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The Exascale Era

* “Going to the exascale” is a challenging venture

Clock rates and ILP have reached points of diminishing returns

* Memory and Power wall limits performance -“\_eak
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Higher soft and hard error rates at smaller feature sizes

* Massive intra-node parallelism

* Manycore processors and integrated accelerators

* Intel MIC (Knights Ferry, Knights Corner)
e Tilera Tile Gx
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We need transformation, not evolution

* Emerging hardware will drive the transformation of the traditional software stack

* New programming models, execution models, runtime systems and operating systems

Applications

Applications

Operating System |:> Execution Model

Virtual Machine

Host OS Lightweight Kernel
HW Abstraction Layer HW Abstraction Layer
Hardware Hardware
(& \\

CENTER FOR RESEARCH ya
IN EXTREME SCALE

TECHNOLOGIES 2 Los A|amos
‘ INDIANA UNIVERSITY 3 MNATIONAL LARCRATORY

P

Pervasive Technology Institute



Challenges

* New operating systems and lightweight kernels
* Tessellation, Barrelfish, Kitten, fos
* Native operating system (OS) support for accelerators
* Evolutionary approaches
* |dentifying potential bottlenecks in existing operating systems (Linux)

* OS scalability efforts such as partitioning, many-core inter-processor
communication, symbiotic execution, virtualization.
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Optimizing process management

e Reducing the latency to spawn new processes locally results in faster
global job launch

* Emerging dynamic and resilient execution models are considering the
feasibility of maintaining process pools for fault isolation

e Higher throughput makes such runtime systems viable

* Memory overcommiting can lead to unpredictable behavior including
excessive swapping or OOM killing random processes

e Optimizing memory locality and NUMA-aware process spawning
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“Process control in its modern form was designed and implemented
within a couple of days. It is astonishing how easily it fitted into the
existing system; at the same time it is easy to see how some of the slightly
unusual features of the design are present precisely because they
represented small, easily-coded changes to what existed.”

Dennis M. Ritchie
The Evolution of the Unix Time-sharing System, 1979

ll.l CENTER FOR RESEARCH Ve
IN EXTREME SCALE y
TECHNOLOGIES > Los Alamos

NATIONAL LABRORATORY
£51.1543

INDIANA UNIVERSITY 6

Pervasive Technology Institute



fork and exec in early Unix

* Separate fork-exec borrowed from the Berkeley time-sharing system (1965).
* Theinitial implementation of fork only required:
e Expansion of the process table

* Addition of a fork call that copied the current process to the disk swap
area, using the already existing swap 10 primitives, and made some
adjustments to the process table.

* In fact, the PDP-7's fork call required precisely 27 lines of assembly code.

e exec as such did not exist; its function was already performed, using explicit
10, by the shell.

Source: The Evolution of the Unix Time-sharing System
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Spawning a group of processes

foriinn:
pid = fork()
if pid ==0: // child
exec(cmd)
else if pid: // parent
sched_setaffinity(pid)
continue
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What’s wrong with the traditional approach?

* Serial execution

» ~3-4 system calls / context-switches

* Redundant operations shared between fork and exec
* fork copies page tables, sets up a TCB
* exec wipes off the control block and reinitializes the address space
e Solution: vfork

* Relies on memory overcommit for process spawning

e Solution: posix_spawn
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POSIX_SPAWN(2) BSD System Calls Manual POSIX_SPAWN(2)
NAME
posix_spawn posix_spawnp —-- spawn a process
SYNOPSIS
#include <spawn.h>
int
posix_spawn(pid t xrestrict pid, const char xrestrict path, const posix spawn file actions t xfile actions,
const posix spawnattr t xrestrict attrp, char xconst argv[restrict], char xconst envp[restrict]);

int

posix_spawnp(pid t xrestrict pid, const char xrestrict file, const posix spawn file actions t xfile actions,
const posix spawnattr t xrestrict attrp, char xconst argv[restrict], char xconst envp[restrict]);
DESCRIPTION

The posix_spawn() function creates a new process from the executable file, called the new process file, specified by
path, which is an absolute or relative path to the file. The posix_spawnp() function is identical to the posix_spawn()
function if the file specified contains a slash character; otherwise, the file parameter is used to construct a path-
name, with its path prefix being obtained by a search of the path specified in the environment by the " “PATH variable''.
If this variable isn't specified, the default path is set according to the _PATH_DEFPATH definition in <paths.h>, which

is set to "“/usr/bin:/bin''. This pathname either refers to an executable object file, or a file of data for an inter-
preter; execve(2) for more details.

posix_spawn typically implemented as a combination of fork and exec!
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libpspawn: a userspace library for high throughput process spawning

Transform the fork-exec-fork-exec pattern

)
to fork-exec-fork-fork pattern Launcher P
(Parent roxy
Instance
Process)

* Effectively, each fork-exec is replaced by a > <

\
6 pspawn()
single fork libpspawn \\\\\\\\\\\\‘\\\\\ libpspawn

fork() + i y
* Hijack application to act as a process exec() - 9

Wil

.
.o

* Intercept process spawn system calls (fork e

Forked
exec) and relay them to the proxy Application Instances
(Child Processes)
CENTER FOR RESEARCH ya
IN EXTREME SCALE )
TECHNOLOGIES . Los Alamos

INDIANA UNIVERSITY 11 NATIONAL LABRORATORY
Pervasive Technology Institute £51.1543



Spawning group of processes using libpspawn

2. Create a process

)

Launcher
(Parent
Process)

Proxy
Instance

Spawn
\Q\\E\\\\\\Q\\\ libpspawn

/! io;;;;\ 3. IPC using shmem

Forked

Application Instances
1. Repeatedly spawn  (Child Processes)

processes

libpspawn
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pspawn Interface

Create a new pspawn context
int pspawn_context_create(pspawn_context_t *ctx, char *path,
int core)

Destroy a pspawn context
void pspawn_context_destroy(pspawn_context_t *ctx)

Launch a single process
pid_t pspawn (pspawn_context t *ctx, char *argv][ ])

Launch 'n’ processes

int pspawn_n(pid_t *pids , pspawn_context_t *ctx, int nspawns,
char *argv[ ]) ‘/;4 \:6
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Evaluating libpspawn

» sfork (Synchronous Fork)
* Parent forks and waits for the child

e afork (Asynchronous Fork)
e Parent waits after forking all the children

» vfork (VM Fork)
e Parent forks child and shares virtual memory

» pfork (Parallel Fork)
e Parent forks 1 child which forks the other (n-1) children
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Experimental Setup

1. A quad-socket, quad-core (16 cores total, 4 NUMA domains) AMD
Opteron node with 16 GB of memory and running Linux kernel
2.6.32-220.13.1.el6.x86_64.

2. Atwo-socket, 12-core (24 cores total, 4 NUMA domains) AMD
Istanbul node with 48 GB of memory and running Linux kernel
3.4.0-rc7.

3. An eight-socket, 8-core (64 cores total, 8 NUMA domains) Intel
Nehalem node with 128 GB of memory and running Linux kernel
2.6.35.10-74.fc14.x86_64.
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Comparing process spawn schemes: 16-core node

Time taken (sec)
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Comparing process spawn schemes: 24-core node
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Comparing process spawn schemes: 64-core node
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Typical setup on production machines

S echo LD _LIBRARY_PATH

LD_LIBRARY_PATH=/home/user/opt/open64/x86 open64-4.2.5/lib:/home/user/
opt/mpi/openmpi-1.5.3-openf90/lib/:/home/user/opt/open64/x86 open64-4.2.5/
open64-gcc-4.2.0/lib/:/home/user/x86 _open64-4.2.5/lib/gcc-lib/x86_64-open64-
linux/4.2.5:/home/GotoBLAS2/1.13 bsd:/home/cuda/cuda4.0.11/lib64:/home/
cuda/cuda4.0.11/lib:/home/user/opt/open64/x86_open64-4.2.5/lib:/home/user/
opt/mpi/openmpi-1.5.3-openf90/lib/:/opt/cuda/lib64

* Large number of entries in the environment (env) too!
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Empty library path and env: 16-core node
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Empty library path and env: 24-core node
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Empty library path and env: 64-core node _ _
execve system call is expensive

at higher core counts
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Accounting for the copy-on-write (CoW) overhead

» exec-fork-fork results in all children sharing the address space

* Executable image is typically read-only but accesses to heap, BSS would result
in copying of pages

e We modified the microbenchmarks to run with an executable size of 100MB
such that first byte of every page in the 100MB range was written to

e 200 instances of the microbenchmark were spawned
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CoW overhead: 16-core node

Time taken (sec)
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CoW overhead: 24-core node

Time taken (sec)
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CoW overhead: 64-core node
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NUMA-aware process spawning

We replicated the shared libraries and executables local to each domain
* Isolated page caches using process containers (cgroups) in Linux

* Pynamic, the Python Dynamic Benchmark, is a synthetic benchmark to stress
dynamic-linking and loading of applications

* 64 instances of the benchmark were run across 4 NUMA-domains on the 16-
node cluster with 495 shared libraries each at an aggregate total of 1.4 GB

Test Avg. Import Time Total Time

pynamic-first 65.6506 94.633

pynamic 45.9471 59.0187

pynamic-numa-first 65.3467 93.305

pynamic-numa 46.1293 56.64
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pspawn system call

* A vector system call to spawn a group of processes (fork and exec) on specific
cores (setaffinity)

* Synchronous and Asynchronous system call interface

* Accepts a list of CPU mask flags that dictate what CPUs the processes are
allowed to run on

* Accepts a list of arguments and environments (joined together) for each
instance of the process spawn
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pspawn system call

Copy argv, envp
and CPU masks to [~ Input Sanity Check [~
kernel space

Spawn a new
kernel thread

Setup CPU masks

Wait? | Z— Kernel execve  Zem— .
and credentials

Synchronous pspawn system call
int pspawn(char *filename, char **argv, char **envp, unsigned int nspawns,
unsigned int clen, cpu_set_t **mask, enum pspawn_flags flags, pid_t *pids)

int ipspawn(char *filename, char **argv, char **envp, unsigned int nspawns,
cpu_set t**mask, enum pspawn_flags flags)
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pspawn system call performance

10

1 E' """""""""""""""""""""""""""""""""""""""" e aEVEVERVERVEEE R
O : 5=
Q - o
) [
c O.1 o bbb
8 /
O 0.01 g A AR e N frr
= : | | | afork ——
= 0.001 b/ R— T—— T— - libpspawn —e—

L pspawn ——

0 2 4 6 8 10 12 14 16
Number of forks (x 1000)

lll CENTER FOR RESEARCH pa
IN EXTREME SCALE £y
TECHNOLOGIES - Los Alamos
MNATIONAL LARCRATORY

11111111

‘ INDIANA UNIVERSITY 30
Pervasive Technology Institute



Related and Future Work

* Related work

e CoW characterization and benchmarking

* The Vector Operating System (VOS)

* Google Chrome and the Dalvik Virtual Machine
* Future work

* Runtime integration (MPIl, SLURM)

* |solated page-caches

e Better error reporting for asynchronous interfaces
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Conclusion

Significant focus on two related areas in the past:
* i)improving OS interfaces for increased scalability
* i) increasing throughput of global distributed launches

* This work explores the several limiting factors for efficient intra-node spawning
of processes on manycore architectures

* Synchronous system call interfaces are expensive at higher core-counts

* Vector operating system interfaces introduce an opportunity for parallelism!
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Questions?
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