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Motivation
Total cost of I/O system by year (SM)
1000 .
M Disk
M Solid State (MLC)
100 m Hybrid
90 PB of solid state @
100 TB/sec, 900 PB of
10 disk @ 11 TB/sec
Assumptions: Require 900 PB
capacity @ 100 TB/sec peak in
2018. Associated HW 4x raw
device costs. No revolutionary
1 solid state developments.
2010 2012 2014 2016 2018 Enterprise storage.
= Exascale storage will be a hybrid of disk and solid Thanks to Gary Grider (LANL) for
this data.

state, unless we dramatically reduce capacity
requirements.
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Motivation

=  HPC systems are quickly moving into a realm where hybrid SSD/HDD systems are
necessary to hit performance and capacity targets.

=  Yet, we do not understand how SSDs can best serve our science needs.

Goal:

Conduct a detailed assessment of the potential roles and benefits of in-
system storage in exascale computational science.

Thrusts:
= Explore and evaluate existing/emerging hardware options

= Assess software mechanisms that best exploit them, implement examples, provide
feedback

— Checkpoint and restart

— Data management
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Hardware Exploration and Evaluation

=  Simulation and emulation

= Memory API to persistent
memory

=  Models latencies and
bandwidth

— Different memory

technologies (NAND Flash,
PCM, memristor, MRAM)

— Different interconnects (SATA,
PCle, DIMM)
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Hardware Exploration and Evaluation
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Future NVRAM should achieve 75% performance of fully in-memory run



Checkpoint and Restart

* First write checkpoints to node-
local storage

*When checkpoint is complete,
apply redundancy schemes

* Drain selected checkpoints to
global storage in a controlled way
* Can apply merging and
compression schemes at this step

Storage Area Network

* Users select which checkpoints
are transferred to global storage
— * Automatically drain last

m m GlobalStorage checkpoint of the job

= PBased on SCR

= Utilize in-system storage and multiple checkpoint strategies for scalable, highly
resilient checkpoint and restart



Data-Aware Compression
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154MB per ckpt
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Interleave like with like data from distinct processes before compression
Move checkpoints asynchronously to minimize application overhead



Integration
(Overview)

=  Emulated NVRAM for now

= Storage abstraction API provides
information on storage devices
available in the system

= Container API provides lightweight
management abstraction for in-
system storage
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Storage Hierarchy Abstraction

=  Primarily static information on storage system configuration
= Designed for constant memory usage wrt the number of nodes

— Query for resources as needed

— Hierarchy of storage resources
e Local, up, down

— E.g., a Blue Gene I/O forwarding node can query for
e local storage (nothing now; SSD in the future)
e storage at the next level (parallel file system)
e |ist of compute nodes that share the I/O node

= Each storage location has:

— a URI for location, e.g., storage://compute2/tmp

— aset of attribute-value properties, e.g., capacity = 10E12
= SCR can benefit from knowing

— which processes share storage

— persistency information

— expected bandwidth



Container Abstraction
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Data model for in-system storage
(designed for memory mapped storage)

Why not a file on a local file system?

— Functionality not needed for local
temporary storage can come at a high cost.

— Hard to add new capabilities
— Require admin privileges
User-space implementation simplifies

experimentation and deployment
(can run on flash emulator)

Constructed for direct storage access
(true zero-copy) — See next slide
APl overview:

— create,delete, rename, get attributes,
non-contiguous read, write and explicit
resize.

— Each container has a name

— Containers grouped in sets for isolation,
space reservation
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Direct Storage Access

Application Data
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Remote Container Access & Transport

Forward container -

access Containers are a purely local concept

— No global namespace

= Some applications need remote access

— Use storage hierarchy abstraction to
identify remote location.

— Remote read/write

= Extension: remote copy operation

— Request duplication of a container to
another location

— Remote source and dest (3" party)
— Global scheduling of data movement

=  |Implementation using IOFSL
(under construction)
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Summary

Provided an overview of a prototype, integrated in-system storage architecture
— SCR, IOFSL, PerMA, abstraction layers

Code under active development
— Will be open sourced

— Storage abstraction and container APl developed as standalone libraries to encourage
reuse

This work is supported by US DOE ASCR within the NoLoSS project
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