ANGEL: A Hierarchical Approach to Online Auto-Tuning

Ray S. Chen
Jeffrey K. Hollingsworth
Motivation

• HPC systems will require online auto-tuning
 – Managing billion-way parallelism is non-trivial
• Cannot myopically focus on wall-time
 – 20MW power goal represents additional hurdle
• Need an auto-tuner that is:
 – Coordinated (Managed by the runtime OS)
 – Online (Optimization occurs without training runs)
 – Multi-objective (Handle power as well as wall-time)
Dealing with Multiple Objectives

- Multi-objective problems have a set of solutions
 - Each solution in set is equivalent
- Optimal solution is subjective
 - Tuner cannot choose for the user
- Online tuning even harder
 - Cannot pause for user input
 - Must limit overhead of testing
 - Use as few evaluations as possible
ANGEL Inputs

- Two values per objective collected from user apriori
 - Priority Rank
 - Orders each objective from highest to lowest
 - Each rank must be unique
 - Leeway Percentage
 - Amount ANGEL may stray from this objective’s best
 - Used to find improvements in other objectives
ANGEL Algorithm

• Begin with highest priority objective
 – Use single-objective algorithm for this objective alone
 – Record all value ranges (min, max) during sub-search
 – Repeat with next highest objective until all are searched

• Penalize sub-searches to maintain leeway preference
 – Applied when higher priority objective exceeds leeway
 – Allows upper level sub-searches to guide lower levels

• Result of final sub-search is the overall solution
ANGEL Penalty Function

• One-dimensional example with two objectives
Numerical Testsuite Experiments

• Tests from multi-objective optimization literature
 – Designed to be difficult, but not pathological

• Compared against ParEGO
 – Represents best evolutionary algorithm for our case
 – Strives to use very few function evaluations
 – Geared towards (relatively) low-dimensional objectives

• Compared against random
 – Must ensure our algorithm does something intelligent
Testsuite Results – Quality

• Quality is a measure of the converged solution.
 – Distance from the best solution discovered by hand.

• ANGEL wins on two-thirds of testsuite.

Converged Distance from Optimal (Normalized)
Testsuite Results – Efficiency

- Efficiency is a measure of search overhead.
 - Critically important to keep low for online auto-tuning.
- ANGEL wins on all but one test.

Distance from Optimal per Evaluation (Normalized)

- KNO1
- OKA1
- OKA2
- VLMOP2
- VLMOP3
- DTLZ1a
- DTLZ2a
- DTLZ4a
- DTLZ7a
LULESH Experiments

• Lawrence Livermore’s LULESH proxy application
 – Unstructured hex mesh problem

• Tuning two input variables:
 – OpenACC loop vector length
 – GPU clock frequency

• Two objectives:
 – Minimize running time
 – Minimize energy consumption
LULESH Objective Landscapes

Energy Search Space

Runtime Search Space
Changing the Threshold

- ANGEL behaves properly for changing leeways
 - Energy usage declines along with leeway
 - Shows proper behavior for real HPC data
Conclusion and Future Work

• ANGEL is a step towards runtime system auto-tuning
 – Uses an iterative and hierarchical approach
 – Controlled by simple user inputs provided apriori
 – Performs well on numerical testsuite
 – Shown to work correctly on real HPC data

• Future work
 – Power (rather than energy) studies
 – Alternate underlying single-objective algorithms
 – Explore avenues for parallelism