera Zero-Overhead Linux (ZOL)

•  Dataplane mode
•  Eliminates OS interrupts, timer ticks

• Cray Compute Node Linux

•  Linux Adaptive Tickless Kernel

• We take a step-by-step approach quantifying the benefits
of each configuration or optimization to Linux

29 June 2012 Stepping Towards A Noiseless Linux Environment 7

Challenges

• Can we stop the ticks on application cores and move all
OS functionality onto these spare cores?

• What would be the benefit in turning off the ticks? Are
timer interrupts necessary for all cores?

• How close can we get to a LWK with Linux?

29 June 2012 Stepping Towards A Noiseless Linux Environment 8

8904772 Local timer interrupts
4780062 Rescheduling interrupts
1922138 TLB shootdowns
851563 PCI-MSI-edge eth1
100687 PCI-MSI-edge eth0
57104 Function call interrupts
41456 IO-APIC-fasteoi ioc0
11112 Machine check polls
7564  PCI-MSI-edge ib_mthca-comp@pci:0000:47:00.0

(on a 24 core Linux 2.6.x machine with hz=100)

Interrupts in Linux

29 June 2012 Stepping Towards A Noiseless Linux Environment 9

Clock Ticks

Load Balancing

Network Interrupts

Inter-processor Interrupts

What happens during a tick?
• Updating the kernel time

• Resource accounting

• Running expired timers

• Checking for preemption

• Performing delayed work

• Subsystems that need collaboration from all CPUs use IPIs
•  Read Copy Update (RCU): Expects every CPU to report

periodically. Interrupts the silent ones.

29 June 2012 Stepping Towards A Noiseless Linux Environment 10

A kernel thread was woken up periodically (every second) to
refresh VM statistics!

Tick Processing Times

• Variance is due to
locking and cache line
bouncing caused by
accessing and/or
modifying global data
such as the kernel
time

29 June 2012 Stepping Towards A Noiseless Linux Environment 11

(~10% overhead)

Towards Noiseless Linux
• Measure tick processing times to characterize the effect of

noise

•  Ignore overhead caused by TLB shootdowns, page faults.
•  Not as easy to mitigate

• Task Pinning

• Turn off load balancing and preemption

• Move device interrupts to separate cores

29 June 2012 Stepping Towards A Noiseless Linux Environment 12

Challenge: Preventing Preemption
• Exclude CPUs from load balancing domains

•  isolcpus boot argument
•  Static, and nearly obsolete

o Process Containers aka Kernel Control Groups (cgroups)
•  Dynamic
•  But harder manageability

• Difficult to disable certain kernel threads (such as
kworker) without source-level changes

29 June 2012 Stepping Towards A Noiseless Linux Environment 13

Measuring OS Noise

• Fixed Work Quanta (FWQ) benchmarks
•  Repeat a fixed amount of short work and record the time it takes at

each iteration
•  Detour: How long does an iteration take?

• Tests run on a 4 socket, 6 core AMD machine with 16 MPI
processes
•  Pinned to cores 3,4,5,6 on each NUMA domain (first 2 cores were

reserved for the OS)

29 June 2012 Stepping Towards A Noiseless Linux Environment 14

No attempts to reduce the noise vs task pinning

Measuring OS Noise

29 June 2012 Stepping Towards A Noiseless Linux Environment 15

Task pinning vs cgroups with load balancing

Measuring OS Noise

29 June 2012 Stepping Towards A Noiseless Linux Environment 16

cgroups with and without load balancing

Measuring OS Noise

29 June 2012 Stepping Towards A Noiseless Linux Environment 17

cgroups without load balancing vs isolcpus

Measuring OS Noise

29 June 2012 Stepping Towards A Noiseless Linux Environment 18

Challenge: Turning off ticks
• Ticks cause application runtime variability

• Cache pollution, TLB flushes and other scalability issues

• We also want realtime guarantees, predictability and
deadline-driven scheduling

• Timers and delayed work items are problem
•  No interrupt -> no irq_exit -> no softirq
•  These usually reference local CPU data so running them on a

separate CPU is not trivial

29 June 2012 Stepping Towards A Noiseless Linux Environment 19

Challenge: Turning off ticks
• Our tickless Linux prototype:

•  Application requests a tickless environment

•  Kernel advances the tick timer much further in time and starts
queuing any timer and workqueue requests to separate OS cores

•  Tells other subsystems to leave the application core alone and
prevent inter-processor interrupts (IPI)
•  e.g. RCU subsystem

29 June 2012 Stepping Towards A Noiseless Linux Environment 20

FWQ on a tickless core

Tickless Linux

29 June 2012 Stepping Towards A Noiseless Linux Environment 21

POP Performance

• Experimental Setup

•  2 socket dual core processors x 236 nodes
•  Connected with a SDR InfiniBand network
•  Ran tests with 1, 2, and 3 ranks per node

29 June 2012 Stepping Towards A Noiseless Linux Environment 22

POP Performance

29 June 2012 Stepping Towards A Noiseless Linux Environment 23

Variability Tests

• Simple compute and synchronize benchmark

29 June 2012 Stepping Towards A Noiseless Linux Environment 24

for(i = 0; i < iter; i++) {	
 do_fixed_amount_of_work();	
 timestamp[2 * i] = get_ticks();	
 MPI_Allreduce();	
 timestamp[2 * i + 1] = get_ticks();	
}	

Variability Tests

29 June 2012 Stepping Towards A Noiseless Linux Environment 25

Variability Tests

29 June 2012 Stepping Towards A Noiseless Linux Environment 26

Problems
• No softirq runs on the tickless core

•  I/O that depends on softirqs is slow/broken, e.g. Ethernet network

• Solution: Queue incoming packets to only OS cores
•  Resulted in unbalanced load making it slower by ~10%.

•  IB works great because it does not depend on softirq
processing

• Sometimes timekeeping was off by a bit

29 June 2012 Stepping Towards A Noiseless Linux Environment 27

Prototype solutions
• To alleviate reduced network bandwidth, allow bottom-half

handlers on OS cores to do larger batch processing

• Timekeeping issues can be dealt with by keeping one OS
core running all the time (prevent going idle)

• Some device drivers depend on ticks: equip work items
with HZ frequency

29 June 2012 Stepping Towards A Noiseless Linux Environment 28

Future Work
• Collaboration with Linux developers to implement a

tickless mode

•  Implement
•  Accounting and timekeeping
•  Bottom-half handlers with higher batching
•  Disabling kernel threads or moving them to OS cores

• Test at higher scales with other applications

29 June 2012 Stepping Towards A Noiseless Linux Environment 29

Conclusion
• We identified the primary events that happen during ticks

and discussed their relevance in HPC context

• We proposed methods to move the ticks away from
application cores

• We created a tickless Linux prototype with promising intial
results

• We showed the benefits to noise-sensitive applications

29 June 2012 Stepping Towards A Noiseless Linux Environment 30

80% of the Top500 are running Linux and losing compute
cycles to ticks!

Questions?

29 June 2012 Stepping Towards A Noiseless Linux Environment 31

