A Design of Hybrid Operating System
for a Parallel Computer
with Multi-Core and Many-Core Processors

Mikiko Sato’® Go Fukazawa' Kiyohiko Nagamine! Ryuichi Sakamoto'
Mitaro Namiki'.> Kazumi Yoshinaga?® Yuichi Tsujita® Atsushi Hori3°
Yutaka Ishikawa?34

"Tokyo University of Agriculture and Technology 2Kinki University
SRIKEN Advanced Institute for Computational Science
4University of Tokyo ©°Japan Science and Technology Agency, CREST

2012/06/29 1

Outline

Background
Motivation

Design of Multi-core & Many-core system
» Hardware architecture
» Software architecture

Prototype system and evaluation
Conclusion

Background of this study

» Supercomputers are predicted to achieve exaflop
performance by 2018.

[What kind of the system architecture can achieve it?J

* Node architecture of the supercomputer

» Multi-core processor nodes
e Sequoia, Mira, Fermi, JUQUEEN (PowerBQC 16C)
* Kcomputer (SPARC64 VIlifx)
e SuperMUC (Xeon E5-2680 8C)
e Jaguar (Opteron 6274 16C)

» Multi-core and GPGPU nodes
* Tianhe-1A (Xeon+NVIDIA 2050)
* Nebulae (Xeon+NVIDIA 2050)
 TSUBAME 2.0 (Xeon, NVIDIA 2050)

Our target

e Multi-core and Many-core processor combination
» Intel Many Integrated Core (MIC)
— Xeon Phi (Knights Corner)
— multiple simple X86 cores (> 50 cores)

— Plan to apply MIC to the computing node to achieve
highly parallel processing!

computing
%F%Ejnodes
ol Al A
~1_1_'qu s — [

] T Multi-

Core
L \k

frontend
nodes

2012/06/29

Motivation and Approach

* The reason of choosing MIC
» Compatibility with x86 programming models

— the System software has to support APls on MIC
— UNIX/POSIX-API (memory management, |/O access etc..)
— Parallel programming APl (MPI/Thread etc..)

» MIC is possible to run OS

3 /%@ /O cannot be

connected
directly

MIC has few memories S\
per core (8GB RAM are '\

used by >50cores) %

—> The Operating System on MIC should be light weight!

— Host OS performs some functions instead of light weight OS.

What kind of Host OS supports are effective for LWOS?
(process, memory, and I/0 management)

2012/06/29

Hybrid computer system overview

* Linux on Multi-core CPU works as Host OS similar to recent
» 1/0 devices and Many-core resources management LWK
- Light Weight OS on Many-core CPU (MIC) (CNK, Kitten,
» Thread management with low noise Catamount)
/~ Computing node 105 \\\
Collaboration ~
(Mechanism (
Host System Paralll
Application Process Control DEoETaT
/ Programs Reaut S
| I
Host OS I Resource Light Weight OS) .
(Linux) Management N Low noise f or h/gh
Request
- J : | performance.
. - Multi-core CPU Many-core CPU .
@ [T — (1)z)3])4]s o
EIL&JL&J L L P ISeZ——1 Shared memory
=< core3 core4 l o o e =
Front-end node B

(distribute tasks)

2012/06/29

; Internal bus €|

\

PCle (or QPI ?)

/ 6

Process model

* Host-process and LW-processes are formed into a group (Task) .
» Host-process controls LW-process (create, delete, etc..)
» POSIX Threads execute using the LW-process resources.
» MPI is used for inter-process communication

— The main node distributes the Task group to each node using MPI

E@.@sﬁl} ..
- LW-process LW-process

Th Th Th

LW-process has
- MIC cores
- address space

Th Th Th

MPI inter-process
communication

Th_ Th. Th Th Th Th

; Host_ L‘\“_].)l‘oceSS §] -------------- ’.* ---------------------------- <
i Thi Th Th "
Th_Th. Th i s
\ as 4
! i
| 1

‘é | LWOS T LWOS supports
pee e N e e T~ (1) POSIX Thread
Multi-core processor QOO0 WOOuUs 000
distribute tasks (Lcoret][corez][cores | cones | U000/ U000 | ocoog |- (2) POSIX API .
to Host OS UO0QU DDDDL%W I/O,sbrk,eXIt..J
2012/06/29 & LEU core — = -

€—> Inter-OS communication ~€=» MPI message communication

LW-process Management

* Host OS roles

(1) The Host OS manages the cores of the Many-core CPU and
assigns free cores to the LW-processes

(2) The Host OS manages the physical memory of the many-
core processor and continuously assigns memory areas to
LW-processes.

(3) The Host OS manages |/O access requests from Threads on
LWOS.

* LWOSrole
» Thread management

— LWOS delegates the resource management function to the Host OS.

Inter-0OS Collaboration Mechanism

/

Koo

Host OS structure (user-level)

Host-process

e o

[lwp_create

]

} management | management |

: Host OS User-level Library
I'/| Free| Free W-process|
I | coresimemory context

: ~ Resource | | LW-process
[

L

> Kernel Module

i

: I File context v
Il I/Oaccess | | Inter-OS
I support, Comm.
0 A A |

T 2 2

I NW HDD IPI

I driver || driver | handler

i ga

Network IHDDJ

IPI

I
f
I
l
I
I
1
1
f
f
I
1
I
I
[
I
1
7

LW-process management
» control the LW-process

(Create, Destroy, Suspend, Resume)
— load the ELF-binary program
— complete the page table

» keep the LW-process context
— Physical core on Many-core

— Physical memory of Many-core

— The start address of Page Table

— Inter-OS comm. buffer address

Resource management
» assign physical resources
» keep the free resources

Memory mapping for LW-process

Host-process

» LW-process
Virtual Address Space

3 Many-core Processor Virtual Address Space
0x000000 0000000000 Physical Memory
Inter-O3
: Communication
Host- Inter-OS :
(3)Parse the ELF- ol e | [eonmion L
uffer
. Space t
b INa ry p rOg Fa m, A Page Table L\X-lp;l'ocess
9Bk L2 Address
create page table TWos , pace
e Address /. : ,
: : mapping;
for address trans. | | [cme Space _| JMAPP
ufter Y
R Strai ght LWoprocess
Page Tabl mapping Address Vi
Shared = Space 7 Lwos
Sharec T] Address
Memory —:a: Aldclre"« " Space
Space | | Space p
/ LW-process Pl .
(2) IVI a p t h e Address s
Space va . .
(1)Assign the required

memory region
to Host-process X\ continuous memory

address space [/00000000 Fomnel (4)Load the - LW-process segment
e program - page table segment
(fully assign - Inter-OS comm. buffer
2012/06/29 stack & heap) 10

Inter-0OS Collaboration Mechanism

4

Host OS structure (kernel-level)

Host-process

[lwp_create

]

Host OS

User-level Library

r---

Free| Free W-process
coresmemory context
B —_— —1 |

Resource -~ LW-process \
- management management |

I File context

> Kernel Module¢

I/O access 1 Inter-0OS
| gupport | Comm. |
2
NW HDD | IPI
_driver || driver | | handler

Network ‘H |5D":| IPI

v~ g

f
f
0
l
I
I
f
1
f
f
f
|
0
f
f
I
!
J

1/O access support

» Receive I/0O access requests
(open, close, read, write, etc..)

— Buffer address
(LW-process virtual address)

— File descriptor

— Access size

» 1/O access at Kernel module

— change into virtual address on Host OS
— Access through Linux file system

» Keep the file context

— The information of opened file

— Check it when accessing the file.
11

LWQOS structure (User Level)

POSIX Thread Library

» Each core on Many-core CPU is
virtualized to a thread.

» Thread management
— pthread_create, join, etc..
— Non-preemptive execution
— Keep the thread contexts

POSIX API Delegation Library

» Set the arguments of POSIX API
to Inter-OS communication buffer

» Notice the delegation to Host OS

— via Kernel level IPI handler

2012/06/29

LW-process
Th Th Th Th

: LWOS Library e :
I context i
l I/0 Thread Library |
:_ delegation “MULITh” |}
e I

: -I LWOS Kernel :
: | Inter-0OS s LW-process I
I Comm. management :
: $ 7‘ IEW-process f
context ||

I IPI !
I | handler :
3

LWOS structure (Kernel Level)

* LW-process Management

» Receive LW-process control
requests from Host OS

(Create, Destroy, Suspend, Resume)
— start the LW-process execution
— Up—call to destroy/suspend/resume

» Keep the LW-process context

— The number of physical core and IDs

— the start address of the page table

(set it to the page directory base register)
— the Inter-OS comm. buffer address

— the entry point address of the program

2012/06/29

LW-process
Th Th Th Th

: LWOS Library g1
I context :
l I/0 Thread Library |
:_ delegation “MULITh" |

e :
: -I Up-call JLWOS Kernel :
: ' Inter-OS e LW-process [
I Comm. | | management :
: $ | IEW-process f

| | context ||
I IPI !
I | handler I

IPI [lwp_create]13

e Set the command items and arguments
to the inter-OS communication buffer at

Inter-OS communication

Host-proces:
Virtual Address Space

User-level
— 1/0O access datas are directly written to LW- | [g
process address space | T
B A(I(h'e;‘s
Space

* Send “IPI” interruption at Kernel-level
— reducing the buffer copy overhead

Table 1: LW-process management notlfication items.

Address
Space

LW-process

Many-core Processor
Physical Memory

Page Table

LWOS
Address
Space

LW-process
Address
Space

LW-process

Virtual Address Space

Inter-O8
Communication
buffer

LW-process
Address
Space

mapping;

LWOS
Address
Space

Table 2: Memory management norificatlon ltems.

Items Send to | Type Items Send to | Type
LW-process Create LWOS5 | Synchronous Page Fault Notice | Host OS5 | Synchronous
LW-process Suspend LWOS5 | Synchronous Page assign Notice | Host O5 | Asynchronous
LW-process Fesume LWOS5 Synchronous
LW-process Stop LWO5 | Synchronous Table 3: /O access notification liems.
LW-process State Notify | Host OS | Unidirectional Items Send to | Type
Device Open | Host OS5 | Asynchronous
Device Close | Host OS5 | Asynchronous
Device Read | Host OS5 | Asynchronous
2012/06/23 Device Write | Host OS5 | Asynchronous

14

LW-process management API

* Host OS APIs

» Host process uses
these APIs for a LW-
process control

* LWOS APIs

» Memory and thread
management API are
performed in LWOS
without notifying to
HOST OS.

2012/06/29

lwp_create,
lwp_suspend,
lwp_resume,
lwp_destroy

lwp_wait

LW-process control
(to LWOS)

Wait the LW-process exit
(from LWOS)

Specification

exit
brk, sbrk

open, close, read,
write, ioctl

pthread_*

LW-process exit (to Host)

Management of
heap memory

Linux File I/O (to Host)

POSIX thread I/F

15

Prototype system for evaluation

 Two Xeon CPUs performed Multi-core and Many-core.

» Confirm processing mechanism of LW-process creation

» LWOS for Many-core CPU is under development

— LWOS is executed on one core.

— LW-process and LWOS library are implemented to kernel level.

Host OS (6core Xeon)

LWOS(1core Xeon)

Host-process

Th LW-process

/I LinuxKernel \

2.6.18

m Intel Xeon
X5690 3.46GHz
6core x2

m DDR3-1333

Host OS User-level Library LWOS Linbrary
Host O.S Kernel Module LWOS Kernel
Linux Kernel
core core core/core/core|core core C [Thee]

Multi-core CPU1

Multi-core CPU2

Shared memory for Inl

ter-OS communication

CPU1 Memory

CPU2 Memory

2012/06/295

K 12GB x2

/

16

Evaluation of LW-process creation

* measure the execution time of a program that
creates the LW-process and then immediately
terminates it.

— compared with Linux fork-exec overhead (only advisory)

Proposed hybrid OS 110us 147%
Linux /5us 100%
Host-process Code LW-process Code
void main() { TN . .
Iwpid = Iwp_create() V?fi trgcl?un() { b ,
lwp_wait(Iwpid); y e
2012/06/29 } _/ - 17

Analysis of the processing time

* The parse and load of the binary file use most time.

* The rate of Inter-OS communication overhead was low.
» we used internal bus on Xeon system in this evaluation.

— communication speed is faster than real MIC environment.

» we will evaluate the processing rate on MIC environment.

other (3%) \

0%

LW-process create
on Host OS

) * parse and load the
binary (most time)
* create page table

°Inter-OS communicatio
overhead

2012/06/29 18

Conclusion

We have proposed a system in which the functions for
managing the resources of many-core processors are
delegated to the Host OS running on multi-core processor in a
parallel computing system that uses both multi-core
processors and many-core processors.

 That approach allows the LWQOS that runs on a many-core

processor to be dedicated to the execution of parallel
computation programs.

We have described the structures of the Host OS and LWOS
and explained about inter-OS communication.

Future works

 LWOS implementation on MIC processor

» Thread management on many-core processor
» Evaluate LW-process management overhead and inter-OS
communication overhead
* We will investigate many-core assignment algorithms
on Host OS to improve the parallel computing
performance of many-core processors.

Thank you

L W—process control APls

Iwp_create

B Binary file path, the number of core,
Stack size, heap size

B return:process ID

lwp_suspend / lwp_resume
B process ID

lwp_destroy

B process ID

lwp_wait
B process ID

2012/06/29

void api_sample(void)

{
/%
* 4core, IMB stack, 100MB heap
*/
lwpid = Iwp_create (
“~/calc_program.bin”,
4,
0x100000, 0x6400000);

/* suspend and redume*/
Iwp_suspend (lwpid) ;
lwp_resume (lwpid);

/* wait for exitx/

lwp_wait (Iwpid);
}

22

