
Design and Implementation of

a Customizable Work Stealing Scheduler

Jun Nakashima*1,*2, Sho Nakatani*1, and Kenjiro Taura *1

*1 The University of Tokyo, *2 JSPS Research Fellowship for Young Scientists

Agenda

 Introduction

 Work Stealing Customization Framework

 Evaluation

 Related Work

 Conclusion and Future Work

June 10, 2013 ROSS2013 2

Background

 Productivity is one of the major challenges of
parallel programming frameworks

 Many frameworks and languages proposed

 Many of them provide task parallelism

 Chapel[Cray], X10[IBM], …

 Support many forms of parallelism on top of it

 They need efficient runtime systems

June 10, 2013 ROSS2013

Need efficient runtime systems

3

Work Stealing Scheduler

 A well-known strategy for task parallelism

 Idle workers steal a task from another (victim)

 Typically a victim is chosen randomly

June 10, 2013 ROSS2013

Ready Deque

Worker #0

Ready Deque Ready Deque

Worker #1 Worker #N

Task Task

Task

Thief Victim

・・・

4

Work Stealing Scheduler

 Randomness may cause significant slowdown

 e.g.: A machine with deeper memory hierarchy

 Considering data placement is essential

 Motivation:

 Work stealing scheduler must become clever

 Consider hardware and application knowledge

June 10, 2013 ROSS2013 5

Our Approach

 Ideal solution: A general strategy that can be
used without any effort

 It remains challenging

 Difficult to obtain application knowledge

 Our approach: A framework to customize work
stealing strategy

 Enable programmers to optimize the strategy

 Less ambitious, but more practical

June 10, 2013 ROSS2013 6

Agenda

 Introduction

 Work Stealing Customization Framework

 Evaluation

 Related Work

 Conclusion and Future Work

June 10, 2013 ROSS2013 7

Design Principle

 Purpose of customization

 Steal tasks being aware of hardware/application

 e.g. Shared-cache among workers

 Avoid task steals with negative side-effect

 e.g. Extra cache misses

 Focus on providing functions to customize a
strategy to select a victim of work stealing

June 10, 2013 ROSS2013 8

Implementation

June 10, 2013 ROSS2013

 Implemented by modifying MassiveThreads

 A lightweight thread library by our group

 written in C

 http://code.google.com/p/massivethreads/

9

Overview

June 10, 2013

Ready Deque

Task

Hint

Task

Ready Deque

Task

Hint

Task

Task

Ready Deque

Worker #0

User-defined work
stealing function

Steal a task from the selected victim

・・・

Worker #1 Worker #N

Implement customized
work stealing strategy

ROSS2013

Give scheduling hints to tasks

Collect scheduling hints

10

How to Customize

June 10, 2013 ROSS2013

 Two things to do:

 Modify application to give scheduling hints to tasks

 Implement user-defined work stealing function

11

Example Strategy: Depth-Aware

June 10, 2013 ROSS2013

 Try to steal coarse-grained tasks more carefully

 For divide-and-conquer applications

 Scheduling hint: recursion depth

 As an indicator of task granularity

 Steal tasks which have the smallest recursion
depth

12

Give Scheduling Hints

June 10, 2013 ROSS2013

 Scheduling hint:

 A piece of data associated with a task

 Create a task with initial value

void user_task (int depth,…){

 …

 int newdepth=depth+1;

 create_task_with_hint(user_task,&newdepth,sizeof(int),…);

 …

}

void user_task (…){

 …

 create_task(user_task,…);

 …

}

Create a task with
a scheduling hint

Application maintains recursion depth

13

User-defined Work Stealing Function

June 10, 2013 ROSS2013

 Invoked when a worker is idle

 Most operation is allowed

 Except some functions of runtime system

/* User-defined work stealing function definition */

void depth_aware_steal(int id)

{

 task_handle t_stolen;

 /* Here it tries to steal a task */

 return t_stolen;

}

/* At the beginning of an application */

set_steal_function(depth_aware_steal);

ID of idle worker

Should return the stolen task
Switch work stealing function

14

User-defined Work Stealing Function

June 10, 2013 ROSS2013

 Typical implementation:

1. Select multiple workers as candidates of a victim

2. Read scheduling hints from available tasks

3. Select one worker as a victim

4. Try to steal from the victim

5. Confirm the stolen task

15

Step 1. Select Candidates

June 10, 2013 ROSS2013

 Use a function get_random_workers

 return random non-duplicated worker IDs

 Can be written by hand for better selection

 e.g.: considering memory hierarchy

 …

 int num_of_cadidates = 2;

 int candidates[num_of_cadidates];

 get_random_workers(candidates,num_of_candidates);

 …

16

Step 2. Collect Scheduling Hints

June 10, 2013 ROSS2013

 Use readydeque_peek function:

 Get a copy of scheduling hint of a task to be stolen

 Collect hints from all the candidates

 …

 int depth[num_of_cadidates];

 for (i=0;i<num_of_cadidates;i++){

 size_t size=sizeof(int);

 readydeque_peek(candidates[i],&depth[i],&size);

 /* Set depth to -1 if failed to peek */

 if (size!=sizeof(int))depth[i]=-1;

 }

 …

17

Step 3. Select One Worker as a Victim

June 10, 2013 ROSS2013

 Select a victim based on user-defined strategy

 In depth-aware:

 Worker that has a task with the smallest depth

 …

 int target=0;

 for (i=1;i<num_of_cadidates;i++){

 if (depth[target]<depth[i])target=depth;

 }

 …

18

Step 4. Try to Steal a Task

June 10, 2013 ROSS2013

 readydeque_trysteal function: Try to steal from
selected victim

 Can specify confirm function (used in next step)

 …

 task_handle ret;

 ret = readydeque_trysteal(target,

 depth_aware_confirm, depth[target]);

 …

19

Step 5. Confirm the Stolen Task

June 10, 2013 ROSS2013

 Confirm function:

 Called when a steal has succeeded

 Cancel the steal if the stolen task is undesirable

int depth_aware_confirm(task_handle t,void *param)

{

 int expect_depth=(int)param;

 int *stolen_task_depth=get_hint_ptr(t);

 return (*stolen_task_depth)<=expect_depth;

}

 …

 task_handle ret;

 ret = readydeque_trysteal(target,

 depth_aware_confirm, depth[target]);

 …

20

Agenda

 Introduction

 Work Stealing Customization Framework

 Evaluation

 Related Work

 Conclusion and Future Work

June 10, 2013 ROSS2013 21

Evaluation

June 10, 2013

 Implemented two scheduling strategies

 Depth-aware

 Affinity-aware

 Evaluated on a machine with 32 cores

 Quad-Core Opteron 8354 (2.2 GHz) × 8 Sockets

 Caches

 L1D: 64 KB/Core, L2: 512 KB/Core, L3: 2 MB/Socket

 NUMA Policy :Interleave

ROSS2013 22

Depth-Aware Evaluation Result

June 10, 2013

 App: Matrix Multiply using divide-and-conquer

 Performance gets better if granularity gets larger

 Size: 768x768 SP

 Granularity of Computation

0

20

40

60

80

100

C
o
m

p
u

ta
ti

o
n

R
a
ti

o
(%

) <=64x64x96

64x96x96

96x96x96

96x96x192

96x192x192

ROSS2013

Ratio of larger granularity increases

Depth-Aware Strategy
23

Depth-Aware Evaluation Result

June 10, 2013

 Performance

0

20

40

60

80

100

120

140

160

Random DA2 DA4 DA8 DA16 DA24 DA31 Cutoff

P
e
rf

o
rm

a
n

c
e
 (

G
F
L
O

P
s
)

ROSS2013

18.2% speedup from
random work stealing

Upper-bound of
improvement

Depth-Aware Strategy

24

Affinity-Aware Strategy

June 10, 2013 ROSS2013

 Give a task an affinity as array of integers

 How the task desires to be stolen from each worker

 Try to execute a task with the largest affinity

 Variants:

 Best-effort: Steal even if the affinity is zero

 Strict: Ignore tasks with no affinity

25

Affinity-Aware Strategy

June 10, 2013 ROSS2013

 Benchmark: Repeats STREAM TRIAD

 Parallelized using divide-and-conquer (256 tasks)

 Array size: 8MB * 3 = 24MB

 768KB/core (fits L2 and L3 cache)

 Need to utilize previously cached data

 Give a task an affinity with a worker of last
iteration

 # of candidates=31

26

Affinity-Aware Evaluation Result

June 10, 2013

 Execution time per iteration

ROSS2013

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

Random Best-effort Strict SPMD

E
x
e
c
u

ti
o
n

 t
im

e
 p

e
r

it
e
ra

ti
o
n

 (
s
)

Others

Kernel Tasking overhead
became bottleneck

Due to the reduction of
cache misses

27

Agenda

 Introduction

 Work Stealing Customization Framework

 Evaluation

 Related Work

 Conclusion and Future Work

June 10, 2013 ROSS2013 28

Related Work

 CATS[Chen,2012]

 Online profiling and DAG partitioning

 Qthreads[Oliver,2012]

 Share one task queue among intra-socket cores

 Work-stealing with Configurable Scheduling
Strategies[Wimmer,2013]

 # of tasks to steal, execution order,…

June 10, 2013 ROSS2013 29

What’s new in Our Work?

June 10, 2013

 Our proposed framework is flexible

 Enable programmers to customize a victim
selection strategy directly

 Tradeoff:

 ○ Performance can be much improved

 × Additional effort for customization

ROSS2013 30

Conclusion

June 10, 2013 ROSS2013

 Proposed a framework to customize work
stealing strategy

 Focus on how to decide a victim of work stealing

 Example customization strategies worked as
expected

31

Future Work

June 10, 2013 ROSS2013

 Improve framework design

 Look for good tradeoff between performance and
programmers’ effort

 Further evaluation:

 Unbalanced application

 Adaptive Mesh Refinement

 On distributed memory environment

Thank you for listening!

32

Takeout

June 10, 2013 ROSS2013

 We propose a framework to customize work
stealing strategy

 Give scheduling hints to tasks

 User-defined work stealing function
1. Select candidates of a victim

2. Read scheduling hints

3. Select one worker

4. Try to steal

5. Confirm

 MassiveThreads:
 http://code.google.com/p/massivethreads/

 Contact me:
 nakashima@eidos.ic.i.u-tokyo.ac.jp

33

