
A File I/O System
for Many-core Based Clusters

Yuki Matsuo Taku Shimosawa Yutaka Ishikawa

University of Tokyo

ROSS 2012

June 29, 2012

1

Introduction

• Dedicated co-processor
 GPGPU
 Number crunching work load is offloaded to GPGPU

 Many-core based co-processor (Intel® MIC Architecture)
 The whole of an application can be executed on the

many-core
 Applications running on the many-core may issue
 file I/O operations

many-core based co-processor
(Intel® MIC Architecture)

Host
Processor

(Intel® Xeon)

Local
Storage

I/O bus Micro Kernel

Linux

File I/O
Server

core core core core

core core core core

In this work, a file I/O system performed on the many-core
is designed, implemented and evaluated

2

• Heterogeneous Systems
 dedicated co-processors and general purpose multi-cores

Machine Environment

3

• Knights Ferry is adopted
 for implementation and
 evaluation

 32 core
 L2 256KB/core
 RAM 2GB

www.brightsideofnews.com - /Data/2011_6_20/Intel-Larrabee
-Take-Two-Knights-Corner-in-2012-aims-ExaScale-2018/

PCI-Express

Linux Kernel

AAL-Host IKCL

SMSL

Host

Device Driver

Micro Kernel

AAL-Manycore

IKCL

SMSL

MIC

Local Storage

File I/O Server

Intel® MIC Architecture
(many-core based co-processor)

• MIC connected to the host processor with PCI-Express
• Local storage attached to the host processor
• A kernel currently developing from scratch runs on MIC
• File I/O server runs on the host

File I/O performed on the many-core

HOST
Processor

many-core based co-processor

(A)Offload to the host

4

• Actual file data should be transferred from the storage attached
 to the host processor

core core

core core core core

core core

Furthermore, two mechanisms can be considered for (B)

I/O bus

Storage

• Two mechanisms to perform file I/O operations on the many-
core
(A) Executing all procedures on the host
(B) Executing as much procedures as possible on the many-core

Three Mechanisms for File I/O on MIC

many-core based co-processor

(B2)offload to OS function core (B1)on computing core

5

(A) Offloaded to the host processor
(B) Performed inside the many-core
 Possibility of cache pollution due to its small cache size

(B1) Executing on computing core
(B2) Executing on dedicated core for OS functionality

 OS
core

comp
core

comp
core

comp
core

comp
core

comp
core

comp
core

comp
core

[Soares et al., 2010]
HOST

Processor

(A)offload to the host

I/O bus

storage

File I/O Server on the host Linux

・・・

I/O request Q for file 1

I/O Server
Thread 1

I/O request Q for file M

・・・・・

I/O Server
Thread M

I/O request Q for OPEN system call

I/O Server
Thread 0

HOST

• Each file I/O server thread polls a specified request queue

MIC
Process

0

MIC
Process

N

・・・・・・・・
・
・・

MIC

6

read/write
request

acquire a result

open
request

acquire a result

read/write
request

acquire a result

・・・
return

file descriptor

ack

ack

0x000000000000000

0xffff800000000000

Process Space File Space(for each file)

Kernel Space

User Space File Data
Space

offset

size

user buffer

Design of File Cache on MIC

file_map_start

• Read/write system calls on computing core or OS function core
 are performed through file cache inside the many-core

7

8

Linux Kernel

AAL-Host
SMSL

Host
Device Driver

File I/O Server

IKCL

MIC Core MIC Core MIC Core MIC Core

Micro
Kernel

Micro
Kernel

Micro
Kernel

Micro
Kernel

Appl
 read

Design of File I/O - Three kinds of read syscalls

① ②

Linux Kernel

AAL-Host
SMSL

Host
Device Driver

File I/O Server

IKCL

MIC Core MIC Core MIC Core MIC Core

Micro
Kernel

Micro
Kernel

Micro
Kernel

Micro
Kernel

Appl
 read

Linux Kernel

AAL-Host
SMSL

Host
Device Driver

File I/O Server

IKCL

MIC Core MIC Core MIC Core MIC Core

Micro
Kernel

Micro
Kernel

Micro
Kernel

Micro
Kernel

Appl
 read

read_comp
performed on computing core

read_os
offloaded to OS function core

read_host
offloaded to the host

①

②
③

③ ①

②

9

Linux Kernel

AAL-Host
SMSL

Host
Device Driver

File I/O Server

IKCL

MIC Core MIC Core MIC Core MIC Core

Micro
Kernel

Micro
Kernel

Micro
Kernel

Micro
Kernel

Appl
 write

Design of File I/O - Three kinds of write syscalls

Linux Kernel

AAL-Host
SMSL

Host
Device Driver

File I/O Server

IKCL

MIC Core MIC Core MIC Core MIC Core

Micro
Kernel

Micro
Kernel

Micro
Kernel

Micro
Kernel

Appl
 write

Linux Kernel

AAL-Host
SMSL

Host
Device Driver

File I/O Server

IKCL

MIC Core MIC Core MIC Core MIC Core

Micro
Kernel

Micro
Kernel

Micro
Kernel

Micro
Kernel

Appl
 write

write_comp
performed on computing core

write_os
offloaded to OS function core

write_host
offloaded to the host ③ ①

②

① ②

①
③

②

0

0.5

1

1.5

2

2.5

1 4 16 64 256 1024 2048 4096 8192 16384

b
an

d
w

id
th

 [
re

la
ti

ve
 v

al
u

e
]

unit data size (KB)

read_comp

read_os

read_host

Bandwidth of Read System Calls

10

At small size, read_comp and read_os are
better due to utilizing file-cache

At large size, read_host is better due to direct I/O

• In order to ascertain the positive effect of file cache on the many-core,
 sequential read of a file(total 16MB) is performed

better

0

1

2

3

4

5

6

1 4 16 64 256 1024 2048 4096 8192 16384

b
an

d
w

id
th

 [
re

la
ti

ve
 v

al
u

e
]

unit data size (KB)

write_comp

write_os

write_host

Bandwidth of Write System Calls

11

At large size, write_host wins over write_comp and
write_os due to direct I/O

At small size, write_comp and write_os are better because

the overhead of transfer small data to the host is large

• Sequential write of total 16MB
• sync system call is executed at the end of the evaluation
 in the case of write_comp and write_os

better

Read Benchmark

sum = 0;
for(n = 0; n < DIVISOR; n++) {
 read(fd, buf, size);
 for(i = 0; i < size/4; i++) {
 sum += buf[i];
 }
}

j = 0;
sum = 0;
read(fd, buf, size*DIVISOR);
for(n = 0; n < DIVISOR; n++) {
 for(i = 0; i < size/4; i++) {
 sum += buf[j++];
 }
}

• Total read size is 16MB
• The total time to run the benchmark is evaluated

unit data size(64KB) < L2 cache size(256KB)

iterative once

12

Read Benchmark - Result

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

iterative once

to
ta

l t
im

e
 [

re
la

ti
ve

 v
al

u
e

]

read_comp

read_os

read_host

• The second best: read_comp in the iterative benchmark
 user buffer data exists on L2 cache when the user code try to access it

• The best: read_host in the one time benchmark
 large bandwidth

13

Write Benchmark
• Total write size is 16MB
• The total time to run the benchmark is evaluated

for(n = 0; n < DIVISOR; n++) {
 for(i = 0; i < size/4; i++) {
 buf[i] = n;
 }

 write(fd, buf, size);
}

j = 0;
for(n = 0; n < DIVISOR; n++) {
 for(i = 0; i < size/4; i++) {
 buf[j++] = n;
 }
}
write(fd, buf, size*DIVISOR);

unit data size(64KB) < L2 cache size(256KB)

iterative once

14

Write Benchmark - Result

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

iterative once

to
ta

l t
im

e
 [

re
la

ti
ve

 v
al

u
e

]

write_comp

write_os

write_host

• The second best: write_comp in the iterative benchmark
 Write system call can be executed efficiently because of user buffer
 exists on L2 cache

• The best: write_host in the one time benchmark
 Large bandwidth

15

Related Work

16

• Shimizu et al. (2010)
 Remote file I/O for heterogeneous cluster system
 Direct I/O between I/O node and user buffer in computing node
 High bandwidth at large data, low bandwidth at small data

In our work, the bandwidth can maintain high value at small
data size by introducing file cache on the many-core

• Soares et al. (2010)
 FlexSC: Flexible System Call Scheduling with Exception-Less
 System Calls
 Negative effects of executing system calls on user program code

 Cost of switching the privilege mode
 Cache pollution caused by the system call

Where the data is utilized in the user code should also be
considered when discussing file I/O system call’s foot print

Summary

17

• A file I/O system performed on many-core based co-processor
 connected to the high performance host

 Three types of file I/O system calls
 Performed on computing core in the many-core
 Offloaded to OS function core in the many-core
 Offloaded to the host

• The bandwidth of file I/O system calls

 At small data, the system calls performed inside the many-core
 are better
 At large data, the system call offloaded to the host wins

• Total execution time of simple read/write benchmarks
 The bandwidth of file I/O system calls has more significant effect

rather than the factor that the data exists on the CPU cache.

Thank you

18

