
Cpl6: The New Extensible,

High-Performance Parallel Coupler

for the Community Climate System

Model

Anthony P. Craig1, Robert L. Jacob2, Brian Kauffman1,
Tom Bettge3, Jay Larson2, Everest Ong2,

Chris Ding4, Yun He4

1Climate and Global Dynamics Division

National Center for Atmospheric Research, Boulder, CO, 80305
2Mathematics and Computer Science Division

Argonne National Laboratory, Argonne, IL, 60439
3Scientific Computing Division

National Center for Atmospheric Research, Boulder, CO, 80305
4Computational Research Division

Lawrence Berkeley National Laboratory, Berkeley, CA, 94720

To appear in
International Journal for High Performance Computing Applications

Reference this preprint as:
A. Craig, R. Jacob, B. Kauffman, T. Bettge, J. Larson, E. Ong, C. Ding,
Y. He, “Cpl6: The New Extensible, High-Performance Parallel Coupler for
the Community Climate System Model”, Preprint ANL/MCS-P1222-0205,
Mathematics and Computer Science Division, Argonne National Laboratory,
Feb 2005.

ABSTRACT Coupled climate models are large, multiphysics applications
designed to simulate the Earth’s climate and predict the response of the climate
to any changes in the forcing or boundary conditions. The Community Climate
System Model (CCSM) is a widely used state-of-the-art climate model that has
released several versions to the climate community over the past ten years. Like
many climate models, CCSM employs a coupler, a functional unit that coordinates
the exchange of data between parts of the climate system such as the atmosphere
and ocean. This paper describes the new coupler, cpl6, contained in the latest
version of CCSM, CCSM3. Cpl6 introduces distributed-memory parallelism to
the coupler, a class library for important coupler functions, and a standardized
interface for component models. Cpl6 is implemented entirely in Fortran90 and
uses the Model Coupling Toolkit as the base for most of its classes. Cpl6 gives
improved performance over previous versions and scales well on multiple platforms.

1

1. Introduction

Climate modeling is an example of a complex multiphysics application,
and it is one of the primary high-performance computing (HPC) challenges.
The Community Climate System Model (CCSM) is a state-of-the-art global
climate model consisting of four fundamental physical components1: an at-
mosphere model, a land surface model, an ocean model, and a sea-ice model.
Each typically contains both fluid-dynamics solvers and detailed parameter-
izations to compute the internal and external forcing terms that come from
such diverse phenomena as the passage of radiation through the atmosphere,
the release of latent heat by phase changes of water, and the effects of fric-
tion and unresolved turbulent scales. CCSM is a coupled model because data
calculated in one model is used as boundary conditions and forcing in an-
other. For example, wind calculated in the atmosphere model is passed to
the ocean, land, and sea-ice models to serve as boundary conditions in those
models. CCSM is used to understand the Earth’s global climate system, to
predict the effects of climate change, and to understand past climates.

Like many climate models, CCSM is not developed from scratch as a sin-
gle application but is instead a coupled application where each component
(atmosphere, ocean, land, and sea ice) is a highly complex application de-
veloped separately with its own coding style and datatypes. The uncoupled,
or standalone, versions have their own user bases and scientific application
areas and may be developed at multiple institutions.

To couple models developed separately into a single application, CCSM
has developed, over the past ten years, a framework that permits coupling
with minimum modification to component models. This framework takes
advantage of the fact that most component models need external surface
forcing data. For example, an atmosphere model needs surface temperature,
and an ocean model requires wind stress. In the CCSM framework, the
external forcing routines are replaced with routines that communicate with a
central coupler, an additional and separate component. The resulting CCSM
architecture is a hub-and-spoke model as shown in Figure 1.

An aspect of the CCSM architecture is its multiple executable runtime
system. Each component model in Figure 1 is a separate binary program
that executes concurrently on disjoint sets of hardware processors. Each
component is run on multiple processors using the Message Passing Inter-
face (MPI, specifically MPI-1), OpenMP, or a combination of the two paral-
lelization paradigms. (The multiple-executable architecture of CCSM means
that a given vendor’s implementation of mpirun must allow starting multi-

1A “component” in this paper is a submodel of a coupled system and does not refer to
a component programming model.

2

ple executables under a single MPI communicator context.) The multiple-
executable system also allows models to keep their own build systems and
eliminates the need to resolve any data space name conflicts.

The central hub coupler and separate executables provide an extremely
flexible architecture. This flexibility allows each submodel to be scaled indi-
vidually to decrease the total time to solution of the system. Taking advan-
tage of the physical properties of the climate system, communication with
the coupler is carefully organized so that the models execute concurrently,
thereby allowing for systematic load balancing. Individual models at the
end of each spoke can be substituted for others independently and with-
out requiring a recompile of the system as long as their inputs and outputs
are consistent. (CCSM is distributed with “data” and “dead” versions of
the atmosphere, land, sea-ice, and ocean models that can be substituted for
the active components to facilitate both scientific investigation and software
testing.) Furthermore, individual models continue to be usable as single ex-
ecutables in the subdisciplines that control their development, an important
requirement in the climate modeling community. Maintaining coupled and
“stand-alone” versions of the component models is straightforward because
the interaction with the coupler is confined to a handful of calls to send and
receive data and the overall structure of the component model, its main, is
unaltered.

The coupler’s primary role as the hub is to facilitate communication of
data between components, including interpolation of data from one grid to
another and the merging of data from multiple components while ensuring
global conservation of physical properties such as heat, momentum, and mass.
As the hub, the coupler isolates grids and coupling frequencies in the physical
component models from each other. This feature is necessary because each
model can be run at multiple horizontal and vertical resolutions. The CCSM
coupler computes some fluxes and derives some fields between components
that are more conveniently calculated in the coupler instead of in one of the
physical system models. The coupler coordinates the coupling frequency and
synchronizes the models, computes diagnostics, and writes output of data
computed in the coupler.

The first released version of the CCSM coupler, cpl3 (Bryan et al., 1996),
was included in the first public release of CCSM (Boville and Gent, 1998)
in June 1996. Cpl3 and the hub-and-spoke system had been used inter-
nally at the National Center for Atmospheric Research (NCAR) as early as
1994. The separate executable, hub-and-spoke approach of CCSM is one
of many possible ways to construct a coupler for a coupled climate model.
Other examples of couplers for coupled climate models include OASIS (Val-
cke et al., 2004), the Flexible Modeling System (FMS; www.gfdl.gov/fms),

3

GEMS (DAO, 1997), the Distributed Data Broker (Drummond et al., 2001),
and the coupler for the Parallel Climate Model (PCM) (Washington et al.,
2000; Bettge et al., 2001).

CCSM originally ran on vector-based supercomputers and other single-
system image platforms. Over the past several years, CCSM has migrated to
distributed shared-memory machines such as the IBM SP, the HP/Compaq
EVs, and Linux clusters, and all component models have been modified or re-
placed as needed with versions that use distributed-memory parallelism with
MPI. CCSM2 (Kiehl and Gent, 2004) still contained a coupler, cpl5, that had
only shared-memory parallelism using OpenMP. Although cpl5 was not a bar-
rier to performance at the time of CCSM2’s release, it was determined that
improving coupler performance in the current system could result in gains of
5 to 10 percent in the throughput of the model at current production reso-
lutions and configurations. Future development of CCSM envisions both in-
creasing resolution and adding more physical processes (Community Climate
System Model Science Plan (2004-2008) www.ccsm.ucar.edu/management/sciplan2004-
2008.pdf). With these plans and evolving hardware, cpl5 quickly could be-
come a significant bottleneck in CCSM because of its inability to scale to
more than one shared-memory node. A parallel coupler was necessary for
CCSM’s future development.

Key requirements identified for the new coupler included duplicating the
functionality and abilities of cpl5, including support for active, data, and
dead components while still imposing few or no requirements on the internal
datatypes or external packages of the standalone versions of the component
models. The new coupler was also required to address shortcomings in the
extensibility of cpl5. This effort included simplifying and standardizing the
process of adding new models and new fields to the coupled system and cre-
ating a uniform model-coupler interface. Although the CCSM framework
successfully allowed the inclusion of new, externally developed sea ice and
ocean models in CCSM2, the interface between all models and the coupler
was a cpl5 method in some cases and a direct MPI call in others. The new
coupler also needed to maintain or improve its performance relative to cpl5
and not negatively impact the throughput of the fully coupled system. Fur-
ther, the new coupler had to have enough support to ensure development as
CCSM continues to evolve and as it migrates to the latest high-performance
computing platforms. Other parallel couplers such as the Distributed Data
Broker (Drummond et al., 2001) and the couplers in the Parallel Climate
Model (Bettge et al., 2001) and the Fast Ocean Atmosphere Model (Jacob
et al., 2001) could not meet all the requirements. In addition, packages such
as Earth System Modeling Framework (ESMF; Hill et al. (2004) and the Pro-
gram for Integrated Earth System Modeling (PRISM; prism.enes.org) were

4

not yet mature enough for this project in its required time frame. Thus, a
new coupler, cpl6, was created by a team of researchers already involved with
the development of CCSM.

The new coupler in the latest version of CCSM, CCSM3 (Collins et al.,
2005), is called cpl6. This new coupler successfully introduces distributed-
memory parallelism to the CCSM coupler, standardizes the model-coupler
interface, and simplifies the processes of adding new fields to the coupled
system data flow or new models to the coupled system.

The remainder of this paper is divided as follows. In Section 2, we de-
scribe the architecture of cpl6. Section 3 describes some of the major algo-
rithms used in cpl6. Section 4 presents performance results of the coupler
on some CCSM3-supported platforms. We conclude in Section 5 with a brief
discussion of future work.

2. Cpl6 Design

The transition to distributed-memory parallelism in the CCSM coupler
could not be done with a simple modification to cpl5. The major reason
is that a data-parallel coupler introduces a decomposition of each model’s
grid in the coupler. In CCSM, the three-dimensional models exchange two-
dimensional fields of various quantities (such as temperature, wind, and hu-
midity) at shared horizontal surfaces. The parallel versions of these com-
ponent models are typically decomposed over one or both of the horizontal
dimensions. In cpl5, not only was the coupler running on only one MPI
task, but the communication to components was handled by one MPI mes-
sage to the components’ root processor only. This approach meant addi-
tional overhead in components to gather or scatter data sent to or received
from the coupler. One of the main considerations for cpl6 was to avoid
the communication bottleneck presented in cpl5 when communicating with
a model running on M MPI processes. As the hub of the system in CCSM3,
cpl6 now runs on multiple processes, thereby introducing a decomposition of
each model’s grid in the coupler. This situation leads to multiple instances
of the “MxN problem,” namely, the transfer of a distributed data object
from a module running on M processes to another running on N processes
(see http://www.cs.indiana.edu/feberta/mxn for a summary). Cpl5 had no
datatypes or methods to handle this capability. New coupler software was
needed to introduce distributed-memory parallelism to the hub of CCSM. In
this section, we describe the overall architecture of the new coupler and its
supporting software.

5

2.1. Architecture

Cpl6 is written entirely in Fortran90. Fortran90 provides enough object-
oriented features to build a class library. Since the physical models in CCSM3
are also written in Fortran90, cpl6 avoids language interoperability issues.
Cpl6 was developed to mimic the functionality of cpl5 and its role in the
CCSM coupled system while providing data parallel capabilities to the cou-
pler hub and extensibility to the coupled system.

A schematic of the CCSM3 architecture with cpl6 is shown in Figure 2.
At the bottom are system-level layers (IV) such as MPI and OpenMP. Layer
III contains two new libraries written in part to address the challenges of cre-
ating a distributed-memory coupler for CCSM. The Model Coupling Toolkit
(MCT) was written to provide a general solution to the MxN problem and
the other operations required in parallel coupled models and is described in
two companion papers (Larson et al., 2005; Jacob et al., 2005). MCT is
the foundation layer for most of the cpl6 classes as described below, and all
the models in CCSM ultimately use MCT to transfer data to and from the
coupler. An additional library in Layer III created in response to the needs
of cpl6 is MPH (Multi Program-component Handshaking). MPH provides a
general method for configuring models in MPI processor space. A runtime
component name registration file is used to specify the components and their
processor allocations. MPH provides methods for each model to obtain a
unique communicator and to locate another model’s MPI processes. MPH
contains other features and supports other coupled model configurations.
MPH is described more fully in He and Ding (2005).

This paper focuses primarily on the cpl6 design and implementation (lay-
ers I and II in Figure 2). Layer I contains the individual models of CCSM
and the coupler main program (the hub in Fig. 1). Layer II contains the
new classes of cpl6 described in more detail below. “CPL6 main” in Fig. 2
is a new hub program written with the datatypes and methods of Layer II.
Unlike the general datatypes of the cpl6 library (Layer II), the cpl6 main

encodes a particular set of scientific choices that make up CCSM3, includ-
ing the execution sequence, coupling frequency, supported grids, number of
components, and some scientific calculations. The cpl6 main is a complex
but specific application itself, and additional classes were created to aid in
its implementation. Additional classes used only by the cpl6 main are con-
sidered part of Layer I (“CPL6 main datatypes” in Fig. 2); some of these are
described in Section 3.

6

2.2. Cpl6 Software

Cpl6’s major data structures are Fortran90 derived datatypes. Most
datatypes consist of a combination of scalars and arrays of integers, char-
acters, reals, and other derived datatypes, including some from MCT. One
heavily used datatype from MCT is the AttributeVector.2 This datatype
serves as the primary distributed storage datatype for local real and inte-
ger data. Although MCT could have been used directly for model-coupler
communication, it would have required adding several MCT datatypes and
calls to each component model. Thus, cpl6 was designed to wrap many of
the MCT routines and datatypes into simpler routines and more compact
datatypes.

The cpl6 datatypes and methods that act on them are grouped into
Fortran90 modules. At the highest level, cpl6 has a handful of important
datatypes including domain, bundle, infobuffer, map, and contract. It also has
several features that simplify model coupling, including fields and interface

modules. Figure 3 shows the relationships between the most important data
objects in cpl6 and MCT. The first two levels in Fig. 3 (“CPL6 Model Inter-
face” and “CPL6 Internal”) are all contained within the cpl6 datatypes and
methods (layer II in Fig. 2).

In general, everything at the MCT/MPH layer (layer III of Fig. 2) and
below is treated like an external and frozen library in CCSM3, while every-
thing in the higher layers (layers I and II) is considered part of the CCSM3
source code and may be modified by users. (Like many other scientific appli-
cations, “using” a climate model implies editing source code in many cases.)
In practice, however, only a very limited amount of code in the cpl6 datatypes
and methods layer (layer II) needs to be modified even when building new
coupled systems.

In the discussion below, we consider three types of users of cpl6. The most
common user request is to modify the number and identity of fields passed
between the coupler and other models. A system integrator is interested
in replacing one of the model’s in CCSM with a new model. Finally, the
coupler writer needs to either substantially modify or create a new coupler
main program to make a major change such as adding a model, changing the
model integration order, or changing the number of grids supported. Cpl6
provides new datatypes and methods for each class of users.

2We shall use the following typographic conventions: references to class or Fortran90
module names are indicated with classname. File names, subroutine names, and other
parts of source code are indicated as subroutine. MCT datatypes use a MixedCase naming
scheme. Cpl6 datatypes are all lowercase.

7

2.2.1) Fields

The user who wants to change the fields exchanged with the coupler
needs only to edit the fields module to make the coupler aware of the change.
The coupled data flow between models and the coupler in CCSM is fixed
at compile time, and matching inputs to outputs is done by the scientists
and programmers constructing the coupled system (CCSM does not do data
“brokering”). The fields module contains a master list of the names of all
scalar and gridded data fields transferred between the coupler and component
models in the form of colon-delimited Fortran character strings. The coupler
and each component model share this data through Fortran90 use association
of this module. The number of tokens in each string determines the amount
of local storage needed to hold data involved in coupling. Localizing this
information in one module and requiring all component model subroutines
that communicate with the coupler to use it have improved the robustness,
flexibility, and extensibility of the coupled system significantly compared to
cpl5 and meet an important goal of cpl6. It is now relatively trivial to add
or remove coupling fields in the system.

2.2.2) Interface

A fundamental design goal of the cpl6 architecture was to abstract the
coupling layer away from the components and present a simple interface to
the components. System integrator whos want to replace a model on the
end of a spoke in CCSM (Fig. 1) need only to familiarize themselves with
the routines in the interface module. The interface module contains all the
routines that component models use to interact with the coupler. The inter-

face routines use the contract (Sec. 2.2.7), which is an argument in nearly all
the interface routines. The system integrator would need to add a use state-
ment for cpl interface mod in the routines where data is exchanged with
the coupler. (In CCSM3 components, these routines are usually collected in
a single module.) A use statement for the contract module is also required
but only so instances of the datatype can be declared; the user does not need
to know its contents or its methods.

The purpose of the interface module is to provide a simple, compact inter-
face for component models to talk to the coupler while making no constraints
on how the component models represent data internally. Four methods from
cpl interface mod.F90 do nearly all the work in allowing a component
model to interact with the coupler:

cpl interface init Initialize the communication infrastruc-
ture, e.g., MPI communicator groups.

8

cpl interface contractInit Initialize a communication contract. This
is where grid information is initially ex-
changed and communication methods are
established.

cpl interface contractSend Send data (bundles and infobuffers via the
contract) to another component.

cpl interface contractRecv Receive data (bundles and infobuffers via
the contract) from another component.

Along with reducing the needed routines to a handful, the interface mod-
ule also simplifies the argument list. Aside from the contract, which is a
Fortran90 derived datatype, the remaining arguments in cpl interface

methods are simple native Fortran (90 or 77) types such as real and integer
scalars and arrays. Use of these simple arrays is coordinated through inte-
ger indices defined in the fields module as discussed in Section 2.2.1. (The
next version of cpl6 will remove the hardcoded integer indicies and use a new
interface method to obtain the index values.) The interface also makes it
easy to change the underlying coupling strategy with limited impact on the
components.

By making no assumptions on the relation between coupler datatypes
and model datatypes, data between the model’s internal data structures and
the arguments to cpl interface * can be moved with a copy in the coupler
interface. Since the models in CCSM occupy different processors and different
memory spaces, the data buffers passed to the interface send and receive
functions can be safely used as soon as the subroutines return.

The fields and interface datatypes are also used by the coupler itself. The
remaining datatypes and methods of cpl6 are either used internally by the
interface routines or used directly only by the coupler writer. They are not
intended for average users of CCSM.

2.2.3) Domain

One of the fundamental datatypes in cpl6 is the domain. The domain

contains information about the physical grid on which a quantity, such as
temperature, is defined. This includes a descriptive name for the grid, the
total number of points, and the number of points in each horizontal dimen-
sion. (Since all the fields exchanged by the coupler in CCSM3 are two di-
mensional, the domain currently supports only two-dimensional grids.) The
domain also contains information about how the global grid is decomposed
over processors. This information is stored within an MCT datatype called
the GlobalSegmentMap. The GlobalSegmentMap information is identical on

9

each coupler processor, so each processor knows the entire decomposition of
a grid in the coupler. The GlobalSegmentMap is a compact description of the
grid, requiring less memory than the total number of points.

The domain also includes numerical data about the grid, such as the
latitude and longitude values and grid-cell area, but only for points local
to the processor. The contents of this part of the domain datatype thus
varies from processor to processor, and its memory size decreases as the
number of processors increases. The values are stored in a locally sized MCT
AttributeVector datatype. In general, one domain is instantiated for each
numerical grid.

2.2.4) Bundle

Another fundamental data structure in the cpl6 infrastructure is the bun-

dle. The bundle is the basic cpl6 parallel data storage type and is used
throughout cpl6 to store and manipulate gridded data such as temperature.
The bundle datatype has a name attribute, contains an MCT AttributeVector

to store multiple fields, and has a pointer to a domain. All fields in a bun-

dle must share the same domain (i.e., grid and decomposition). The bundle

also has an integer element that serves as a counter for accumulating and
averaging values in bundles. Like the domain, the bundle is locally sized, and
its memory usage is proportional to the number of grid points on a proces-
sor and the total number of fields. The bundle module has several methods
associated with it, including initialization, zero, accumulate, average, add,
multiply, divide, sum, minmax, fill, print information, clean, test, dump, and
copy. These methods provide all the functionality required to perform im-
portant coupler functions such as merge, diagnose, accumulate, and average
fields in a bundle.

2.2.5) InfoBuffer

While the bundle is for gridded data, the infobuffer is used to hold scalar
integer and real data exchanged between component models and the coupler.
The integer data sometimes acts as logical control flags for communicating
actions such as writing a restart file, computing diagnostics, or halting exe-
cution. The infobuffer is also used to pass real scalars between the models for
CCSM scientific calculations. The infobuffer is the same size on all processors
but is very small, on the order of 1 KB.

2.2.6) Map

The map datatype in cpl6 contains all the information required to carry
out mapping (interpolation) in the coupler. Information contained in the
map datatype are initialized at runtime, partially from data received by the

10

coupler, and partially from data read from external files. The map datatype
contains two domain pointers for the source and destination grids, an MCT
SparseMatrix, a name, an intermediate grid, and an MCT Rearranger to handle
mapping communication. The cpl6 map module contains initialize, clean,
print information, and map methods. The mapping algorithm is discussed
further in Section 3.4. The map is also locally sized, containing just enough
space to hold the matrix weights for the points on a processor.

2.2.7) Contract

The contract is a key concept and an important datatype in cpl6. All com-
ponents in CCSM3 have access to the contract module. A contract contains
all of the information needed for a single model-coupler exchange of data.
Contracts are initialized at model startup and then are used to facilitate
all model-coupler communication. The main interaction between a model
and the coupler is conceptualized as initializing and then using contracts.
Section 3.3 describes the initialization step and communication method.

The contract contains the cpl6 datatypes infobuffer, bundle, and domain.
The contract also contains an MCT datatype called the Router, which has all
the information needed to do a parallel data transfer between a distributed-
memory parallel model running on one set of processors and the distributed
memory parallel coupler running on a different set of processors. Except for
the small infobuffer, the other major datatypes are locally sized, and their
memory usage is proportional to the number of local grid points times the
number of variables involved in coupling.

The contract is the only cpl6 Fortran90 derived datatype required to be in-
stantiated by the components, but all interactions with the contract datatype
are handled through a handful of calls to the interface routines (Section 2.2.2).
The contract allows flexibility and extensibility into the future for communi-
cation patterns other than the hub-and-spoke method; if the communication
needs to be changed, the contract can be redefined and the coupler-model
interface left unchanged.

Multiple contracts can exist between a model and the coupler in cpl6. In
CCSM3, the land surface model includes an embedded surface runoff model
that runs on a different grid. The land surface model has a contract that
communicates land model data to and from the coupler as well as a contract

for communicating runoff data on the runoff grid to the coupler at a different
coupling frequency.

3. Cpl6 Methods and Algorithms

This section provides more detail about some of the important methods
and algorithms used in the cpl6 hub application (layer I in Figure 2). In

11

CCSM, important physical computations are performed in the coupler main
and have an impact on the coupler’s integration time. This section describes
these calculations and the reason for including them in the coupler. This
section also describes the communication initialization performed between
the coupler and the other models (Sec. 3.3).

3.1. Flux Computation

Some computations of physical quantities are performed in the coupler.
By convention, fluxes between two models with different resolutions are cal-
culated on the grid with the higher resolution. Consider the flux of heat
between the ocean and atmosphere. If the atmosphere model were to calcu-
late the fluxes, it would need both to interpolate its data to the ocean grid
and to receive ocean data. In the CCSM3 instantiation of a coupled climate
model, the ocean communicates with the coupler only once per day, which
is not frequent enough for the scientific requirements of the heat flux calcu-
lation. Thus, the coupler calculates the fluxes of heat as well as momentum
and freshwater between the atmosphere and ocean, and cpl6 includes flux
calculation methods. The flux routines take bundles as arguments, and, in
CCSM3, ocean-resolution bundles are used. The flux routines are part of the
software provided for the coupler main writer and are located in layer I of
the CCSM architecture.

The flux computations in the coupler are carried out on a grid point basis
without any requirements for neighbor communication or global sums. This
operation is a trivially parallel computation but is one of the main sources
of floating-point operations in the coupler outside of the mapping routines.

3.2. Merging

Merging is the relatively straightforward task of combining different fields
into one field. For example, the surface under an atmosphere grid cell may be
part land, part ocean, and part sea ice. In this case, forming the net surface
heat flux into the atmosphere will require merging surface heat flux values
from three sources: atmosphere-land fluxes from the land model, atmosphere-
ice fluxes from the sea ice model, and atmosphere-ocean fluxes calculated in
the coupler. This merging process results in a combination of multiply and
add operations across gridpoints,

F = w1F1 + w2F2 + w3F3, (1)

where F is the merged field, w1, w2, and w3 are weights (typically w1 + w2 +
w3 = 1), and F1, F2, and F3 are source fields. Merging in cpl6 is also necessary
for fields sent to the ocean model where sea ice and atmosphere coupling fields

12

need to be combined. Once the fields are mapped onto the appropriate grid,
this operation requires no communication between processors. This operation
was parallelized in cpl5 via OpenMP directives, and it is parallelized in cpl6
by memory decomposition.

The merge subroutine is part of the cpl6 main only. Initially, this proce-
dure was coded by using calls to the multiply, add, and accumulate meth-
ods from the bundle module, resulting in sequential operations on individual
terms as represented by the following pseudocode:

M1(:) = 0.

M1(:) = M1(:) + w1(:)*F1(:)

M1(:) = M1(:) + w2(:)*F2(:)

M1(:) = M1(:) + w3(:)*F3(:)

M2(:) = 0.

M2(:) = M2(:) + w1(:)*F4(:)

M2(:) = M2(:) + w2(:)*F5(:)

M2(:) = M2(:) + w3(:)*F6(:)

Unfortunately, this pseudocode performs poorly because of poor cache usage.
Each statement is executed for all grid points before moving to the next
statement. As a result, cache reuse of w1, w2, and w3 is particularly poor.
In addition, M1 and M2 are loaded three times and saved four times for each
three-way merge. In the end, merges done this way were a bottleneck in the
cpl6 coupler and had to be hand-coded in the merge subroutine in cpl6 main

as follows:

do n=1,npoints

M1(n) = w1(n)*F1(n)+w2(n)*F2(n)+w3(n)*F3(n)

M2(n) = w1(n)*F4(n)+w2(n)*F5(n)+w3(n)*F6(n)

enddo

This coding style is much less general but results in performance gains of
factors of 2 to 4 over the more general method.

3.3. Communication

In previous versions of CCSM, root-to-root communication between the
coupler and distributed-memory components was used to exchange data.
This method required a gather to root before a send and a scatter from root
after a receive for the MPI parallel models. In this case, the communication
cost was at best constant with an increase in processor counts in distributed-
memory components. This method also did not scale well to larger processor
counts or higher resolutions.

13

Cpl6 uses MCT’s “MxN communication” scheme (Jacob et al., 2005) to
move data between the coupler and the component models in the routines
contract interface Send and Recv (Section 2.2.2). MCT derives a set of
point-to-point communications between the M and N processors that col-
lectively transfer all the targeted data from the memory space of the M
processors to the memory space of the N processors. One of the important
aspects of this scheme is to send as few messages as possible in order to
lower latency costs. Usually, ten to twenty fields are exchanged between the
coupler and a component at any point during integration, so the fields are
packed together to minimize the number of messages. Cpl6 uses the blocking
versions of the MCT routines because the location of the data transfer calls in
the models and the science-based data dependencies between models require
them to complete before computation can proceed. Nonblocking versions are
available and could be used to overlay communication with computation in
a future version of CCSM.

An important method in cpl6 is the initialization of communication sched-
ules for the MxN transfer performed by the call to cpl interface contractInit.
Because each component in CCSM may be running on different sets of pro-
cessors with each invocation, the schedules, stored in an MCT Router, need
to be computed for each CCSM run. However, since the grids and decompo-
sitions in CCSM are fixed for each job submission, the schedules need to be
computed only once at initialization.

A particular sequence of calls is required to initialize model-coupler com-
munication, as illustrated in Figure 4. In the current version of CCSM, a
unique contract exists for every communication pair, and there is a desig-
nated sender and receiver as well as a designated component that leads the
definition of the grid at initialization. In cpl6, contracts are set up for both
sending to other components and receiving from other components. In all
CCSM3 contracts, the physical model is the “lead” and informs the coupler
of its grid and decomposition during the initialization phase of runtime. The
coupler then uses this information to construct its own decomposition of that
model’s grid and build a communication schedule, the MCT Router, between
the coupler and the model. Contract initialization requires both one-way and
two-way communication between components and hence must be coordinated
carefully in the system to avoid deadlocks. Cpl6 (and MCT) dynamically al-
locate all datatypes needed for communication at runtime, which gives the
new coupler significant flexibility to handle new grids or processor counts.
The contract initialization, including the Router initialization, is a small frac-
tion of the overall initialization time in CCSM, which, in turn, is a small part
of the total runtime for a typical CCSM integration. Details on the Router

initialization time can be found in Jacob, Larson, and Ong (2005).

14

3.4. Mapping

Mapping (or interpolation) in CCSM is the operation of transforming
data from one grid to another. In CCSM, interpolation is implemented as a
matrix-vector multiply where the input and output vectors, also referred to
as “source” and “destination” vectors, are the size of the two global grids and
the mapping weights constitute the sparse matrix. For mapping atmosphere
data to the ocean grid, the equation is

m ocean grid points
︷ ︸︸ ︷

(o1 o2 . . . om) =

n atmosphere grid points
︷ ︸︸ ︷

(a1 a2 . . . an)

w11 w12 . . . w1m

w21 w22 . . . w2m

...
...

. . .
...

wn1 wn2 . . . wnm

. (2)

The matrix A contains all of the atmosphere grid points in a 2D horizontal
plane unrolled into a single vector, while the matrix O contains all the points
in a 2D horizontal slice of the ocean grid. For a T42 atmosphere and “x1”
ocean grid, the matrix W would contain (64× 128) = 8192 rows and (320×
384) = 122800 columns. Fortunately, most of the elements of W are zero,
making this a sparse matrix-vector multiply. The map datatype holds only
the nonzero elements of W in an MCT SparseMatrix datatype. The mapping
method for bundles uses MCT methods to perform the mapping for all the
fields in a bundle at once. Mapping multiple fields in parallel is a significant
performance benefit.

This mapping algorithm supports all linear interpolation schemes because
W can contain any arbitrary values. In CCSM, both bilinear interpolation
and first-order conservative (Jones, 1999) mapping is done, and weights are
generated off-line by using the Spherical Coordinate Remapping and Inter-
polation Package (SCRIP; Jones (1998)).

Because cpl6 is a distributed-memory component, the decomposition across
processors of the source values, destination values, and sparse matrix weights
can have a large impact on performance. In general, some data rearrange-
ment on either the source or destination grid will always be needed to com-
plete the calculation. In CCSM, the mapping module supports two specific
mapping algorithms. The first is source mapping, where the mapping weights
associated with the source values are distributed in a way that allows the des-
tination values to be computed locally. The redistribution is based only on
the sparse matrix weights and decomposition of the destination grid. In the
second algorithm, known as destination mapping, the mapping weights are
distributed according to the source grid’s decomposition. Source grid data is
left on-processor, and the sparse matrix multiply results in partial sums of
the final destination fields. The final results are obtained by rearranging the

15

partial sums into the destination grid’s decomposition and summing. This
approach minimizes communication of the source fields but can lead to slight
differences in answers based on the number of coupler processors. A runtime
option is available in cpl6 to produce bit-reproducing answers by specifying
that all mappings be done with the source mapping algorithm.

The mapping algorithm choice in CCSM depends mostly on the relative
sizes of the grids and the amount of data transfer required. Experience with
the Parallel Climate Model (PCM) (Washington et al., 2000; Bettge et al.,
2001), where these algorithms were first implemented, showed a performance
advantage in leaving the source data on-processor if the source grid is larger
than the destination grid, as is the case in ocean to atmosphere mapping
in typical CCSM resolutions. Hence, in CCSM, if the source grid has fewer
gridpoints, the source algorithm is used, whereas if the destination grid has
fewer gridpoints, the destination algorithm is used. The penalty associated
with choosing the wrong algorithm in CCSM is about a factor of 3 in map
timings for typical CCSM resolutions and decompositions. One can envision
other algorithms that perfectly load balance the sparse matrix multiply or
that minimize data transfer, but these have not yet been implemented in
CCSM. MCT provides this flexibility in a datatype similar to map called the
SparseMatrixPlus (Larson et al., 2005).

All aspects of mapping, including weights distribution, algorithm, and
communication requirements, are set at initialization in CCSM and stored
in the map datatype. The MCT datatypes and methods used to support
these operations are described in more detail in the companion papers (Jacob
et al., 2005; Larson et al., 2005). Optional arguments are provided in the map

methods to facilitate area fraction normalization. This approach is used for
ocean to atmosphere conservative mapping to increase the mapping accuracy
for fields where area fractions are constantly changing, as in the case of
evolving sea ice.

4. Results

We investigated the scaling performance of important cpl6 routines in re-
alistic configurations of the CCSM3 system and on platforms where CCSM3
was already ported. The first platform was an IBM p690 called “Bluesky.”
Bluesky is located at NCAR and is the main development platform for
CCSM. Bluesky consists of 1600 1.3 GHz Power4 processors with 2 GB of
memory per processor. Processors on Bluesky are grouped into 8-way and
32-way shared-memory nodes, but 8-way is the default choice for CCSM3 and
is used in most of the timings below. The interconnect fabric for Bluesky
is the IBM “Colony” switch with one communication channel per node (i.e.,
single rail). The second platform was an HP Alpha Cluster called “Lemieux,”

16

located at the Pittsburgh Supercomputing Center. Lemieux comprises 750
HP/Compaq Alphaserver ES45 nodes. Each computation node contains four
1 GHz processors with 4 GB of shared memory. The nodes are connected
with a Quadrics network. The third platform was a Linux cluster called
“Jazz,” located at Argonne National Laboratory. Jazz contains 350 nodes,
each with a single 2.4 GHz Pentium Xeon processor and either 2 GB or 1 GB
of RAM. The processors are connected via Myrinet 2000. Vendor Fortran
compilers were used on all platforms except Jazz which used Portland Group
Fortran.

For all the timings below, a “dead-model” configuration of CCSM was
used. In this configuration, there are still five separate executables, but the
active physical components (atmosphere, ocean, sea-ice, and land) are re-
placed with “dead” versions that contain no numerics. They do not use
received data and send artificial data but still run on multiple processors
with decompositions and grids consistent with the active models. Since we
are interested in timing only the performance of the coupler and the com-
munication from components, this is an adequate test configuration. The
coupler is the same in all configurations of CCSM. The freely available ver-
sion of CCSM3 source was used in all cases, and any code modifications for
timing are noted. The CCSM3 build and runtime scripts were also used.
The integration length in all cases was 10 simulated days. The coupler has
a one-hour timestep, so all results are the aggregate time for 240 calls to the
various cpl6 routines. In all tests, we used the default resolutions for the
various components. For the atmosphere and land models, the horizontal
grid involved in coupling is the “T42” grid and contains 128 longitude and
64 latitude points (8,192 total) covering the globe. For the ocean and sea-ice
models, the “x1” (“by one”) grid contains 384 latitude and 320 longitude
points (122,880 total).

In all figures, cpl6 subroutine scaling is shown from 1 to 32 processors.
Thirty-two processors is well above the default value for the coupler on the
platforms and resolutions tested. The default number of processors for the
coupler is 2 on Jazz and 8 on Bluesky and Lemieux. Default values are chosen
in consideration of the load balance of the full CCSM system. The number
of nodes allocated to the coupler varies for each machine. On Jazz, there
are always one node and one communication channel for each processor. On
Lemieux and Bluesky, the number of nodes can be obtained by dividing the
number of coupler processors by the number of processors per node for each
machine, 4 and 8, respectively.

The purpose of this section is to compare the relative scaling perfor-
mance of cpl6 implementations of time-critical sections on possible produc-
tion platforms for CCSM3 and demonstrate that adding distributed-memory

17

parallelism to the coupler can reduce the time to solution in the routines con-
sidered. However, we do attempt to explain any intermachine performance
differences, where encountered.

Direct comparisons between cpl5 and cpl6 are limited. The reason is
partly that the version of CCSM with cpl5 does not have the dead model
capability and is not ported to as many platforms. Performance of cpl5
compared to cpl6 is noted where known and direct comparisons were obtained
from a beta version of cpl6 measured against cpl5 on a fourth platform,
called Blackforest. Blackforest is an IBM Power3, also located at NCAR, and
consists of 1172 375 MHz Power3 processors. The processors are grouped into
4-way nodes each with 2 GB of memory, and the interconnect fabric is the
TMBX switch with two communication channels per node (i.e., dual rail).

4.1. Flux Calculation

The atmosphere-ocean flux calculation in the CCSM coupler is a compute-
only section consisting of floating-point operations and intrinsic calls to func-
tions such as log and exp. The calculation is computed on the ocean grid.
In cpl5, the flux calculation was parallelized by using OpenMP directives. In
cpl6, the flux computation is done on multiple processors by using a decom-
position that results in an equal number of grid points on each processor.
However, the calculation is not carried out over land points, which typically
leads to some load imbalance.

Performance of the flux computation routine, flux atmOcn, in the coupler
is shown in Figure 5 for the three platforms, with processor counts ranging
from 1 to 32. These timings were extracted from a full dead-model run of
CCSM, not just a test of this kernel. An MPI barrier call was placed before
the subroutine call to eliminate load imbalance and to time only the cost
of the call on each processor. Timing values were collected from all coupler
processes; the maximum is plotted in Figure 5. Decompositions of the ocean
grid on each machine are identical for each processor count.

The routine generally scales well to 32 processors. It is unclear at this
point what is causing the relatively poor scaling of the flux calculation on the
IBM between 2 and 8 processors, whether it is related to memory or cache
performance, performance of intrinsics, or performance related to floating-
point operations.

In general, the performance of the flux calculation in cpl6 is greater than
or equal to that in cpl5 when the number of MPI processes in cpl6 is equal
to the number of OpenMP threads in cpl5. However, the memory decompo-
sition capability of cpl6 means that the total time can be greatly reduced on
platforms with small numbers of processors per node. The cpl5 time for this
calculation would be limited at best to the 1-processor cpl6 timing on Jazz,

18

the 4-processor cpl6 timing on Lemieux, and the 8-processor cpl6 timing on
Bluesky.

4.2. Merging

The performance of the two-way ocean merge routine merge ocn in cpl6 is
shown in Figure 6 using the maximum time over all processors. The two-way
merge of atmosphere and sea-ice data is also a compute-only section of the
coupler, consisting of memory access and two mult/add operations per merge
field. In this case, about 15 distinct two-dimensional fields are merged. Like
the flux calculation, the merge is performed on the ocean grid, and an MPI
barrier call is added before the merge subroutine call to reduce the effect of
load imbalance and to time only the cost of the subroutines.

As discussed in Section 3.2, the merge operation was hand-tuned for per-
formance. Cache reuse, masking, and the use of scalar registers result in a
performance gain over the bundle methods of about a factor of 2 to 4 for
the IBM p690 system compared to use of more generic bundle methods. The
bundle methods are more desirable because they hide overhead and complex-
ity associated with the manipulation of cpl6 datatypes, and they make the
code more readable. However, the performance degradation for this opera-
tion is unacceptable for the overall time to solution of the coupled model.
This is an interesting example of a simple set of operations that are difficult
to generalize by using simple datatypes and methods while still retaining
high performance. The coding and memory access patterns still have a large
impact on performance for many machines. This experience shows that a
common infrastructure approach to simplifying a complex application code
like the coupler can have hidden costs and penalties.

As shown in Figure 6, scaling of the Linux cluster to 32 processors is
near-linear. Scaling of the routine on the HP is excellent while scaling on
the IBM is unexpectedly poor from 1 to 8 processors. This poor scaling
is likely related to saturation of memory bandwidth on the node. Below 8
processors, the node has idle processors and performs well. At 8 processors,
all processors on the node are in use, and the memory subsystem is unable
to scale. At 16 and 32 processors, multiple nodes are in use, the memory
footprint of the calculation for each node decreases, and there seems to be
some superscaling between 16 and 32 processors on the IBM, probably related
to cache efficiencies.

The performance of the merge operation in cpl6 is improved by about a
factor of 2 compared to cpl5, most likely because the OpenMP overhead is re-
moved and the cache usage is better. For this computation, the performance
is determined largely by the performance of the memory subsystem, includ-
ing cache. Again, parallelism in cpl6 can reduce the cost of this calculation

19

beyond what was possible in the shared-memory-only cpl5.

4.3. Communication

Communication scaling performance between the CCSM3 coupler, cpl6,
and the CCSM3 ice model is shown in Figure 7. The minimum time over all
processors for the coupler to complete the receive of data from the sea-ice
model is shown. The timers are placed around the underlying MCT recv call
inside the cpl6 cpl interface contractRecv routine. The MCT recv call on
a processor includes several MPI calls, one for each ice processor that must
send data to a given coupler processor. A total of 22 two-dimensional fields
on the ocean/sea-ice grid are communicated. This communication is chosen
for study because it is the most expensive in the CCSM3 system as a result
of the relatively large number of grid points and fields and the relatively high
frequency of communication, once each coupler time step. Another challenge
associated with this communication is that the decompositions of the ice
grid in the coupler and in the ice model are nearly orthogonal, so the total
number of messages passed between the coupler and ice model components is
typically the maximum number possible (i.e., the product of the number of ice
and coupler processors). As indicated in Section 3.3, the contracts, including
Routers, are set up during initialization of a given CCSM3 integration. During
runtime, communication occurs with little overhead except for the packing
of data from multiple fields (temperature, wind, etc.) into a single message.

In Figure 7, several different configurations are shown. Processor counts
for the coupler vary between 1 and 32. The ice model is allocated 16 pro-
cessors in all cases. In all cases except as noted below, the coupler and ice
model are running on different nodes of the hardware, so timings are always
associated with “off-node” communication cost.

Communication scales poorly on the IBM p690 from 1 to 8 processors.
This is not caused by the software but instead by the ratio of processors
to communication channels on the IBM. The coupler is on one 8-way node
and is using all the off-node bandwidth available to the node regardless of
decomposition or processor use. Above 8 processors, communication scaling
improves dramatically. Scaling is nearly linear from 16 to 32 processors
because the number of communication channels doubles (from 2 to 4) as the
number of processors doubles above 8 processors in this case. As processors
are added to the coupler, the size of the messages decrease, while the total
number of messages passed to the coupler increases.

In order to gain further insight into the communication costs on the IBM
p690 and their effect on cpl6 communication routines, the ice-coupler com-
munication was also timed by using the 32-way nodes of Bluesky. For the
coupler on 1 to 16 processors, the ice model and coupler are located on the

20

same node. Communication in this case is via shared-memory operations
in the IBM MPI library and results in the best performance and scaling of
all platforms tested. Allocating 32 processors for the coupler, with the ice
model still fixed at 16, requires a second 32-way node and forces communi-
cation off-node again. The communication performance for this case is an
order of magnitude slower than the 16-processor, one-node coupler-ice model
configuration and is only as fast as 4 and 8 coupler processor timings on
other platforms. This degradation in communication performance is caused
by both the doubling of the total number of messages and the communication
now occurring entirely between nodes, compared to on-node communication
of the 16-ice, 16-coupler case.

Figure 7 shows a direct comparison of communication cost of cpl6 vs.
cpl5 on Blackforest. Although cpl5 used 4 OpenMP threads on a Blackforest
node, the MPI communication was single-threaded. Figure 7 shows that cpl6
is about 20% faster then cpl5 on one processor and that the communication
cost can be reduced by adding processors to the coupler.

The communication performance of IBM p690 “on-node” is a factor of 5 to
10 times better than the comparable IBM p690 “off-node” performance. This
is a unique case and shows just how much communication penalty is incurred
on the IBM for going “off-node.” The CCSM makes an effort to place the
coupler and ice model on the same nodes on the IBM whenever possible
to take advantage of the on-node communication performance. Comparison
of the IBM Power3 and p690 timings in Figure 7 show that there is little
difference in the communication performance of these two machines for this
case. The Power3 is, in fact, faster than the p690 at 8 processors because
communication is through one channel on the 8-way p690 but two channels
on the 4-way Power3 nodes.

Communication performance on the HP and 8-way IBM p690 is roughly
comparable, but scaling is poor compared to the compute-only sections of
the coupler discussed above. This poor scaling is a result of the balance
between processors and communication channels. On Jazz, which maintains
one communication channel per processor at all coupler processor counts, the
scaling is very good.

4.4. Mapping

Figures 8, 9, and 10 show mapping performance for the cpl6 routine
cpl map bun for three different cases. The first case (Fig. 8) is bilinear map-
ping of 9 fields from a T42 atmosphere grid to a “x1” ocean grid. The second
case (Fig. 9) is a conservative mapping of 10 fields from a T42 atmosphere
grid to a “x1” ocean grid. The third case (Fig. 10) is a conservative map-
ping of 13 fields from a “x1” ocean grid to a T42 atmosphere grid. The

21

atmosphere-to-ocean mappings use the source mapping algorithm, which ex-
ecutes a redistribution communication of the source fields prior to a sparse
matrix multiply (Section 3.4). The ocean to atmosphere mapping uses the
destination mapping algorithm and executes a sparse matrix multiply fol-
lowed by a redistribution of the destination fields and a local sum. The
ocean-to-atmosphere mapping requires a normalization step, which means
there is an additional premapping multiply of all ocean fields by the local
area fraction followed by a postmapping divide of all atmosphere fields by
the local area fraction.

As discussed in Section 3.4, the cpl6 mapping algorithm utilizes the in-
terpolation capability in MCT, leveraging AttributeVectors in bundles, field
indexing, and cache reuse. Communication in the redistribution is also han-
dled by MCT. Other computations necessary in CCSM are performed with
cpl6 bundle methods.

In spite of the differences in the three cases of Figures 8, 9, and 10, many
common conclusions can be made. Mapping scales extremely well on the
Linux cluster across all processor counts. The map routine scaling on the
HP and IBM systems is good except between 4 and 8 processors on the IBM.

All of the mapping scaling curves resemble the flux results in Figure 5
more than the communication results in Figure 7. These results suggest that
mapping cost is dominated by floating-point operations instead of communi-
cation. We made a closer examination of the components of the cpl map bun

call for the 2 and 16-processor case on Jazz. At 2 processors, the communi-
cation costs associated with redistribution of points represent only 2% to 4%
of the total cost for all cases. At 16 processors, the redistribution cost is still
only 8% for the bilinear case and around 20% for the conservative mappings.
The reason for this difference is that the bilinear mapping has over twice as
many nonzero matrix elements as does the first-order conservative mapping
and so has more floating point work. This is also the reason that, at all
processor counts, the bilinear mapping in Figure 8 is about 50% slower than
the conservative mappings.

Comparing Figures 9 and 10, one sees that the conservative ocean-to-
atmosphere mapping is about 2 to 5 times slower than the conservative
atmosphere-to-ocean mapping. Part of this can be explained by the number
of fields mapped in the timings (10 vs 13). However, the most important
difference in these two calculations is the extra normalization steps required
for ocean-to-atmosphere mapping. This normalization improves the accuracy
of the mapping but results in a significant cost increase in the conservative
ocean-to-atmosphere mapping. Closer examination of mapping performance
on Jazz shows that the normalization takes almost as much time as does the
sparse-matrix multiply.

22

5. Conclusions and Future Directions

Cpl6 has been used in the CCSM production system since March 2003.
CCSM3 with cpl6 has successfully completed over 10,000 years of produc-
tion climate simulations. Development of this new coupler was a highly
successful multiyear collaboration between NCAR and Department of En-
ergy laboratories. The portability, performance, and extensibility of cpl6 are
much improved over cpl5. The cpl6 coupler was released to the community
in the June 2004 release of CCSM3. CCSM3 is available for download at
www.ccsm.ucar.edu.

Algorithms and performance scaling plots were presented for several im-
portant operations in cpl6, including the flux computation, merging, com-
munication, and mapping. In general, memory and floating-point operations
are about two times slower on the Linux cluster compared to either the IBM
p690 or HP systems. Scaling of routines is generally good on all platforms,
although the scaling on the Linux cluster far outperforms any other systems
for these timing tests. The timed routines in cpl6 perform comparably on
both the IBM p690 and HP systems for nearly all tests. The IBM p690 com-
munication timing is particularly good if communication remains exclusively
“on-node” but is quite poor if communication is “off-node” Some routines
also perform relatively poorly on the IBM p690 when the memory subsystem
is pushed.

Overall, cpl6 timings are improved compared to cpl5 for the same op-
erations on the same processor counts. In addition, cpl6 can be scaled to
give performance unreachable by the shared-memory-only cpl5. This can
help reduce the total time to solution of the full system. Unfortunately, an
evaluation of overall CCSM3 performance and cpl6’s role in it is beyond the
scope of this paper.

Cpl6 is more extensible than previous versions of the coupler and provides
standardized coupler-model interfaces. With the fields module, cpl6 provides
a single location for the coordinated addition of new fields to the coupled
model data flow. In contrast to CCSM2, all components in CCSM3 now use
the same model-coupler interface module. New models can replace current
components by adding calls to these interface routines.

By abstracting the communication method away from the components
using the contract datatype and simple interfaces, cpl6 is in effect attached
to the components. This means cpl6 functionality can be migrated to the
component processors if there is a performance benefit. In the extreme case,
all cpl6 functionality (mapping, merging, flux calculation, diagnostics, etc.)
could be migrated into the interface layer, and the coupler as a unique CCSM
component could disappear.

23

Cpl6 was designed for extension. One future avenue of exploration is al-
ternatives to the multiple executable-concurrent execution configuration and
an effort is under way to experiment with other options such as single exe-
cutable with mixed concurrent and sequential execution. The MPH library
used by cpl6 to assign MPI communicators to models already supports many
alternative execution modes. Cpl6 datatypes can be used to form new cou-
plers and coupled systems readily. However, component models may require
modification beyond what the current architecture requires. CCSM compo-
nents are expected to move to higher resolutions. Benchmarks are already
being carried out on higher-resolution grids using cpl6 and the dead versions
of the components.

A close collaboration exists between CCSM and the Earth System Mod-
eling Framework (ESMF) (Hill et al., 2004). Much of what was learned and
implemented in cpl6 is informing the ESMF design. The next CCSM coupler
may have a combination of cpl6, MCT, MPH, and ESMF. The CCSM project
is committed to continually improving the software engineering infrastruc-
ture for climate modeling, using the best tools available, with computational
performance a high priority.

Acknowledgments This work was supported in part by the Climate Change
Research Division subprogram of the Office of Biological & Environmental
Research, Office of Science, U.S. Department of Energy through the Climate
Change Prediction Program (CCPP), the Accelerated Climate Prediction
Initiative (ACPI-Avante Garde), and the Scientific Discovery through Ad-
vanced Computing (SciDAC) Program, under Contract W-31-109-ENG-38.
CCSM development is jointly funded by the Department of Energy and the
National Science Foundation. We thank members of the Computation Sci-
ence Section of the Scientific Computing Division at NCAR for their many
constructive suggestions during the development of the cpl6 coupler. We
thank John Michalakes for providing valuable comments on a early version
of this paper. We gratefully acknowledge use of “Jazz,” a 350-node comput-
ing cluster operated by the Mathematics and Computer Science Division at
Argonne National Laboratory as part of its Laboratory Computing Resource
Center. Additional computations were performed on the National Science
Foundation Terascale Computing System at the Pittsburgh Supercomputing
Center. The National Center for Atmospheric Research is managed by the
University Corporation for Atmospheric Research under the sponsorship of
the National Science Foundation.

references

Bettge, T., A. Craig, R. James, V. Wayland, and G. Strand, 2001: The
DOE Parallel Climate Model (PCM): The Computational Highway

24

and Backroads. In V. N. Alexandrov, J. J. Dongarra,, and C. J. K.
Tan (Eds.), Proc. International Conference on Computational Science
(ICCS) 2001, Volume 2073 of Lecture Notes in Computer Science,
Berlin, pp. 148–156. Springer-Verlag.

Boville, B. A., and P. R. Gent, 1998: The NCAR Climate System Model,
Version One. J. Climate, 11, 1115–1130.

Bryan, F. O., B. G. Kauffman, W. G. Large, and P. R. Gent, 1996: The
NCAR CSM Flux Coupler. NCAR Tech. Note 424, NCAR, Boulder,
CO.

Collins, W. D., M. Blackmon, C. Bitz, G. Bonan, C. Bretherton, J. A.
Carton, P. Chang, S. Doney, J. J. Hack, J. T. Kiehl, T. Henderson,
W. G. Large, D. McKenna, B. D. Santner, and R. D. Smith, 2005:
The Community Climate System Model: CCSM3. J. Climate,, to be
submitted.

DAO, 1997: The GEOS-3 Data Assimilation System. Office Note Series
on Global Modeling and Data Assimilation DAO Office Note 97-06,
NASA Goddard Space Flight Center.

Drummond, L. A., J. Demmel, C. R. Mechose, H. Robinson, K. Sklower,
and J. A. Spahr, 2001: A Data Broker for Distirbuted Computing
Environments. In V. N. Alexandrov, J. J. Dongarra,, and C. J. K. Tan
(Eds.), Proc. 2001 International Conference on Computational Science,
pp. 31–40. Springer-Verlag.

He, Y., and C. Ding, 2005: Coupling Multi-Component Models by MPH on
Distributed Memory Computer Architecture. Int. J. High Perf. Comp.
App.,, this issue.

Hill, C., C. DeLuca, V. Balaji, M. Suarez, A. da Silva, and the ESMF
Joint Specification Team, 2004: The Architecture of the Earth System
Modeling Framework. Comp. in Science and Engineering, 6, 12–28.

Jacob, R., J. Larson, and E. Ong, 2005: MxN Communication and Parallel
Interpolation in CCSM3 Using the Model Coupling Tookit. Int. J. High
Perf. Comp. App.,, this issue.

Jacob, R., C. Schafer, I. Foster, M. Tobis, and J. Anderson, 2001: Compu-
tational Design and Performance of the Fast Ocean Atmosphere Model.
In V. N. Alexandrov, J. J. Dongarra,, and C. J. K. Tan (Eds.), Proc.
2001 International Conference on Computational Science, pp. 175–184.
Springer-Verlag.

Jones, P. W., 1998: A User’s Guide for SCRIP: A Spherical Coordinate

25

Remapping and Interpolation Package. , Los Alamos National Labora-
tory, Los Alamos, NM.

Jones, P. W., 1999: First and Second-Order Conservative Remapping
Schemes for Grids in Spherical Coordinates. Mon. Wea. Rev., 127,
2204–2210.

Kiehl, J., and P. R. Gent, 2004: The Community Climate System Model,
Version Two. J. Climate, 17, 3666–3682.

Larson, J., R. Jacob, and E. Ong, 2005: The Model Coupling Toolkit:
A New Fortran90 Toolkit for Building Multi-Physics Parallel Coupled
Models. Int. J. High Perf. Comp. App.,, this issue.

Valcke, S., A. Caubel, R. Vogelsang, and D. Declat, 2004: OASIS3
Ocean Atmosphere Sea Ice Soil User’s Guide. Technical Report
TR/CMGC/04/68, CERFACS, Toulouse, France.

Washington, W. M., J. W. Weatherly, G. A. Meehl, A. J. Semtner, T. W.
Bettge, A. P. Craig, W. G. Strand, J. M. Arblaster, V. B. Wayland,
R. James, and Y. Zhang, 2000: Parallel Climate Model (PCM) Control
and Transient Simulations. Climate Dynamics, 16, 754–774.

26

cpl

atm

lnd ice

ocn

Figure 1: The “hub-and-spoke” architecture of the Community Climate Sys-
tem Model.

27

MPI communication layer

MCT MPH

CPL6 Datatypes/Methods

CCSM Models
(Atmosphere, Ocean, etc.) CPL6 main

datatypes

CPL6 main
I

II

III

IV

Figure 2: Layered software architecture of CCSM3 with cpl6.

28

domain

interface contract fields

SparseMatrix

Router Rearranger

bundle map infobuffer

CPL6 Model
Interface

CPL6 Internal

MCT

AttributeVectorGlobalSegMap

Figure 3: Cpl6 datatypes and their dependencies.

29

Build GlobalSegMapBuild GlobalSegMap

Initialize Domain Initialize Domain

Initialize and build Router Initialize and build Router

Set Domain Values

Send Domain Values
(using Router)

Initialize Bundle Initialize Bundle

(typically a model)
Component with domain

Send InfoBuffer with

(typically the Coupler)
Component to learn domain

Receive Infobuffer

Broadcast to other nodes

Set decomposition

Root onlygrid dimensions

Exchange GSMap

Root Only
(then Bcast on each side)

(using Router)
Recv Domain Values

MxN Comm

Figure 4: Cpl6 algorithm for initializing a contract between two models.
The datatypes Router, domain, and bundle are contained in each contract
instantiated.

30

1 2 4 8 16 32
Coupler Processors

1.0

2.0

3.0

4.0

5.0

7.0

10.0

20.0

30.0

40.0

70.0

100.0

Se
co

nd
s

HP AlphaServer Cluster

"Jazz" Linux cluster

IBM p690 8-way (multi node)

Ideal

CCSM3 CPL6 Atmosphere-Ocean Flux Calculation

Figure 5: Total time required for 240 calls to the cpl6 atmosphere-ocean flux
calculation routine.

31

1 2 4 8 16 32
Coupler Processors

1.0

2.0

3.0

4.0

5.0

7.0

0.5

10.0

20.0

30.0

40.0

Se
co

nd
s

HP AlphaServer Cluster
"Jazz" Linux cluster
IBM p690 8-way
Ideal

CCSM3 CPL6 Ocean Merge
Formation of Coupler To Ocean Bundle

Figure 6: Total time for 240 calls to the cpl6 custom ocean merge routine.

32

1 2 4 8 16 32
Coupler Processors (Ice Model Fixed on 16)

1.0

2.0

3.0

4.0

5.0

7.0

10.0

20.0

30.0

40.0

70.0

100.0

Se
co

nd
s

HP AlphaServer Cluster
"Jazz" Linux cluster
IBM p690 8-way (multi node)
IBM p690 32-way (2 nodes)
IBM p690 32-way (all 1 node)
IBM SP3
Ideal

CCSM3 CPL6/Ice Model Communication
Time to receive data from ice model

cpl5

Figure 7: Total time for 240 receives of data from the sea-ice model as a
function of coupler processors.

33

1 2 4 8 16 32
Coupler Processors

1.0

2.0

3.0

4.0
5.0

7.0

0.1

0.2

0.5

10.0

20.0

30.0

40.0

Se
co

nd
s

HP AlphaServer Cluster
"Jazz" Linux cluster
IBM p690 8-way
Ideal

CCSM3 CPL6 Bilinear Mapping
T42 Atmosphere to x1 Ocean

Figure 8: Total time for 240 calls to the cpl6 mapping routine for the in-
terpolation of 9 fields from the atmosphere to the ocean grid using bilinear
interpolation.

34

1 2 4 8 16 32
Coupler Processors

1.0

2.0

3.0

4.0
5.0

7.0

0.1

0.2

0.5

10.0

20.0

30.0

Se
co

nd
s

HP AlphaServer Cluster
"Jazz" Linux cluster
IBM p690 8-way
Ideal

CCSM3 CPL6 Conservative Mapping
T42 Atmosphere to x1 Ocean

Figure 9: Total time for 240 calls to the cpl6 mapping routine for the inter-
polation of 10 fields from the atmosphere to the ocean grid using 1st-order
conservative interpolation.

35

1 2 4 8 16 32
Coupler Processors

1.0

2.0

3.0

4.0
5.0

7.0

0.5

10.0

20.0

30.0

40.0

70.0

Se
co

nd
s

HP AlphaServer Cluster
"Jazz" Linux cluster
IBM p690 8-way
Ideal

CCSM3 CPL6 Conservative Mapping
 x1 Ocean to T42 Atmosphere

Figure 10: Total time for 240 calls to the cpl6 mapping routine for the
interpolation of 13 fields from the ocean to the atmosphere grid using 1st-
order conservative interpolation.

36

The submitted manuscript has been created by
the University of Chicago as Operator of Ar-
gonne National Laboratory (”Argonne”) under
Contract No. W-31-109-ENG-38 with the U.S.
Department of Energy. The U.S. Government
retains for itself, and others acting on its behalf,
a paid-up, nonexclusive, irrevocable worldwide
license in said article to reproduce, prepare
derivative works, distribute copies to the pub-
lic, and perform publicly and display publicly,
by or on behalf of the Government.

37

