i 5
o e

r
- -
\ L

wplication Runtime Variability and Power
\ . Optimization for Exascale Computers

—

N

Allan Porterfield

Rob Fowler

Sridutt Bhalachandra
Barry Rountree
Diptorup Dep

Rob Lewis

Brian Blanton

RENCI — UNC, Chapel Hill except Barry
Rountree who is at Lawrence Livermore
National Labow)ry

‘encl

RESEARCH . ENGAGEMENT . INNOVATION



Energy Management

* Almost all techniques have traded performance for energy
savings
— Minimize Energy (E) and/or limit power
 Effective for mobile devices — increase battery life
— Optimize for Energy-Delay (ED) or Energy-Delay? (ED?)
» Takes performance into account

» |dle Supercomputers are expensive.

— Depreciating capital expense of the Supercomputer hardware and
facility
— Opportunity cost of problems being delayed or not being solved

5
rencl



Energy Management

* Almost all techniques have traded performance for energy
savings
— Minimize Energy (E) and/or limit power
 Effective for mobile devices — increase battery life
— Optimize for Energy-Delay (ED) or Energy-Delay? (ED?)
» Takes performance into account

» |dle Supercomputers are expensive.

— Depreciating capital expense of the Supercomputer hardware and
facility
— Opportunity cost of problems being delayed or not being solved

NOT IMPLEMENTED on HPC
rencl



Exascale Limitations

e Supercomputers are using more power
— Increased parallelism = Increased processors = Increased power

 Power Limited — 20 MW
— Enough for 15,000 — 24,000 average houses
— Difficulty in supplying the power and cooling for the Data Center

— Operational expense (multiple millions of $ per year)
« Energy Cost > Supercomputer Cost

5
rencl



Potential Exascale Direction

* QOverprovisioning Processors (or under provisioning for
power)

— More processors than can be supported at peak power and use
processor power limits to control overall system power demand

— Hardware power limits on each socket can be used to control overall
power usage

— Power is now resource that the OS/runtime must schedule

« Simple — divide evenly
» Advanced — uneven distribution based on utility function

5
rencl



Application Power Limits

* Applications use different amounts of power

— Memory-heavy, ALU-heavy, Network-heavy or balanced
* Depends on the system architecture and implementation
— Staying under the power limit using different numbers of processors

* Application power varies between phases

* Application performance need not be linear with power.

— A memory-bound applications may see minor impact from reducing
ALU performance

— A compute-bound may see a major impact from the ALU but little if
the DIMMS are slowed

5
rencl



Performance with Power Limits?

» Systems become slightly performance
heterogeneous between nodes
* Die-to-Die Manufacturing Variation

* Transistors use more/less power to switch
« Leakage current varies

» Cooling Variation
» Better cooled processor can run faster
* Run cooler => less leakage current

5
rencl



Performance with Power Limits?

» Systems become slightly performance
heterogeneous between nodes
* Die-to-Die Manufacturing Variation

* Transistors use more/less power to switch
« Leakage current varies

» Cooling Variation
» Better cooled processor can run faster
* Run cooler => less leakage current

 EACH CORE RUNS DIFFERENT FREQUENCY

5
rencl



Performance with Power Limits?

» Systems become slightly performance
heterogeneous between nodes
* Die-to-Die Manufacturing Variation

* Transistors use more/less power to switch
» Leakage current varies

» Cooling Variation
» Better cooled processor can run faster
* Run cooler => less leakage current

- EACH CORE RUNS DIFFERENT FREQUENCY
 How are HPC applications going to perform?

5
rencl



Problems and Execution Environment

 ADCIRC — Storm surge modeling code
 WRF — Standard weather modeling code
CHROMA - LQCD - t_leapfrog test case

Dell bladecenter
— 16 M420 blades
— 2 Intel Xeon E5-2450 (SandyBridge) @2.1GHz
 Air flows over one socket to reach the second socket
— Infiniband interconnect
— Hyperthreading enabled but only 1 thread per core was used

rel l( I Autotuning and Runtime Adaption for Power 10

Mangement



ADCIRC Variability (16 node execution)

ADCIRC Time (sorted)

1600

70W Limit - 5% variance

1550

60W Limit - Average +2%
- variance unchanged

1500

50W Limit - Average +15%
- variance 2%

1450
1400

1300
0 2 4 6 8 10 12

—@—Cap 70 —@—Cap 65 Cap60 —@—Cap 55 Cap 50

rel '( I Autotuning and Runtime Adaption for Power 1

Mangement



ADCIRC Node Energy

ADCIRC Cap 70 Node Energy ADCIRC Cap 60 Node Energy ADCIRC Cap 50 Node Energy

89000
87000
85000
83000
81000
79000
77000

75000

73000

At 70W ~13% Energy Variation
cores different power for same length of time
Can see difference in cooling
N\ At 50W ~4% variance — energy usage more consistent
renCI cores using same power for same length of time

Autotuning and Runtime Adaption for Power
Mangement



WRF Node Energy (6 Node execution)

WRF 65 Cap Node Energy WRF 60 Cap Node Energy WRF 55 Cap Node Energy
95000

93000

91000 M ;m : i

89000 M m#m
.%g:.

87000 M

85000

83000
0 2 4 6 8 10 120 2 4 6 8 10 1D 2 4 6 8 10

Energy about the same at all power limits but more evenly
distributed with lower power limits

With power limits clear separation between hot and cold
sockets

rel l( I Autotuning and Runtime Adaption for Power 13

Mangement

12



Core Based Energy Management

» All the cores now heterogeneous
— Effective clock rates differ
— Clock rates change over time

* Duty Cycle Modulation (Clock Skipping) allows core
specific clock frequency control
— Mechanism to locally control each cores clock rate

— Haswell extend DVFS to allow this level control
 Also allows control of Uncore (memory controller)

rel l( I Autotuning and Runtime Adaption for Power 14

Mangement



Simple Energy Management

* Threads that arrive at MPI collectives early can be
slowed
— Intercept MPI calls using the MPI profiling interface
* Pick clock rate for this core until next collective
* Clock rate based on % time spent waiting
— All decisions local — no communication overheads

— Save energy
— QOverall execution time unaffected

rel l( I Autotuning and Runtime Adaption for Power 15

Mangement



ADCIRC With Policy

ADCIRC 60 Total Energy ADCIRC 55 Total Energy ADCIRC 50 Total Energy

2800000

2700000 .\"**‘-—‘—..ﬂ\‘__H

2600000 \"_‘\‘—\“_‘\‘

2500000 \H\H_‘\_H
.“*\—o—o—o\“. .—H'_‘_.\'\’—O\._.

2400000 *“N—‘—’_\,
"‘\’N\.‘._‘

Joules

2300000
2200000
0 2 4 6 8 10 012 2 4 6 8 10 10 2 4 6 8 10
Run # Run # Run #
——100% —@—75% —@—50% ——100% —@—75% —@—50 ——100% —@—75% —@—50%

At 50W Energy Management reduces energy ~8%

rel l( I Autotuning and Runtime Adaption for Power

Management

12



Time in Seconds

ADCIRC With Policy

ADCIRC 60 Execution Time (sorted)

1600

1550

1500

ADCIRC 55 execution Time (sorted)

1450
1350

1300
0 2 4 6 8
Run #
——100% —@—75% —@—50%

N
rencil

10

10

—0—100%

6
Run #

——75%

—0—50%

10

ADCIRC 50 execution Time (sorted)

W

1D 2 4 6 8 10
Run #

——100% —@—75% —@—50%

Autotuning and Runtime Adaption for Power
Management

12



Time in Seconds

ADCIRC With Policy

ADCIRC 60 Execution Time (sorted)

1600

1550

1500

ADCIRC 55 execution Time (sorted)

1450
1400 ’_‘\‘_‘_‘_’_‘
1350 .:m:‘\’-‘t:__:::

1300
0 2 4 6

8

Run #

—0—100% —@—75%

—0—50%

10

10

2

4

—0—100%

6
Run #

——75%

8

—0—50%

10

ADCIRC 50 execution Time (sorted)

%

1D 2 4 6 8 10
Run #

——100% —@—75% —@—50%

At 50W Energy Management REDUCES time ~5%

5
rencl

Autotuning and Runtime Adaption for Power
Management

12



LQCD (t_leapfrog) with Policy

LQCD 70 Energy

435000

LQCD 60 Energy

445000

430000 440000
425000 435000

430000
420000

425000
415000

420000

410000

405000

400000
1 2 3 4

=@=100% =@=75% ==@==50%

5
rencl

5

6

415000
410000

405000
7 8 9 10 1 2 3 4 5 6 7 8

=@=100% ==@=75% ==@==50%

Does not fit into inner caches

780000
775000
770000
765000
760000
755000
750000
745000
740000
735000
730000

LQCD 50 Energy

2 3

=@=100%

Power Limit significant increase time and energy

4 5 6 7 8

—=@=75% ==@=50%

With minimum speed set at 50% energy savings (~2%)

Autotuning and Runtime Adaption for Power

Mangement

9

10



LQCD (t_leapfrog) with Policy

LQCD 70 Execution Time LQCD 60 Execution Time LQCD 50 Execution Time
216 250 560
215 248 558
556
214 246
554
213 244
552
212 242
550
211 240
548
210 238 546
209 236 544
0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10
—0—100% —@—75% —@—50% —0—100% —@—75% —@—50% —0—100% —@—75% —@—50%

Does not fit into inner caches
Power Limit significant increase time and energy

Model has little effect at 70 and 60W
Model increases time and energy 1-2 % at 50W

rel l( I Autotuning and Runtime Adaption for Power

Mangement



WRF with Policy

* Near zero effect -- model never detected
imbalance big enough to justify changing the clock
frequency

— Duty Cycle Modulation comes in 16 steps (6.25%)

— Safety margin — we don’t slow a clock until a thread
arrives 12.5% early

— WRF well balance and no opportunities to reduce
the clock rate were detected

rel l( I Autotuning and Runtime Adaption for Power 21

Mangement



Conclusion

« HPC Energy management may make sense for
Exascale systems.

— Can save Energy and more importantly Time

* Low overhead clock rate control can be used by
the runtime to reduce energy of memory-bound
or slightly imbalanced applications
— With the introduction of core specific DVFS and

Power-limited systems, previous work in Energy
Management techniques should be re-evaluated

rel l( I Autotuning and Runtime Adaption for Power 22

Mangement



Questions?

rel |( I Autotuning and Runtime Adaption for Power

Mangement



