Optimizing Latency and Throughput for Spawning
Processes on Massively Multicore Processors

Abhishek Kulkarni*, Michael Lang", Latchesar lonkov and Andrew Lumsdaine*

*Center for Research in Extreme Scale Technologies (CREST)
Indiana University, Bloomington

TUIltrascale Systems Research Center
New Mexico Consortium
Los Alamos National Laboratory

June 29 2012

CENTER FOR RESEARCH
IN EXTREME SCALE
TECHNOLOGIES

‘ INDIANA UNIVERSITY

Pervasive Technology Institute

P

New Mexico
CONSORTIUM

1

Ve
)
- Los Alamos

MATIONAL LABCRATORY
£57.1542

The Exascale Era

* “Going to the exascale” is a challenging venture

Clock rates and ILP have reached points of diminishing returns

* Memory and Power wall limits performance -“_eak

°
0.
60833
12eNG 8024
ush

Higher soft and hard error rates at smaller feature sizes

* Massive intra-node parallelism

* Manycore processors and integrated accelerators

* Intel MIC (Knights Ferry, Knights Corner)
e Tilera Tile Gx

ll.l CENTER FOR RESEARCH A
IN EXTREME SCALE .
TECHNOLOGIES - Los Alamos

INDIANA UNIVERSITY 2 NATIONAL LABRORATORY
£51.1593

Pervasive Technology Institute

We need transformation, not evolution

* Emerging hardware will drive the transformation of the traditional software stack

* New programming models, execution models, runtime systems and operating systems

Applications

Applications

Operating System |:> Execution Model

Virtual Machine

Host OS Lightweight Kernel
HW Abstraction Layer HW Abstraction Layer
Hardware Hardware
(& \\

CENTER FOR RESEARCH ya
IN EXTREME SCALE

TECHNOLOGIES 2 Los A|amos
‘ INDIANA UNIVERSITY 3 MNATIONAL LARCRATORY

P

Pervasive Technology Institute

Challenges

* New operating systems and lightweight kernels
* Tessellation, Barrelfish, Kitten, fos
* Native operating system (OS) support for accelerators
* Evolutionary approaches
* |dentifying potential bottlenecks in existing operating systems (Linux)

* OS scalability efforts such as partitioning, many-core inter-processor
communication, symbiotic execution, virtualization.

I.IJ CENTER FOR RESEARCH Ve
IN EXTREME SCALE)
TECHNOLOGIES > Los Alamos

INDIANA UNIVERSITY 4 NATIONAL LABRORATORY

Pervasive Technology Institute £57.1543

Optimizing process management

e Reducing the latency to spawn new processes locally results in faster
global job launch

* Emerging dynamic and resilient execution models are considering the
feasibility of maintaining process pools for fault isolation

e Higher throughput makes such runtime systems viable

* Memory overcommiting can lead to unpredictable behavior including
excessive swapping or OOM killing random processes

e Optimizing memory locality and NUMA-aware process spawning

I'IJ CENTER FOR RESEARCH Ve
IN EXTREME SCALE

&3
TECHNOLOGIES - Los Alamos

INDIANA UNIVERSITY 5 NATIONAL LABRORATORY
£57.15a42

Pervasive Technology Institute

“Process control in its modern form was designed and implemented
within a couple of days. It is astonishing how easily it fitted into the
existing system; at the same time it is easy to see how some of the slightly
unusual features of the design are present precisely because they
represented small, easily-coded changes to what existed.”

Dennis M. Ritchie
The Evolution of the Unix Time-sharing System, 1979

ll.l CENTER FOR RESEARCH Ve
IN EXTREME SCALE y
TECHNOLOGIES > Los Alamos

NATIONAL LABRORATORY
£51.1543

INDIANA UNIVERSITY 6

Pervasive Technology Institute

fork and exec in early Unix

* Separate fork-exec borrowed from the Berkeley time-sharing system (1965).
* Theinitial implementation of fork only required:
e Expansion of the process table

* Addition of a fork call that copied the current process to the disk swap
area, using the already existing swap 10 primitives, and made some
adjustments to the process table.

* In fact, the PDP-7's fork call required precisely 27 lines of assembly code.

e exec as such did not exist; its function was already performed, using explicit
10, by the shell.

Source: The Evolution of the Unix Time-sharing System

I'IJ CENTER FOR RESEARCH Va

IN EXTREME SCALE -
TECHNOLOGIES - Los Alamos

7 NATIONAL LARORATORY
1 a3

INDIANA UNIVERSITY

Pervasive Technology Institute

Spawning a group of processes

foriinn:
pid = fork()
if pid ==0: // child
exec(cmd)
else if pid: // parent
sched_setaffinity(pid)
continue

ll.l CENTER FOR RESEARCH Ve
IN EXTREME SCALE .
TECHNOLOGIES - Los Alamos

‘ INDIANA UNIVERSITY 8 NATIONAL LARCRATORY
Pervasive Technology Institute £57.1943

What’s wrong with the traditional approach?

* Serial execution

» ~3-4 system calls / context-switches

* Redundant operations shared between fork and exec
* fork copies page tables, sets up a TCB
* exec wipes off the control block and reinitializes the address space
e Solution: vfork

* Relies on memory overcommit for process spawning

e Solution: posix_spawn

ll.l CENTER FOR RESEARCH A
IN EXTREME SCALE .
TECHNOLOGIES - Los Alamos

INDIANA UNIVERSITY 9 NATIONAL LABRORATORY
Pervasive Technology Institute £51.1543

POSIX_SPAWN(2) BSD System Calls Manual POSIX_SPAWN(2)
NAME
posix_spawn posix_spawnp —-- spawn a process
SYNOPSIS
#include <spawn.h>
int
posix_spawn(pid t xrestrict pid, const char xrestrict path, const posix spawn file actions t xfile actions,
const posix spawnattr t xrestrict attrp, char xconst argv[restrict], char xconst envp[restrict]);

int

posix_spawnp(pid t xrestrict pid, const char xrestrict file, const posix spawn file actions t xfile actions,
const posix spawnattr t xrestrict attrp, char xconst argv[restrict], char xconst envp[restrict]);
DESCRIPTION

The posix_spawn() function creates a new process from the executable file, called the new process file, specified by
path, which is an absolute or relative path to the file. The posix_spawnp() function is identical to the posix_spawn()
function if the file specified contains a slash character; otherwise, the file parameter is used to construct a path-
name, with its path prefix being obtained by a search of the path specified in the environment by the " “PATH variable''.
If this variable isn't specified, the default path is set according to the _PATH_DEFPATH definition in <paths.h>, which

is set to "“/usr/bin:/bin''. This pathname either refers to an executable object file, or a file of data for an inter-
preter; execve(2) for more details.

posix_spawn typically implemented as a combination of fork and exec!

ll.l CENTER FOR RESEARCH Ve
IN EXTREME SCALE .
TECHNOLOGIES - Los Alamos
‘ INDIANA UNIVERSITY 10

NATIONAL LARCRATORY
Pervasive Technology Institute £57.1943

libpspawn: a userspace library for high throughput process spawning

Transform the fork-exec-fork-exec pattern

)
to fork-exec-fork-fork pattern Launcher P
(Parent roxy
Instance
Process)

* Effectively, each fork-exec is replaced by a > <

\
6 pspawn()
single fork libpspawn \\\\\\\\\\\\‘\\\\\ libpspawn

fork() + i y
* Hijack application to act as a process exec() - 9

Wil

.
.o

* Intercept process spawn system calls (fork e

Forked
exec) and relay them to the proxy Application Instances
(Child Processes)
CENTER FOR RESEARCH ya
IN EXTREME SCALE)
TECHNOLOGIES . Los Alamos

INDIANA UNIVERSITY 11 NATIONAL LABRORATORY
Pervasive Technology Institute £51.1543

Spawning group of processes using libpspawn

2. Create a process

)

Launcher
(Parent
Process)

Proxy
Instance

Spawn
\Q\\E\\\\\\Q\\\ libpspawn

/! io;;;;\ 3. IPC using shmem

Forked

Application Instances
1. Repeatedly spawn (Child Processes)

processes

libpspawn

l[.l CENTER FOR RESEARCH ya
IN EXTREME SCALE L=y
TECHNOLOGIES - Los Alamos

‘ INDIANA UNIVERSITY 12 NATIGNAL LABGRATORY

Pervasive Technology Institute £57.1943

pspawn Interface

Create a new pspawn context
int pspawn_context_create(pspawn_context_t *ctx, char *path,
int core)

Destroy a pspawn context
void pspawn_context_destroy(pspawn_context_t *ctx)

Launch a single process
pid_t pspawn (pspawn_context t *ctx, char *argv][])

Launch 'n’ processes

int pspawn_n(pid_t *pids , pspawn_context_t *ctx, int nspawns,
char *argv[]) ‘/;4 \:6

CENTER FOR RESEARCH ya
IN EXTREME SCALE S
TECHNOLOGIES - Los Alamos

‘ INDIANA UNIVERSITY 13 NATIONAL LARCRATORY
Pervasive Technology Institute £57.1592

P

Evaluating libpspawn

» sfork (Synchronous Fork)
* Parent forks and waits for the child

e afork (Asynchronous Fork)
e Parent waits after forking all the children

» vfork (VM Fork)
e Parent forks child and shares virtual memory

» pfork (Parallel Fork)
e Parent forks 1 child which forks the other (n-1) children

ll.l CENTER FOR RESEARCH Ve
IN EXTREME SCALE y
TECHNOLOGIES > Los Alamos

INDIANA UNIVERSITY 14 NATIONAL LABRORATORY
Pervasive Technology Institute e e 153

Experimental Setup

1. A quad-socket, quad-core (16 cores total, 4 NUMA domains) AMD
Opteron node with 16 GB of memory and running Linux kernel
2.6.32-220.13.1.el6.x86_64.

2. Atwo-socket, 12-core (24 cores total, 4 NUMA domains) AMD
Istanbul node with 48 GB of memory and running Linux kernel
3.4.0-rc7.

3. An eight-socket, 8-core (64 cores total, 8 NUMA domains) Intel
Nehalem node with 128 GB of memory and running Linux kernel
2.6.35.10-74.fc14.x86_64.

I'IJ CENTER FOR RESEARCH Ve
IN EXTREME SCALE D)
TECHNOLOGIES > Los Alamos

INDIANA UNIVERSITY 15 NATIONAL LABRORATORY

Pervasive Technology Institute £57.1543

Comparing process spawn schemes: 16-core node

Time taken (sec)
|_I
i,
|
|

/ ~ pspawn —e—
001 | | | | | |
0 2 4 6 8 10 12 14 16

Number of forks (x 1000)

-
P

CENTER FOR RESEARCH ya
IN EXTREME SCALE S
TECHNOLOGIES - Los Alamos

‘ INDIANA UNIVERSITY 16 NATIGNAL LABGRATORY

Pervasive Technology Institute £57.1943

Comparing process spawn schemes: 24-core node

100 g A A Lo A S :

Time taken (sec)

pspawn

| | | |
0 2 4 6 8 10 12 14 16
Number of forks (x 1000)

-
P

CENTER FOR RESEARCH ya
IN EXTREME SCALE

TECHNOLOGIES - Los Alamos
‘ INDIANA UNIVERSITY 17 NATIGNAL LABGRATORY

Pervasive Technology Institute

Comparing process spawn schemes: 64-core node

100 g A e o e o '

=
o

Time taken (sec)
=

Ly bseawn

0 2 4 6 8 10 12 14 16
Number of forks (x 1000)

-
P

CENTER FOR RESEARCH ya
IN EXTREME SCALE

TECHNOLOGIES N L?sAIamos

‘ INDIANA UNIVERSITY 18 NATIGNAL LABGRATORY
£57.1542

Pervasive Technology Institute

Typical setup on production machines

S echo LD _LIBRARY_PATH

LD_LIBRARY_PATH=/home/user/opt/open64/x86 open64-4.2.5/lib:/home/user/
opt/mpi/openmpi-1.5.3-openf90/lib/:/home/user/opt/open64/x86 open64-4.2.5/
open64-gcc-4.2.0/lib/:/home/user/x86 _open64-4.2.5/lib/gcc-lib/x86_64-open64-
linux/4.2.5:/home/GotoBLAS2/1.13 bsd:/home/cuda/cuda4.0.11/lib64:/home/
cuda/cuda4.0.11/lib:/home/user/opt/open64/x86_open64-4.2.5/lib:/home/user/
opt/mpi/openmpi-1.5.3-openf90/lib/:/opt/cuda/lib64

* Large number of entries in the environment (env) too!

I'IJ CENTER FOR RESEARCH Va
IN EXTREME SCALE D,
TECHNOLOGIES > Los Alamos

INDIANA UNIVERSITY 19 NATIONAL LARGRATORY
11542

Pervasive Technology Institute

Empty library path and env: 16-core node

100

— $ f—

=
o

R (. ¢ . i e

Time taken (sec)
=

0.18

. pseawn e

0 2 4 6 8 10 12 14 16
Number of forks (x 1000)

lll CENTER FOR RESEARCH pa
IN EXTREME SCALE £y
TECHNOLOGIES - Los Alamos

‘ INDIANA UNIVERSITY 20 NATIGNAL LABGRATORY
Pervasive Technology Institute £57.1592

Empty library path and env: 24-core node

TOO oo
%) LO b e g g @ TR
Q
u
(e
% 1 ... -: i ax - SN
é sfork ——
= , vfork ——
= 0.1 afork ——
| | | | pfork ——
0.01 L | | | | pepawn 7= |

0 2 4 5) 8 10 12 14 16
Number of forks (x 1000)

lll CENTER FOR RESEARCH pa
IN EXTREME SCALE £y
TECHNOLOGIES - Los Alamos

‘ INDIANA UNIVERSITY 21 NATIGNAL LABGRATORY
Pervasive Technology Institute £57.1592

Empty library path and env: 64-core node _ _
execve system call is expensive

at higher core counts

100
S 10
()]
)
(e
9 1
S
()}
£
= 0.1

pspawn

0.01 | | | | | |
0 2 4 6 8 10 12 14 16

Number of forks (x 1000)

-
P

CENTER FOR RESEARCH ya
IN EXTREME SCALE S
TECHNOLOGIES - Los Alamos

‘ INDIANA UNIVERSITY 22 NATIGNAL LABGRATORY
£57.1542

Pervasive Technology Institute

Accounting for the copy-on-write (CoW) overhead

» exec-fork-fork results in all children sharing the address space

* Executable image is typically read-only but accesses to heap, BSS would result
in copying of pages

e We modified the microbenchmarks to run with an executable size of 100MB
such that first byte of every page in the 100MB range was written to

e 200 instances of the microbenchmark were spawned

I.IJ CENTER FOR RESEARCH Ve
IN EXTREME SCALE

)
TECHNOLOGIES - Los Alamos

INDIANA UNIVERSITY 23 NATIONAL LABRORATORY
Pervasive Technology Institute £51.1543

CoW overhead: 16-core node

Time taken (sec)

0 0.2 0.4 0.6 0.8 1
Write Ratio

lll CENTER FOR RESEARCH pa
IN EXTREME SCALE £y
TECHNOLOGIES - Los Alamos

‘ INDIANA UNIVERSITY 24 NATIGNAL LABGRATORY
£57.1542

Pervasive Technology Institute

CoW overhead: 24-core node

Time taken (sec)

i i
0 0.2 0.4 0.6 0.8 1
Write Ratio

lll CENTER FOR RESEARCH pa
IN EXTREME SCALE £y
TECHNOLOGIES - Los Alamos

‘ INDIANA UNIVERSITY 25 NATIGNAL LABGRATORY
£57.1542

Pervasive Technology Institute

CoW overhead: 64-core node

25 e -------------------------- S .
20 | S S— —
15 fo e

e

Time taken (sec)

o
0 0.2 0.4 0.6 0.8 1

Write Ratio

-
P

CENTER FOR RESEARCH ya
IN EXTREME SCALE S
TECHNOLOGIES - Los Alamos

‘ INDIANA UNIVERSITY 26 NATIGNAL LABGRATORY
£57.1542

Pervasive Technology Institute

NUMA-aware process spawning

We replicated the shared libraries and executables local to each domain
* Isolated page caches using process containers (cgroups) in Linux

* Pynamic, the Python Dynamic Benchmark, is a synthetic benchmark to stress
dynamic-linking and loading of applications

* 64 instances of the benchmark were run across 4 NUMA-domains on the 16-
node cluster with 495 shared libraries each at an aggregate total of 1.4 GB

Test Avg. Import Time Total Time

pynamic-first 65.6506 94.633

pynamic 45.9471 59.0187

pynamic-numa-first 65.3467 93.305

pynamic-numa 46.1293 56.64

-
llJ CENTER FOR RESEARCH A
IN EXTREME SCALE

)
TECHNOLOGIES - Los Alamos

INDIANA UNIVERSITY 27 NATIONAL LABRORATORY

Pervasive Technology Institute £57.1543

pspawn system call

* A vector system call to spawn a group of processes (fork and exec) on specific
cores (setaffinity)

* Synchronous and Asynchronous system call interface

* Accepts a list of CPU mask flags that dictate what CPUs the processes are
allowed to run on

* Accepts a list of arguments and environments (joined together) for each
instance of the process spawn

I.IJ CENTER FOR RESEARCH Ve
IN EXTREME SCALE)
TECHNOLOGIES > Los Alamos

INDIANA UNIVERSITY 28 NATIONAL LABRORATORY
Pervasive Technology Institute £51.1543

pspawn system call

Copy argv, envp
and CPU masks to [~ Input Sanity Check [~
kernel space

Spawn a new
kernel thread

Setup CPU masks

Wait? | Z— Kernel execve Zem— .
and credentials

Synchronous pspawn system call
int pspawn(char *filename, char **argv, char **envp, unsigned int nspawns,
unsigned int clen, cpu_set_t **mask, enum pspawn_flags flags, pid_t *pids)

int ipspawn(char *filename, char **argv, char **envp, unsigned int nspawns,
cpu_set t**mask, enum pspawn_flags flags)

ll.l CENTER FOR RESEARCH Ve
IN EXTREME SCALE .
TECHNOLOGIES - Los Alamos

‘ INDIANA UNIVERSITY 29 NATIGNAL LABGRATORY
Pervasive Technology Institute £57.1592

pspawn system call performance

10

1 E' "" e aEVEVERVERVEEE R
O : 5=
Q - o
) [
c O.1 o bbb
8 /
O 0.01 g A AR e N frr
= : | | | afork ——
= 0.001 b/ R— T—— T— - libpspawn —e—

L pspawn ——

0 2 4 6 8 10 12 14 16
Number of forks (x 1000)

lll CENTER FOR RESEARCH pa
IN EXTREME SCALE £y
TECHNOLOGIES - Los Alamos
MNATIONAL LARCRATORY

11111111

‘ INDIANA UNIVERSITY 30
Pervasive Technology Institute

Related and Future Work

* Related work

e CoW characterization and benchmarking

* The Vector Operating System (VOS)

* Google Chrome and the Dalvik Virtual Machine
* Future work

* Runtime integration (MPIl, SLURM)

* |solated page-caches

e Better error reporting for asynchronous interfaces

ll.l CENTER FOR RESEARCH Ve
IN EXTREME SCALE y
TECHNOLOGIES > Los Alamos

INDIANA UNIVERSITY 31 NATIONAL LABRORATORY
Pervasive Technology Institute e e 153

Conclusion

Significant focus on two related areas in the past:
* i)improving OS interfaces for increased scalability
* i) increasing throughput of global distributed launches

* This work explores the several limiting factors for efficient intra-node spawning
of processes on manycore architectures

* Synchronous system call interfaces are expensive at higher core-counts

* Vector operating system interfaces introduce an opportunity for parallelism!

l'lJ CENTER FOR RESEARCH Ve
IN EXTREME SCALE)
TECHNOLOGIES > Los Alamos

INDIANA UNIVERSITY 32 NATIONAL LABRORATORY

Pervasive Technology Institute £57.1543

Questions?

l[.l CENTER FOR RESEARCH ya
IN EXTREME SCALE L=y
TECHNOLOGIES - Los Alamos

‘ INDIANA UNIVERSITY 88 NATIONAL LARCRATORY

Pervasive Technology Institute £57.1943

