Integrated In-System Storage Architecture
for High Performance Computing

Dries Kimpe, Rob Ross
Argonne National Laboratory

Kathryn Mohror, Adam Moody, Brian Van Essen,
Bronis R. de Supinski, Maya Gokhale
Lawrence Livermore National Laboratory

/A % U.S. DEPARTMENT OF
@) ENERGY
NS

CE———

Motivation
Total cost of I/O system by year (SM)
1000 .
M Disk
M Solid State (MLC)
100 m Hybrid
90 PB of solid state @
100 TB/sec, 900 PB of
10 disk @ 11 TB/sec
Assumptions: Require 900 PB
capacity @ 100 TB/sec peak in
2018. Associated HW 4x raw
device costs. No revolutionary
1 solid state developments.
2010 2012 2014 2016 2018 Enterprise storage.
= Exascale storage will be a hybrid of disk and solid Thanks to Gary Grider (LANL) for
this data.

state, unless we dramatically reduce capacity
requirements.

o\—\-‘ :

Motivation

= HPC systems are quickly moving into a realm where hybrid SSD/HDD systems are
necessary to hit performance and capacity targets.

= Yet, we do not understand how SSDs can best serve our science needs.

Goal:

Conduct a detailed assessment of the potential roles and benefits of in-
system storage in exascale computational science.

Thrusts:
= Explore and evaluate existing/emerging hardware options

= Assess software mechanisms that best exploit them, implement examples, provide
feedback

— Checkpoint and restart

— Data management

CE———

Hardware Exploration and Evaluation

= Simulation and emulation

= Memory API to persistent
memory

= Models latencies and
bandwidth

— Different memory

technologies (NAND Flash,
PCM, memristor, MRAM)

— Different interconnects (SATA,
PCle, DIMM)

User Application

Memory Requests
load/store [read/write User Space

/ \

mmap 1/0 direct 1/0

Kernel Space

PerMA delay driver

latency += transit dela

buffers

Process

Memory

System Memory

Persistent Memory Simulator

FPGA Emulator on |I/O Bus m

CPU

I/O Bus

—
Memory
4

/

/A S

I/O Core Memory On-chip
Controller Buffers

CE———

Hardware Exploration and Evaluation

Traversed edges per second (TEPS)

5.0e+07 1.0e+08 1.5e+08

0.0e+00

B Raid1 2x: 200 GiB Virident PCle 1.1 x8 % _ B Raid1 2x: 200 GiB Virident PCle 1.1 x8
O 100us lat. PCle-2.0 x8 @ 7] O 100us lat. PCle-2.0 x8
@ 100us lat. PCle-2.0 x16 ~ | @ 100us lat. PCle-2.0 x16 .
= 5032 I:t. PCI:—Z.O §32 = 5032 I:t. PCI:—Z.O §32 . Breadth first search
B 25us lat. PCle-2.0 x64 B 25us lat. PCle-2.0 x64
B Simulator Max Perf. o B Simulator Max Perf. graph traversal
B In—-memory execution o B In—-memory execution
S .
T - = 170 GiB of data
5 "= One and eight
& thread/core
£ 3- = Comparison of
g s
— In-memory
— PCle-attached flash
z - — Four generations of
RMAT 3 ° AT o simulated NVRAM
32 Threads 256 Threads

Future NVRAM should achieve 75% performance of fully in-memory run

Checkpoint and Restart

* First write checkpoints to node-
local storage

*When checkpoint is complete,
apply redundancy schemes

* Drain selected checkpoints to
global storage in a controlled way
* Can apply merging and
compression schemes at this step

Storage Area Network

* Users select which checkpoints
are transferred to global storage
— * Automatically drain last

m m GlobalStorage checkpoint of the job

= PBased on SCR

= Utilize in-system storage and multiple checkpoint strategies for scalable, highly
resilient checkpoint and restart

Data-Aware Compression

450

400

350

L
o
o

| Partition array A

(=]
%3]
(=]

=]
(=]
(=]

Time (seconds)

| Interleave array A

=
%]
=]

| Compress array A

100

50

Parallel File System

W PFS-xfer

W Parallel-Gzip

m Fetch+Merge+Compress+

Local-write
m Collect+process-Header

M Local-read

F

NoComp

154MB per ckpt

Gzip DataAware

A8MB per ckpt | 40MB per ckpt

Interleave like with like data from distinct processes before compression
Move checkpoints asynchronously to minimize application overhead

Integration
(Overview)

= Emulated NVRAM for now

= Storage abstraction API provides
information on storage devices
available in the system

= Container API provides lightweight
management abstraction for in-
system storage

CE———

Storage Hierarchy Abstraction

= Primarily static information on storage system configuration
= Designed for constant memory usage wrt the number of nodes

— Query for resources as needed

— Hierarchy of storage resources
e Local, up, down

— E.g., a Blue Gene I/O forwarding node can query for
e local storage (nothing now; SSD in the future)
e storage at the next level (parallel file system)
e |ist of compute nodes that share the I/O node

= Each storage location has:

— a URI for location, e.g., storage://compute2/tmp

— aset of attribute-value properties, e.g., capacity = 10E12
= SCR can benefit from knowing

— which processes share storage

— persistency information

— expected bandwidth

Container Abstraction

il
'I'--.. I
|

metacdata

-

Container Set

pe

Y

\

1 L N I __

Memory-Mapped Storage Device
1

N

Reserved space
for container set

Logical View

CE———

Data model for in-system storage
(designed for memory mapped storage)

Why not a file on a local file system?

— Functionality not needed for local
temporary storage can come at a high cost.

— Hard to add new capabilities
— Require admin privileges
User-space implementation simplifies

experimentation and deployment
(can run on flash emulator)

Constructed for direct storage access
(true zero-copy) — See next slide
APl overview:

— create,delete, rename, get attributes,
non-contiguous read, write and explicit
resize.

— Each container has a name

— Containers grouped in sets for isolation,
space reservation

10

CE———

Direct Storage Access

Application Data

g ([— R
T S~ $ "
= Expose container storage layout 58 = = ==
. . [== —
— Storage format designed for direct 8‘5 % =
G Y
access o
— Application transfers data
e Avoid extra copy (processing data) . |
e No complicated non-contiguous 1/0 §1' pr?:ﬁ)sggf?grcor)y 1. get storage
map

description needed.

. 2. process and |

= Compare:
P store

— memory-mapped I/O (extra copy)

temporary
buffer

— XIP (no write support, fs dependent)

.......

— direct-io (alignment restrictions, API 2. create iovec or |
bottleneck) _issue multiple writes |

([o] fed Peded

Storage

" Layout returned as set of pointers
into storage.

byte
stream

11

CE———

Remote Container Access & Transport

Forward container -

access Containers are a purely local concept

— No global namespace

= Some applications need remote access

— Use storage hierarchy abstraction to
identify remote location.

— Remote read/write

= Extension: remote copy operation

— Request duplication of a container to
another location

— Remote source and dest (3" party)
— Global scheduling of data movement

= |Implementation using IOFSL
(under construction)

12

Summary

Provided an overview of a prototype, integrated in-system storage architecture
— SCR, IOFSL, PerMA, abstraction layers

Code under active development
— Will be open sourced

— Storage abstraction and container APl developed as standalone libraries to encourage
reuse

This work is supported by US DOE ASCR within the NoLoSS project

13

