ROSS 2012 | June 292012 | Venice, ltaly

New Mexico A 4 »
*CONSORTIUM NEW MEXICO TECH NLA%SN ﬁ'&!.!l'%%

E57.1542

STEPPING TOWARDS ANOISELESS
LINUX ENVIRONMENT

Hakan Akkan*, Michael LangT, Lorie Liebrock*

Presented by: Abhishek Kulkarnil

* New Mexico Tech
T Ultrascale Systems Research Center
New Mexico Consortium
Los Alamos National Laboratory

Motivation

HPC applications are unnecessarily interrupted by the OS
far too often

OS noise (or jitter) includes interruptions that increase an
application’s time to solution

Asymmetric CPU roles (OS cores vs Application cores)
Spatio-temporal partitioning of resources (Tessellation)

LWK and HPC Oses improve performance at scale

29 June 2012

OS noise exacerbates at scale

- OS noise can cause a significant slowdown of the app

- Delays the superstep since synchronization must wait for
the slowest process: max(w;)

Image: The Case of the Missing Supercomputer Performance, Petrini et. Al, 2003

Stepping Towards A Noiseless Linux Environment

—/

—

——
—
——
——
[S—
——/
——
——
——
[—
——
——
| —
L
——o
—/—/
——
——

——
———
—
 S—
—/—
———
——
——
S
C

—
——
—
S
——
—
———
——
L
——
———
——
——

29 June 2012 Stepping Towards A Noiseless Linux Environment

Noise co-scheduling

- Co-scheduling the noise across the machine so all
processes pay the price at the same time

- - - -
- - - -
t — | — |* A

Image: The Case of the Missing Supercomputer Performance, Petrini et. Al, 2003

Noise Resonance

Low frequency, Long duration noise
System services, daemons
Can be moved to separate cores

High frequency, Short duration noise
OS clock ticks

Not as easy to synchronize - usually much more frequent and
shorter than the computation granularity of the application

Previous research
Tsafrir, Brightwell, Ferreira, Beckman, Hoefler

Indirect overhead is generally not acknowledged
Cache and TLB pollution
Other scalability issues: locking during ticks

29 June 2012

350000 +

300000

250000

200000

150000

Processing rate (cells/s)

100000

50000

Stepping Towards A Noiseless Linux Environment

~+-Istanbul

o
———— .,
1 2 3 4 5 6 7 8

Number of cores per processor

Fig. 4. PARTISN performance scaling.

Processing rate (cells/s)

Some applications are memory and network bandwidth limited!

—+Istanbul /-

4500 | -=-Nehalem
2000 /-—/
3500 /
3000 /
2500 /
2000 //
1500 7
1000 / /-"‘\._—-4

500

0

3 4 5 6
Number of cores per processor

-
~N

45000

~+Istanbul

35000

-=-Nehalem -

30000

25000

20000

~

15000

Processing rate (cells/s)

10000

5000

Fig. 5. XNOBEL performance scaling.

1 2 3 4 5 6 7 8
Number of cores per processor

*Sancho, et. al

Processing rate (cells/s)

140000000

~+-|stanbul
120000000 | ~*Nehalem /
100000000
oo i
R4
/’

40000000 {
20000000

0

1 2 3 4 5 6
Number of cores per processor

7

Fig. 6. SWEEP3D performance scaling.

29 June 2012 Stepping Towards A Noiseless Linux Environment

Recent Work

- Tilera Zero-Overhead Linux (ZOL)

- Dataplane mode
- Eliminates OS interrupts, timer ticks

- Cray Compute Node Linux
- Linux Adaptive Tickless Kernel

- We take a step-by-step approach quantifying the benefits
of each configuration or optimization to Linux

29 June 2012 Stepping Towards A Noiseless Linux Environment

Challenges

- Can we stop the ticks on application cores and move all
OS functionality onto these spare cores?

- What would be the benefit in turning off the ticks? Are
timer interrupts necessary for all cores?

- How close can we get to a LWK with Linux?

29 June 2012 Stepping Towards A Noiseless Linux Environment

Interrupts in Linux

/ Clock Ticks
8904772 Local timer interrupts

4780062 Rescheduling interrupts <«—
1922138 TLB shootdowns

Load Balancing

851563 PCI-MSI-edge ethl

100687 PCI-MSTI-edge ethO Network Interrupts
57104 Function call interrupts

41456 I0-APIC-fasteol 10cl ' Inter-processor Interrupts
11112 Machine check polls

7564 PCI-MSI-edge ib mthca-comp@pc1:0000:47:00.0

(on a 24 core Linux 2.6.x machine with hz=100)

29 June 2012 Stepping Towards A Noiseless Linux Environment

What happens during a tick?

- Updating the kernel time
» Resource accounting

* Running expired timers

« Checking for preemption
 Performing delayed work

» Subsystems that need collaboration from all CPUs use IPIs

* Read Copy Update (RCU): Expects every CPU to report
periodically. Interrupts the silent ones.

29 June 2012

Stepping Towards A Noiseless Linux Environment

Tick Processing Times

(~10% overhead)

45

* Variance is due to a0 |
locking and cache line 4 tj _ ,
bouncing caused by 2 ool
accessing and/or 2 .l .
modifying global data § 20 |
such as the kernel 5 15 [TaEr
] '_ .
time 10

A kernel thread was woken up periodically (every second) to
refresh VM statistics!

29 June 2012 Stepping Towards A Noiseless Linux Environment

Towards Noiseless Linux

* Measure tick processing times to characterize the effect of
noise

* Ignore overhead caused by TLB shootdowns, page faults.
* Not as easy to mitigate

* Task Pinning
* Turn off load balancing and preemption

* Move device interrupts to separate cores

29 June 2012 Stepping Towards A Noiseless Linux Environment

Challenge: Preventing Preemption

* Exclude CPUs from load balancing domains

* isolcpus boot argument
+ Static, and nearly obsolete

o Process Containers aka Kernel Control Groups (cgroups)
* Dynamic
* But harder manageability

- Difficult to disable certain kernel threads (such as
kworker) without source-level changes

29 June 2012 Stepping Towards A Noiseless Linux Environment

Measuring OS Noise

 Fixed Work Quanta (FWQ) benchmarks

* Repeat a fixed amount of short work and record the time it takes at
each iteration

« Detour: How long does an iteration take?

* Tests run on a 4 socket, 6 core AMD machine with 16 MPI
processes

* Pinned to cores 3,4,5,6 on each NUMA domain (first 2 cores were
reserved for the OS)

Detour (us)

29 June 2012

Measuring OS Noise

Stepping Towards A Noiseless Linux Environment

No attempts to reduce the noise vs task pinning

20 30
Samples (x1000)
(a) Normal

25

20

15F °

10 R T I e e

.o . .. - . e & & & & s e
N ee B ® s o =

. on
90 5 NG CWS CIIC® ¢ BV OP WEEW OO |

10

20 30
Samples (x1000)

(b) Task affinity

40

50

29 June 2012 Stepping Towards A Noiseless Linux Environment

Measuring OS Noise

Task pinning vs cgroups with load balancing

25

20

15 i: ..: ...“.. E L L Q.. .“ L

@ GINERCS I BIRS 0 @ S0 2N W O EN BN IS IS 0 "™ o omow
i e I e T B

PO SO @O 200 00 S 0ED B CENNG 200 D EH § 20 ¢ B0 HEN D 0 B0 00 SEN e
-—

0 10 20 30 40 50
Samples (x1000)

(b) Task affinity

25

20 |

- L . "“e o . . on . o0 ® e o0
. e o S0 S ®e 200 0 " W & s e - ® smwmes o 4
. eSS s & a0 cee 8 LA . e o0 e o
.o o coe . LL R LA J LI J
s o e = . o G0 SMeI N e 00 meee . ® oo ® somey

0 10 20 30 40 50

Samples (x1000)
(c¢) cgroups (load balancing on)

29 June 2012 Stepping Towards A Noiseless Linux Environment

Measuring OS Noise

cgroups with and without load balancing

LT S S et e it A

0 10 20 30 40
Samples (x1000)
(c) cgroups (load balancing on)

0 10 20
Samples (x1000)

30

40

(d) cgroups (load balancing off)

29 June 2012

Measuring OS Noise

Stepping Towards A Noiseless Linux Environment

cgroups without load balancing vs isolcpus

25

20

15

10 AT T L e

XTI T TN TE

]

5

0

0 10 20 30 40 50
Samples (x1000)
(d) cgroups (load balancing off)

25

20

15

10l}°

06 RE S0 NS 0 S DI ONIER NS & e e

10

20 30
Samples (x1000)

(e) Isolated CPUs

40

50

29 June 2012 Stepping Towards A Noiseless Linux Environment

Challenge: Turning off ticks

» Ticks cause application runtime variability
- Cache pollution, TLB flushes and other scalability issues

- We also want realtime guarantees, predictability and
deadline-driven scheduling

» Timers and delayed work items are problem
* No interrupt -> no irg_exit -> no softirq

» These usually reference local CPU data so running them on a
separate CPU is not trivial

29 June 2012 Stepping Towards A Noiseless Linux Environment

Challenge: Turning off ticks

* Qur tickless Linux prototype:

* Application requests a tickless environment

» Kernel advances the tick timer much further in time and starts
queuing any timer and workqueue requests to separate OS cores

+ Tells other subsystems to leave the application core alone and
prevent inter-processor interrupts (IPI)

* e.g. RCU subsystem

29 June 2012 Stepping Towards A Noiseless Linux Environment

Tickless Linux

FWQ on a tickless core
25

15

10

0 10 20 30 40 50
Samples (x1000)
(f) Tickless mode

29 June 2012 Stepping Towards A Noiseless Linux Environment

POP Performance

» Experimental Setup
2 socket dual core processors x 236 nodes

* Connected with a SDR InfiniBand network
» Ran tests with 1, 2, and 3 ranks per node

29 June 2012 Stepping Towards A Noiseless Linux Environment

POP Performance

1.8

1.6
1.4
12 + /e""

1 =

% speedup

0.8

0.6

1 processor per node ———
2 processors per node e
3 processors per node <

04 |

0 100 200 300 400 500 600 700 800

0.2

Processes

29 June 2012 Stepping Towards A Noiseless Linux Environment

Variability Tests

» Simple compute and synchronize benchmark

for(1 =0; 1 < 1ter; 1++) {
do_f1ixed_amount_of_work();
timestamp[2 * 1] = get_ticks();
MPI_Allreduce();
timestamp[2 * 1 + 1] = get_ticks();

29 June 2012 Stepping Towards A Noiseless Linux Environment

Variability Tests

Variability in Computation Time

1 C T T T T T T T]

0.1 [SRREIIIEIPLIIRRIERIRRE foeemessannnn T SRRRIRIIIERELY feesrne st TSR LY. frees s -

C N . B :]

S C : : : : : : : :
e

.‘U B T

S L 4
Q

o} - _
T

hat L 4
5]
T

C = 4
]
4
wn
o
=S

0.01 | —-
: 1pn w/ t:icl<s
| 1pn W/O ticks =——t=— |

: : : : : ; 2pN W ticks «eeeeee
i : == = — o M ; M ; 2pRmie-tislks & i

o . . ' 3PN W/ ticks weseeseeess
i i : : : : 3pn wW/o ticks =——t—
0'001 ' + | 3 : L + 1 1 1 1 |

0 100 200 300 400 500 600 700 800
Processes

29 June 2012 Stepping Towards A Noiseless Linux Environment

Variability Tests

Variability in Communication Time

16 5
7 ! ! ! ! ! ! !
s : : : : : : :
y : : : : : :
%
%
"
) : :
% ! ! . . : : :
14 - L e eeeeeeneeeieaeaaaaas Besaemscanancasasasoannand fenssmenscasassasansasaacs eesesmacaiaccatancatonsadacnncoaatoaansoaansasnas R N U SR PR P —
s H H H H H H .
% :
0
N
. N N
L : : : : :
N ., : : : . :
: . . : . : :
12 S e L LT T S et _
'y : ea, : : : :
% : ey : : : :
%, : e, : : : :

% Standard deviation

1pn W/ ticks ssseeessee
é é s : : : 1pn W/0 ticks =———t=—

4 I , , zpn W/tiCkS ___________ —

: : : : : 5 2pn W/O ticks =—t—

3pn W/ ticks ssseseesees

3pn w/o :cicks ——

- ; i ; i
0 100 200 300 400 500 600 700 800

Processes

29 June 2012 Stepping Towards A Noiseless Linux Environment

Problems

* No softirqg runs on the tickless core
- 1/0O that depends on softirgs is slow/broken, e.g. Ethernet network

» Solution: Queue incoming packets to only OS cores
* Resulted in unbalanced load making it slower by ~10%.

- IB works great because it does not depend on softirq
processing

» Sometimes timekeeping was off by a bit

29 June 2012 Stepping Towards A Noiseless Linux Environment

Prototype solutions

- To alleviate reduced network bandwidth, allow bottom-half
handlers on OS cores to do larger batch processing

* Timekeeping issues can be dealt with by keeping one OS
core running all the time (prevent going idle)

* Some device drivers depend on ticks: equip work items
with HZ frequency

29 June 2012 Stepping Towards A Noiseless Linux Environment

Future Work

* Collaboration with Linux developers to implement a
tickless mode

* Implement
* Accounting and timekeeping
 Bottom-half handlers with higher batching
* Disabling kernel threads or moving them to OS cores

* Test at higher scales with other applications

29 June 2012 Stepping Towards A Noiseless Linux Environment

Conclusion

- We identified the primary events that happen during ticks
and discussed their relevance in HPC context

* We proposed methods to move the ticks away from
application cores

* We created a tickless Linux prototype with promising intial
results

* We showed the benefits to noise-sensitive applications

80% of the Top500 are running Linux and losing compute
cycles to ticks!

29 June 2012 Stepping Towards A Noiseless Linux Environment

Questions?

