
Reduction of Operating System Jitter
Caused by Page Reclaim

Yoshihiro Oyama1,3 Shun Ishiguro1 Jun Murakami1

Shin Sasaki1 Ryo Matsumiya1 Osamu Tatebe2,3

 1. The University of Electro-Communications

 2. University of Tsukuba

 3. Japan Science and Technology Agency

Background

• OS jitter: interference into applications by OS

– Services by OS kernel

• E.g., interrupt handling and tasklets

– Daemon processes developed to provide OS services

• E.g., memory management daemons

• Jitter degrades application performance

– It deprives applications from computing resources
such as CPU and memory

• Minimizing the impact of jitter is critical in HPC

Jitter Focused in This Study

• We focus on jitter observed when application
frequently executes disk I/O of large data

– Footprint of file data exceeds the physical memory size

– Kernel must discard page cache or swap out processes to
obtain free memory

– Overhead is imposed on memory allocation operations

• This jitter has not attracted much attention, but HPC
people should be aware of its potential impact

Overview of This Study

1. We clarify the impact of the jitter caused by
page reclaim

– Target OS is Linux

2. We propose a mechanism for minimizing the
impact

– It increases the amount of page cache released at
one time

– It reduces the number of page reclaim operations

memory

Page Cache

application application application

access

read

disk
disk blocks

Memory Pressure by Page Cache

application application application

memory

disk

Memory Pressure by Page Cache

application application application

memory

disk

Page reclaim frequently occurs when:
• Pages are consumed fast
• Only a small number of pages are released

at one time

Memory Pressure by Page Cache

application application application

memory

disk

Page reclaim frequently occurs when:
• Pages are consumed fast
• Only a small number of pages are released

at one time

Page Reclaim in Linux

• Memory pages are running short
-> it immediately reclaims memory (direct reclaim)
-> it awakens a kernel thread kswapd

• kswapd reclaims pages by flushing page cache or swapping
process memory

• Two values inside kswapd are particularly important
– Freemem threshold

• Kswapd is awakened if the amount of free memory falls below this
threshold

– Watermark
• Kswapd continues to reclaim pages until the amount of free pages

exceeds this value
Modifiable indirectly through /proc/sys/vm/min_free_kbytes

Unfortunately, it is the only parameter
effective in minimizing page reclaim jitter

Page Reclaim by kswapd

normal state

page reclaim started

page reclaim finished

freemem
threshold

reclaimed pages

memory objects

page cache

free
watermark

Proposed Mechanism (1)

• Introduces new kernel module and kernel thread

– Starts page reclaim before kswapd

– Reclaims larger # of pages at once

normal state

page reclaim started

page reclaim finished

kswapd
freemem
threshold

reclaimed pages

kswapd
watermark

our
freemem
threshold

our
watermark

System Structure

kernel thread kernel

memory disk

Read
Monitors disk-read requests

Monitors # of
free pages

Invokes page
reclaim function

/proc/min_free_pages /proc/reclaimed_pages

Specifies threshold
of free pages

Specifies # of pages
reclaimed at once

Proposed Mechanism (2)

• It starts when both conditions are satisfied:

– Cond. 1: # of free pages < our freemem threshold

– Cond. 2: our mechanism determines that memory
shortage is caused by frequent I/O

• Otherwise, our kernel thread does not start

– And eventually kswapd will be awakened

• We expect kswapd will do a good job in minimizing
page-outs of memory objects

Discussion

• Q: Why introducing a kernel thread, instead of
customizing kswapd?
– Tuning kswapd parameters
– Modifying kswapd code

• A: Kswapd provides only a few parameters
– For example, kswapd users cannot directly specify the

amount of reclaimed memory
– But, we would like to investigate a vast space of

parameters and algorithms
– This inconvenience is also pointed out by another

Linux engineer: https://lwn.net/Articles/422291/

Experiments

• We measured the impact of jitter on
the performance of a scientific application

• Application: WRF (weather forecasting software)
– Simulated the weather around Japan in one hour (6 s

x 600 steps)

• Jitter generator
– Program that repeatedly reads a 100-GB file

sequentially
• Although it represents an extreme case, we believe that a

similar case can possibly occur in some configurations and
job sets

Condition

11 threads

InfiniBand QDR 4X, MPI

Node 1

...

11 threads

Node 2

...

11 threads

Node 3

...

11 threads

Node 4

...

Jitter generator Machine specification:
CPU: Intel Xeon E5645 2.4 GHz (6 cores) x 2
Memory: 48 GB
HDD: SAS 15,000 rpm

Experiment 1

• We compared WRF performance in 3 cases

– Original

– With jitter

– With jitter and proposed mechanism
(Jitter+Proposed)

0

2

4

6

8

10

12

14

16

18

20

50 100 150 200 250

C
o

m
p

u
ta

ti
o

n
 t
im

e
 o

f
e

a
c
h

 s
te

p
 (

s
)

Step

Original

Original

Result
(Not Using Proposed Mechanism)

0

2

4

6

8

10

12

14

16

18

20

50 100 150 200 250

C
o

m
p

u
ta

ti
o

n
 t
im

e
 o

f
e

a
c
h

 s
te

p
 (

s
)

Step

Original Jitter

Result
(Not Using Proposed Mechanism)

Accumulated Computation Time
(Not Using Proposed Mechanism)

0

1000

2000

3000

4000

5000

6000

7000

Original Jitter Jitter+Proposed
(4 GiB reclaim)

Jitter+Proposed
(48 GiB reclaim)

C
o

m
p

u
ta

ti
o

n
 t

im
e

(s
)

26.6% slowdown
because of jitter!

0

2

4

6

8

10

12

14

16

18

20

50 100 150 200 250

C
o

m
p

u
ta

ti
o

n
 t
im

e
 o

f
e

a
c
h

 s
te

p
 (

s
)

Step

Original Jitter

Result
(Using Proposed Mechanism)

0

2

4

6

8

10

12

14

16

18

20

50 100 150 200 250

C
o

m
p

u
ta

ti
o

n
 t
im

e
 o

f
e

a
c
h

 s
te

p
 (

s
)

Step

Original

Jitter

Jitter+Proposed (4 GiB reclaim)

Result
(Using Proposed Mechanism)

0

2

4

6

8

10

12

14

16

18

20

50 100 150 200 250

C
o

m
p

u
ta

ti
o

n
 t
im

e
 o

f
e

a
c
h

 s
te

p
 (

s
)

Step

Original

Jitter

Jitter+Proposed (4 GiB reclaim)

Jitter+Proposed (48 GiB reclaim)

Result
(Using Proposed Mechanism)

Accumulated Computation Time
(Using Proposed Mechanism)

0

1000

2000

3000

4000

5000

6000

7000

Original Jitter Jitter+Proposed
(4 GiB reclaim)

Jitter+Proposed
(48 GiB reclaim)

C
o

m
p

u
ta

ti
o

n
 t

im
e

(s
)

Only 1.9% slowdown 26.6%
slowdown

Experiment 2

• In addition, we must answer

– “How good performance can we get by changing
parameters of kswapd?”

– “Is kswapd parameter tuning sufficient to obtain
comparative performance?”

• We measured WRF performance in Jitter case
with various kswapd parameters

Effect of kswapd Parameter Changes

0

2

4

6

8

10

12

14

16

18

20

50 100 150 200 250

C
o

m
p

u
ta

ti
o

n
 t
im

e
 o

f
e

a
c
h

 s
te

p
 (

s
)

Step

Original

Jitter (kswapd threshold: 88 MiB)

Effect of kswapd Parameter Changes

0

2

4

6

8

10

12

14

16

18

20

50 100 150 200 250

C
o

m
p

u
ta

ti
o

n
 t
im

e
 o

f
e

a
c
h

 s
te

p
 (

s
)

Step

Original

Jitter (kswapd threshold: 88 MiB)

Jitter (kswapd threshold: 2 GiB)

Jitter (kswapd threshold: 4 GiB)

Effect of kswapd Parameter Changes

0

1000

2000

3000

4000

5000

6000

7000

Original Jitter Jitter+Proposed
(4 GiB reclaim)

Jitter+Proposed
(48 GiB reclaim)

Jitter
(2 GiB threshold)

Jitter
(4 GiB threshold)

C
o

m
p

u
ta

ti
o

n
 t

im
e

(s
)

+12.8% +14.4%

Related Work

• “Core separation” approaches
– [De et al. IPDPS 2009], [Oral et al. 2010], [Rosenthal et al.

2013], [Seelam et al. IPDPS 2011]
– Executes the kernel and daemons on dedicated CPU cores
– Executes applications on remaining CPU cores
– Prevents the kernel and daemons from depriving

applications of CPU resources

It is unclear how many CPU cores are sufficient for hosting
kswapd threads and other system tasks
– Their approach should be combined with another

approach for reducing the impact of jitter

Summary and Future Work

• Summary
– We proposed a mechanism for reducing the impact of

jitter caused by page reclaim
– Jitter caused by an I/O-intensive process increased the

execution time of WRF by 26.6%
– The mechanism lowered the increase to 1.9%

• Future Work
– Understanding jitter caused by reading many small files or

by writing to a file
– Improving the proposed mechanism in order to monitor

accesses to files on remote I/O nodes
– Analyzing the experimental results in more detail

