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Energy Management

* Almost all techniques have traded performance for energy
savings
— Minimize Energy (E) and/or limit power
 Effective for mobile devices — increase battery life
— Optimize for Energy-Delay (ED) or Energy-Delay? (ED?)
» Takes performance into account

» |dle Supercomputers are expensive.

— Depreciating capital expense of the Supercomputer hardware and
facility
— Opportunity cost of problems being delayed or not being solved
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* Almost all techniques have traded performance for energy
savings
— Minimize Energy (E) and/or limit power
 Effective for mobile devices — increase battery life
— Optimize for Energy-Delay (ED) or Energy-Delay? (ED?)
» Takes performance into account

» |dle Supercomputers are expensive.

— Depreciating capital expense of the Supercomputer hardware and
facility
— Opportunity cost of problems being delayed or not being solved

NOT IMPLEMENTED on HPC
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Exascale Limitations

e Supercomputers are using more power
— Increased parallelism = Increased processors = Increased power

 Power Limited — 20 MW
— Enough for 15,000 — 24,000 average houses
— Difficulty in supplying the power and cooling for the Data Center

— Operational expense (multiple millions of $ per year)
« Energy Cost > Supercomputer Cost
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Potential Exascale Direction

* QOverprovisioning Processors (or under provisioning for
power)

— More processors than can be supported at peak power and use
processor power limits to control overall system power demand

— Hardware power limits on each socket can be used to control overall
power usage

— Power is now resource that the OS/runtime must schedule

« Simple — divide evenly
» Advanced — uneven distribution based on utility function
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Application Power Limits

* Applications use different amounts of power

— Memory-heavy, ALU-heavy, Network-heavy or balanced
* Depends on the system architecture and implementation
— Staying under the power limit using different numbers of processors

* Application power varies between phases

* Application performance need not be linear with power.

— A memory-bound applications may see minor impact from reducing
ALU performance

— A compute-bound may see a major impact from the ALU but little if
the DIMMS are slowed
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Performance with Power Limits?

» Systems become slightly performance
heterogeneous between nodes
* Die-to-Die Manufacturing Variation

* Transistors use more/less power to switch
« Leakage current varies

» Cooling Variation
» Better cooled processor can run faster
* Run cooler => less leakage current
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Performance with Power Limits?

» Systems become slightly performance
heterogeneous between nodes
* Die-to-Die Manufacturing Variation

* Transistors use more/less power to switch
» Leakage current varies

» Cooling Variation
» Better cooled processor can run faster
* Run cooler => less leakage current

- EACH CORE RUNS DIFFERENT FREQUENCY
 How are HPC applications going to perform?
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Problems and Execution Environment

 ADCIRC — Storm surge modeling code
 WRF — Standard weather modeling code
CHROMA - LQCD - t_leapfrog test case

Dell bladecenter
— 16 M420 blades
— 2 Intel Xeon E5-2450 (SandyBridge) @2.1GHz
 Air flows over one socket to reach the second socket
— Infiniband interconnect
— Hyperthreading enabled but only 1 thread per core was used

rel l( I Autotuning and Runtime Adaption for Power 10
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ADCIRC Variability (16 node execution)

ADCIRC Time (sorted)

1600

70W Limit - 5% variance

1550

60W Limit - Average +2%
- variance unchanged

1500

50W Limit - Average +15%
- variance 2%
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ADCIRC Node Energy

ADCIRC Cap 70 Node Energy ADCIRC Cap 60 Node Energy ADCIRC Cap 50 Node Energy

89000
87000
85000
83000
81000
79000
77000

75000

73000

At 70W ~13% Energy Variation
cores different power for same length of time
Can see difference in cooling
N\ At 50W ~4% variance — energy usage more consistent
renCI cores using same power for same length of time

Autotuning and Runtime Adaption for Power
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WRF Node Energy (6 Node execution)

WRF 65 Cap Node Energy WRF 60 Cap Node Energy WRF 55 Cap Node Energy
95000

93000

91000 M ;m : i

89000 M m#m
.%g:.

87000 M

85000

83000
0 2 4 6 8 10 120 2 4 6 8 10 1D 2 4 6 8 10

Energy about the same at all power limits but more evenly
distributed with lower power limits

With power limits clear separation between hot and cold
sockets
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Core Based Energy Management

» All the cores now heterogeneous
— Effective clock rates differ
— Clock rates change over time

* Duty Cycle Modulation (Clock Skipping) allows core
specific clock frequency control
— Mechanism to locally control each cores clock rate

— Haswell extend DVFS to allow this level control
 Also allows control of Uncore (memory controller)

rel l( I Autotuning and Runtime Adaption for Power 14
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Simple Energy Management

* Threads that arrive at MPI collectives early can be
slowed
— Intercept MPI calls using the MPI profiling interface
* Pick clock rate for this core until next collective
* Clock rate based on % time spent waiting
— All decisions local — no communication overheads

— Save energy
— QOverall execution time unaffected

rel l( I Autotuning and Runtime Adaption for Power 15
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ADCIRC With Policy

ADCIRC 60 Total Energy ADCIRC 55 Total Energy ADCIRC 50 Total Energy
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At 50W Energy Management reduces energy ~8%
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Time in Seconds

ADCIRC With Policy

ADCIRC 60 Execution Time (sorted)

1600
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ADCIRC 55 execution Time (sorted)
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ADCIRC 50 execution Time (sorted)
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Autotuning and Runtime Adaption for Power
Management
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Time in Seconds

ADCIRC With Policy

ADCIRC 60 Execution Time (sorted)
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ADCIRC 55 execution Time (sorted)
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ADCIRC 50 execution Time (sorted)
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At 50W Energy Management REDUCES time ~5%
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LQCD (t_leapfrog) with Policy

LQCD 70 Energy

435000

LQCD 60 Energy
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Does not fit into inner caches
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LQCD 50 Energy
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Power Limit significant increase time and energy
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With minimum speed set at 50% energy savings (~2%)
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LQCD (t_leapfrog) with Policy

LQCD 70 Execution Time LQCD 60 Execution Time LQCD 50 Execution Time
216 250 560
215 248 558
556
214 246
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213 244
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212 242
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211 240
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Does not fit into inner caches
Power Limit significant increase time and energy

Model has little effect at 70 and 60W
Model increases time and energy 1-2 % at 50W
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WRF with Policy

* Near zero effect -- model never detected
imbalance big enough to justify changing the clock
frequency

— Duty Cycle Modulation comes in 16 steps (6.25%)

— Safety margin — we don’t slow a clock until a thread
arrives 12.5% early

— WRF well balance and no opportunities to reduce
the clock rate were detected
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Conclusion

« HPC Energy management may make sense for
Exascale systems.

— Can save Energy and more importantly Time

* Low overhead clock rate control can be used by
the runtime to reduce energy of memory-bound
or slightly imbalanced applications
— With the introduction of core specific DVFS and

Power-limited systems, previous work in Energy
Management techniques should be re-evaluated
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Questions?
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