
A Design of Hybrid Operating System

for a Parallel Computer

with Multi-Core and Many-Core Processors

Mikiko Sato1,5 Go Fukazawa1 Kiyohiko Nagamine1 Ryuichi Sakamoto1

Mitaro Namiki1,5 Kazumi Yoshinaga2,5 Yuichi Tsujita2,5 Atsushi Hori3,5

Yutaka Ishikawa3,4

2012/06/29 1

1Tokyo University of Agriculture and Technology 2Kinki University
3RIKEN Advanced Institute for Computational Science

4University of Tokyo 5Japan Science and Technology Agency, CREST

Outline

• Background

• Motivation

• Design of Multi-core & Many-core system

 Hardware architecture

 Software architecture

• Prototype system and evaluation

• Conclusion

2012/06/29 2

Background of this study

• Supercomputers are predicted to achieve exaflop
performance by 2018.

What kind of the system architecture can achieve it?

• Node architecture of the supercomputer
Multi-core processor nodes

• Sequoia, Mira, Fermi, JuQUEEN (PowerBQC 16C)
• K computer (SPARC64 VIIIfx)
• SuperMUC (Xeon E5-2680 8C)
• Jaguar (Opteron 6274 16C)

Multi-core and GPGPU nodes
• Tianhe-1A (Xeon+NVIDIA 2050)
• Nebulae (Xeon+NVIDIA 2050)
• TSUBAME 2.0 (Xeon, NVIDIA 2050)

 2012/06/29 3

Our target

• Multi-core and Many-core processor combination

 Intel Many Integrated Core (MIC)

– Xeon Phi (Knights Corner)

– multiple simple X86 cores (> 50 cores)

 → Plan to apply MIC to the computing node to achieve
highly parallel processing!

2012/06/29 4

Multi-
Core

MIC

computing
nodes

frontend
nodes

Motivation and Approach

• The reason of choosing MIC

Compatibility with x86 programming models

→ the System software has to support APIs on MIC
‒ UNIX/POSIX-API (memory management, I/O access etc..)

‒ Parallel programming API (MPI/Thread etc..)

MIC is possible to run OS

→ The Operating System on MIC should be light weight!
‒ Host OS performs some functions instead of light weight OS.

2012/06/29 5

NW

HDD

MIC has few memories
per core (8GB RAM are
used by >50cores)

I/O cannot be
connected
directly

What kind of Host OS supports are effective for LWOS?
(process, memory, and I/O management)

Hybrid computer system overview

• Linux on Multi-core CPU works as Host OS
 I/O devices and Many-core resources management

• Light Weight OS on Many-core CPU (MIC)
 Thread management with low noise

2012/06/29 6

PCIe (or QPI ?)

・
・
・

Front-end node
(distribute tasks)

Computing node

Low noise for high
performance.

Shared memory

similar to recent
LWK

(CNK, Kitten,
Catamount)

Process model
• Host-process and LW-processes are formed into a group (Task) .

Host-process controls LW-process (create, delete, etc..)

POSIX Threads execute using the LW-process resources.

MPI is used for inter-process communication
‒ The main node distributes the Task group to each node using MPI

2012/06/29 7

LWOS supports
(1) POSIX Thread
(2) POSIX API
 I/O,sbrk,exit…

MPI inter-process
communication

distribute tasks
to Host OS

LW-process has
 - MIC cores
 - address space

LW-process Management

• Host OS roles

(1) The Host OS manages the cores of the Many-core CPU and
assigns free cores to the LW-processes

(2) The Host OS manages the physical memory of the many-
core processor and continuously assigns memory areas to
LW-processes.

(3) The Host OS manages I/O access requests from Threads on
LWOS.

• LWOS role

Thread management
‒ LWOS delegates the resource management function to the Host OS.

 2012/06/29 8

Host OS structure (user-level)

• LW-process management

 control the LW-process
(Create, Destroy, Suspend, Resume)

‒ load the ELF-binary program

‒ complete the page table

 keep the LW-process context
– Physical core on Many-core

– Physical memory of Many-core

– The start address of Page Table

– Inter-OS comm. buffer address

• Resource management

 assign physical resources

 keep the free resources
9

Memory mapping for LW-process

2012/06/29 10

(1)Assign the required
continuous memory

 - LW-process segment
 - page table segment
 - Inter-OS comm. buffer

(3)Parse the ELF-
binary program,

create page table
for address trans.

(2)Map the
memory region
to Host-process
address space

(4)Load the
program

(fully assign
stack & heap)

Host OS structure (kernel-level)

• I/O access support

Receive I/O access requests
 (open, close, read, write, etc..)

– Buffer address

 (LW-process virtual address)

– File descriptor

– Access size

 I/O access at Kernel module
‒ change into virtual address on Host OS

‒ Access through Linux file system

Keep the file context
‒ The information of opened file

‒ Check it when accessing the file.
11

LWOS structure (User Level)

• POSIX Thread Library

Each core on Many-core CPU is
virtualized to a thread.

Thread management
‒ pthread_create, join, etc..

‒ Non-preemptive execution

‒ Keep the thread contexts

• POSIX API Delegation Library

 Set the arguments of POSIX API
to Inter-OS communication buffer

Notice the delegation to Host OS
‒ via Kernel level IPI handler

2012/06/29 12

LWOS structure (Kernel Level)

• LW-process Management

Receive LW-process control
requests from Host OS

(Create, Destroy, Suspend, Resume)
‒ start the LW-process execution

– Up–call to destroy/suspend/resume

Keep the LW-process context
‒ The number of physical core and IDs

‒ the start address of the page table

 (set it to the page directory base register)

‒ the Inter-OS comm. buffer address

‒ the entry point address of the program

2012/06/29 13 lwp_create

Up-call

Inter-OS communication

• Set the command items and arguments
to the inter-OS communication buffer at
User-level
– I/O access datas are directly written to LW-

process address space

• Send “IPI” interruption at Kernel-level

→ reducing the buffer copy overhead

2012/06/29 14

LW-process management API

• Host OS APIs
 Host process uses

these APIs for a LW-
process control

• LWOS APIs
 Memory and thread

management API are
performed in LWOS
without notifying to
HOST OS.

2012/06/29 15

Function name Specification

exit LW-process exit (to Host)

brk, sbrk Management of
heap memory

open, close, read,
write, ioctl

Linux File I/O (to Host)

pthread_* POSIX thread I/F

Function name Specification

lwp_create,
lwp_suspend,
lwp_resume,
lwp_destroy

LW-process control
(to LWOS)

lwp_wait Wait the LW-process exit
(from LWOS)

Prototype system for evaluation

• Two Xeon CPUs performed Multi-core and Many-core.

Confirm processing mechanism of LW-process creation

 LWOS for Many-core CPU is under development
‒ LWOS is executed on one core.

‒ LW-process and LWOS library are implemented to kernel level.

2012/06/29
16

■ LinuxKernel
 2.6.18
■ Intel Xeon
 X5690 3.46GHz
 6core x2
■ DDR3-1333
 12GB x2

Evaluation of LW-process creation

• measure the execution time of a program that
creates the LW-process and then immediately
terminates it.

– compared with Linux fork-exec overhead (only advisory)

2012/06/29 17

environment time Ratio

Proposed hybrid OS 110us 147%

Linux 75us 100%

void main() {

 lwpid = lwp_create()

 lwp_wait(lwpid);

}

void main() {

 exit();

}

Host-process Code LW-process Code

bynary size
= 1KB

Analysis of the processing time

• The parse and load of the binary file use most time.

• The rate of Inter-OS communication overhead was low.

we used internal bus on Xeon system in this evaluation.
‒ communication speed is faster than real MIC environment.

we will evaluate the processing rate on MIC environment.

2012/06/29 18

LW-process create
on Host OS
• parse and load the
binary (most time)
• create page table

other（3%）

•Inter-OS communication
overhead

87%

10%

Conclusion

• We have proposed a system in which the functions for
managing the resources of many-core processors are
delegated to the Host OS running on multi-core processor in a
parallel computing system that uses both multi-core
processors and many-core processors.

• That approach allows the LWOS that runs on a many-core
processor to be dedicated to the execution of parallel
computation programs.

• We have described the structures of the Host OS and LWOS
and explained about inter-OS communication.

2012/06/29 19

Future works

• LWOS implementation on MIC processor

Thread management on many-core processor

Evaluate LW-process management overhead and inter-OS
communication overhead

• We will investigate many-core assignment algorithms
on Host OS to improve the parallel computing
performance of many-core processors.

2012/06/29 20

2012/06/29 21

Thank you

LW-process control APIs

lwp_create
 Binary file path, the number of core,

Stack size, heap size
 return：process ID

lwp_suspend / lwp_resume
 process ID

lwp_destroy
 process ID

lwp_wait
 process ID

void api_sample(void)
{
 /*
 * 4core, 1MB stack, 100MB heap
 */

 lwpid = lwp_create (
 “~/calc_program.bin”,
 4,
 0x100000, 0x6400000);

 /* suspend and redume*/

 lwp_suspend (lwpid) ;
 lwp_resume (lwpid);

 /* wait for exit*/

 lwp_wait (lwpid);
}

2012/06/29 22

