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Introduction 

• Dedicated co-processor 
 GPGPU 
 Number crunching work load is offloaded to GPGPU 

 Many-core based co-processor (Intel® MIC Architecture) 
 The whole of an application can be executed on the 

many-core 
 Applications running on the many-core may issue  
     file I/O operations 

many-core based co-processor 
(Intel® MIC Architecture) 
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In this work, a file I/O system performed on the many-core 
is designed, implemented and evaluated 
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• Heterogeneous Systems  
 dedicated co-processors and general purpose multi-cores 

 



Machine Environment 
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• Knights Ferry is adopted 
     for implementation and 
     evaluation 

 32 core 
 L2 256KB/core 
 RAM 2GB 

www.brightsideofnews.com - /Data/2011_6_20/Intel-Larrabee 
-Take-Two-Knights-Corner-in-2012-aims-ExaScale-2018/ 
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Intel® MIC Architecture 
(many-core based co-processor) 

• MIC connected to the host processor with PCI-Express 
• Local storage attached to the host processor 
• A kernel currently developing from scratch runs on MIC 
• File I/O server runs on the host 



File I/O performed on the many-core 

HOST 
Processor 

many-core based co-processor 

(A)Offload to the host 
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• Actual file data should be transferred from the storage attached 
      to the host processor 

core core 

core core core core 

core core 

Furthermore,  two mechanisms can be considered for (B) 

I/O bus 

Storage 

• Two mechanisms to perform file I/O operations on the many-
core 
(A) Executing all procedures on the host  
(B) Executing as much procedures as possible on the many-core 



Three Mechanisms for File I/O on MIC 

many-core based co-processor 

(B2)offload to OS function core (B1)on computing core 
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(A) Offloaded to the host processor 
(B) Performed inside the many-core 
  Possibility of cache pollution due to its small cache size  

(B1) Executing on computing core 
(B2) Executing on dedicated core for OS functionality 
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comp 
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comp 
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comp 
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[Soares et al., 2010] 
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File I/O Server on the host Linux 

・・・ 
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Thread 1 
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• Each file I/O server thread polls a specified request queue  
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read/write 
request 

acquire a result  

open 
request 
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read/write 
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・・・ 
return  

file descriptor 
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ack 
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Design of File Cache on MIC 

file_map_start 

• Read/write system calls on computing core or OS function core 
     are performed through file cache inside the many-core 
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Design of File I/O - Three kinds of read syscalls 
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Design of File I/O - Three kinds of write syscalls 
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At small size, read_comp and read_os are  
better due to utilizing file-cache 

At large size, read_host is better due to  direct I/O 

• In order to ascertain the positive effect of file cache on the many-core, 
    sequential read of a file(total 16MB) is performed 

better 
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At large size, write_host wins over write_comp and 
write_os due to direct I/O 

At small size, write_comp and write_os are better because  

the overhead of transfer small data to the host is large  

• Sequential write of total 16MB 
• sync system call is executed at the end of the evaluation  
    in the case of write_comp and write_os 

better 



Read Benchmark 

sum = 0; 
for(n = 0;  n < DIVISOR;  n++) { 
 read(fd, buf, size); 
 for(i = 0;  i < size/4;  i++) { 
  sum += buf[i]; 
 } 
} 

j = 0; 
sum = 0; 
read(fd, buf, size*DIVISOR); 
for(n = 0;  n < DIVISOR;  n++) { 
 for(i = 0;  i < size/4;  i++) { 
                 sum += buf[j++]; 
 } 
} 

• Total read size is 16MB 
• The total time to run the benchmark is evaluated 

unit data size(64KB) < L2 cache size(256KB) 

iterative once 
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Read Benchmark - Result 
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• The second best: read_comp in the iterative benchmark 
 user buffer data exists on L2 cache when the user code try to access it 

• The best:  read_host in the one time benchmark 
 large bandwidth  
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Write Benchmark 
• Total write size is 16MB 
• The total time to run the benchmark is evaluated 

for(n = 0;  n < DIVISOR;  n++) { 
 for(i = 0;  i < size/4;  i++) { 
  buf[i] = n; 
 } 
 
 write(fd, buf, size); 
} 

j = 0; 
for(n = 0;  n < DIVISOR;  n++) { 
 for(i = 0;  i < size/4;  i++) { 
      buf[j++] = n; 
 } 
} 
write(fd, buf, size*DIVISOR); 

unit data size(64KB) < L2 cache size(256KB) 

iterative once 
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Write Benchmark - Result 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

iterative once

to
ta

l t
im

e
 [

re
la

ti
ve

 v
al

u
e

] 

write_comp

write_os

write_host

• The second best: write_comp in the iterative benchmark 
 Write system call can be executed efficiently because of user buffer 
     exists on L2 cache 

• The best: write_host in the one time benchmark 
 Large bandwidth 
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Related Work 
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• Shimizu et al. (2010) 
 Remote file I/O for heterogeneous cluster system 
 Direct I/O between I/O node and user buffer in computing node 
 High bandwidth at large data, low bandwidth at small data 

In our work, the bandwidth can maintain high value at small  
data size by introducing file cache on the many-core 

• Soares et al. (2010) 
 FlexSC: Flexible System Call Scheduling with Exception-Less   
                   System Calls 
 Negative effects of executing system calls on user program code 

 Cost of switching the privilege mode 
 Cache pollution caused by the system call 

 
Where the data is utilized in the user code should also be 
considered when discussing file I/O system call’s foot print 



Summary 
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• A file I/O system performed on many-core based co-processor  
    connected to the high performance host  

 Three types of file I/O system calls 
 Performed on computing core in the many-core 
 Offloaded to OS function core in the many-core 
 Offloaded to the host 

 
• The bandwidth of file I/O system calls 

 At small data, the system calls performed inside the many-core 
    are better  
 At large data, the system call offloaded to the host wins 
 

• Total execution time of simple read/write benchmarks 
 The bandwidth of file I/O system calls has more significant effect 

rather than the factor that the data exists on the CPU cache.  
 



Thank you 
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