
Rolf Rabenseifner:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

::

From MPI-1.1 to MPI-3.1,

publishing and teaching,
with a special focus on MPI-3 shared memory

and the Fortran nightmare

Rolf Rabenseifner, HLRS, University of Stuttgart, www.hlrs.de
rabenseifner@hlrs.de

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

:: 2 / 31Rolf Rabenseifner

Outline

My background

Printing the MPI standards

Fortran, a nightmare ?!?

Complete MPI-3.1 Courses / Tutorials

The MPI shared memory interface

25 Years of MPI

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

:: 3 / 31Rolf Rabenseifner

My Background

• Sent by HLRS to the MPI-Forum since MPI-2

– Impressed from the very democratic process

– Rusty always tried to break it down to binary decisions

• It was my way to learn what MPI is

– the whole so far existing MPI-1.1

– and of course all MPI-2

• My apologies - I was helping in the work for MPI 1-sided

– but the result was not really as good as we hoped.

– I looked at consistency, but no idea about performance.

• 10 years of pause (between MPI-2.0 and the start for MPI-3)

25 Years of MPI

Bill Saphir (left) and
Ewing (Rusty) Lusk (ANL, MPI1.2 & 2.0 convener and meeting chair)

Marc Snir, Bill Gropp, Bill Saphir (from left)

MPI 1.2 and MPI-2.0 Forum
1995 - 1997

Pictures from Rolf Rabenseifner

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

:: 5 / 31Rolf Rabenseifner

My Background (continued)

• Rich Graham asked me to get member of the MPI steering

committee and invited me to a telcon in December 2007.

– I prepared a plan to securely combine MPI-1.1 + MPI-2.0

• with full control about all lines & without loosing portions by bad luck.

– At the telcon there was a long discussion on the strange

situation of two documents

– until Rusty Lusk said something like

“stop, Rolf said he will do it - we need not to discuss!”

• I detected many years later that all the others were sitting around

a table and I was the only one on a pure phone - no webex!

• MPI-2.1 then started in the meeting Jan. 14-16, 2008 in Chicago

• After I managed MPI-2.1, I was really knowing the whole MPI ☺

25 Years of MPI

MPI-2.1 Forum Meeting June 30 – July 2, 2008, Menlo Park, CA, USA
First vote for MPI-1.3 and MPI-2.1 Pictures from Rolf Rabenseifner

MPI-2.1 Forum Meeting
June 30 – July 2, 2008,
Menlo Park, CA, USA
Forum Dinner

Pictures from Rolf Rabenseifner

After final vote for MPI-3.0, Sep. 21, 2012, at MPI Forum meeting in Vienna, Austria, Sep. 20-21, 2012

1st row sitting (from left to right:): [1] Alexander Supalov (Intel), [2] William (Bill) Gropp (NCSA/UIUC),

2nd row sitting: [3] Rolf Rabenseifner (HLRS), [4] David Goodell (ANL), [5] Jeff Squyres (Cisco), [6] Brian Barrett (Sandia), [7]] Brian Smith (ORNL),

3rd + 4th row sitting: [8] Jesper Traeff (TU Vienna), [9] George Bosilca (INRIA), [10] Aurelien Bouteiller (U. Tennessee), [11] Atsushi Hori (Riken AICS),

Standing: [12] Rich Graham (Mellanox, MPI-3.0 chair), [13] Manjunath Gorentla Venkata (ORNL), [14] Shinji Sumumoto (Fujitsu), [15] Puri Bangalore (UAB),

[16] Hideyuki Jitsumoto (U.Tokyo), [17] Takeshi Nanri (Kyushu U.), [18] Christian Siebert (GRS-Sim),

[19] Devendar Bureddy(OSU), [20] Paddy Gillies (AWE Plc), [21] Tomotake Nakamura (Riken AICS)

Probably not on the picture, but at the meeting: Nathan Heljm (LANL) (Thanks to Atsushi Hori for assisting)

1 2

3 4 5
6

7

98 10

11

12 13

14
15

16
17

18 19
21

20

(Photos by Jesper Traeff and Rolf Rabenseifner)

(Combined by Jutta Sauer)

MPI: A Message-Passing Interface Standard
Version 3.1

Message Passing Interface Forum

June 4, 2015

1
2 3 4 5

6
7

8
9

10

11
12

13

14

15

16
17

18

19

21

2220 23
24

25
26

27
28

29

30

After final vote for MPI-3.1, June 4, 2015, at MPI Forum meeting in Chicago, June 1-4, 2015 (Photo by David Eder with smart phone of Jeff Squyres)

1st row sitting: [1] William (Bill) Gropp (NCSA/UIUC), [2] Martin Schulz (LLNL, MPI-3.1 chair), [3] Jeff Squyres (Cisco), [4] Rolf Rabenseifner (HLRS), [5] Rich Graham (Mellanox)

2nd row sitting: [6] Anh Vo (Microsoft), [7] Pavan Balaji (ANL), [8] Xiaoyi Lu (OSU), [9] Krishna Kandalla (Cray),

3rd + 4th row sitting: [10] Takafumi Nose (Fujitsu), [11] Aurelien Bouteiller (U Tennessee), [12] Atsushi Hori (Riken), [13] Wesley Bland (Intel), [14] Sangmin Seo (ANL),

Standing: [15] Sameh Sharkawi (IBM), [16] Alice Koniges (LBNL), [17] Chulho Kim (Lenovo), [18] Kathryn Mohror (LLNL), [19] Ryan Grant (Sandia),

[20] Puri Bangalore (UAB), [21] Jeff Hammond (Intel), [22] Daniel Holmes (EPCC), [23] Lena Oden (ANL), [24] Howard Pritchard (LANL), [25] Takeshi Nanri (Kyushu U)

[26] Sayantan Sur (Intel), [27] Ignacio Laguna Peralta (LLNL), [28] Nathan Hjelm (LANL), [29] Manjunath Gorentla Venkata (ORNL), [30] Sreeram Potluri (Nvidia)

At the meeting, but not on the picture: Rajeev Thakur (ANL), Anthony Skjellum (Auburn U), Ken Raffenetti (ANL), Junchao Zhang (ANL) (Thanks to Jeff Squyres for assisting)

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

:: 10 / 31Rolf Rabenseifner

Printing the MPI standards

25 Years of MPI

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

:: 11 / 31Rolf Rabenseifner

HLRS as MPI book publisher

• In our many training courses,

always people like to have MPI as a book!

– MPI-2.1 (608 pages, 821g=29oz, June 23, 2008)

• 916 printed / 738 sold / 178 unsold

– MPI-2.2 (647 pages, 840g=29.6oz, Sep 4, 2009)

• 921 printed / 900 sold / 21 unsold ☺☺

– MPI-3.0 (852 pages, 1031g=36oz!!, Sep 21, 2012)

• 1055 printed / 969 sold / 86 unsold ☺

– MPI-3.1 (868 pages, 1066g=38oz!!, June 4, 2015)

• 1040 printed / 487 sold (by Sep 20, 2017)

/ 170 expected until end of 2018

/ 383 unsold (still enough if MPI-4 is coming 2019/2020)

25 Years of MPI

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

:: 12 / 31Rolf Rabenseifner

For whom are the MPI standards

• MPI implementers

• MPI users

– It is still not a tutorial

– But well readable & with many examples and “advices to users”

– And we added several index sections

• Latest the “Global Index” (since MPI-3.1, see page 816ff)

• My recommendation, use together

– The current MPI standard

– And the books “Using MPI” and “Using advanced MPI”

25 Years of MPI

+
Iimages & further information from
http://wgropp.cs.illinois.edu/usingmpiweb/

MPI pdf and book from
http://mpi-forum.org/docs/
19.50 € / $ 23 + shipping

Also helpful for the implementers,

because they are also human beings

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

:: 13 / 31Rolf Rabenseifner

Fortran, a nightmare ?!?

25 Years of MPI

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

:: 14 / 31Rolf Rabenseifner

Fortran, a nightmare ?!?

• Only a few MPI Forum members speak Fortran

– The few ones had a hard job to get MPI and Fortran consistent

• Major problems: Compiler optimizations may lead to wrong MPI

execution

– with all MPI_Wait/Test routines

– with using MPI_BOTTOM together with derived datatypes

– with absolute addresses

– calling nonblocking routines with strided data arrays that are not

simple contiguous

• Already in MPI-2.0 (1997!) the inconsistency-problem was known

– but more than some text about a user-writte "dd" dummy routine

as a work-around was not going through the Forum!

25 Years of MPI

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

:: 15 / 31Rolf Rabenseifner

Fortran, a nightmare – solved in MPI-3.0 (15 years later) ?!?

• For MPI-3.0 we received full service from the Fortran

standardization body by “Fortran Technical Specification TS 29113”

– Enabling the new Fortran module mpi_f08

• which is the first time full consistent with the Fortran standard

– Major solution:

Fortran extended the ASYNCHRONOUS keyword for any asynchronous

use-case, including MPI nonblockings and MPI_BOTTOM

• In MPI-3.0 we did the backend wrong � – my apologies

– A whole section in an errata �MPI-3.1

– Did really slowed down the implementation

– Still some MPI implementations claim to be MPI-3.1 compliant

• although they do not provide compile-time argument checking

• nor name based argument list with the mpi module

25 Years of MPI

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

:: 16 / 31Rolf Rabenseifner

Complete MPI-3.1 Courses /

Tutorials

25 Years of MPI

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

:: 17 / 31Rolf Rabenseifner

Teaching complete advanced MPI-3.1

• Important for users

can take advantages

– from all the work in

the MPI Forum, and

– from the implemen-

tions of all the new

MPI features in many

MPI libraries

• My MPI-3.1 course is

based on the MPI-1.1

course from EPCC

– They did a great job!

25 Years of MPI

• Nonblocking collectives

• The New Fortran Module mpi_f08

• Groups & Communicators, Environment Management

o MPI_Comm_split, intra- & inter-communicators

o Re-numbering on a cluster, collective communication on

inter-communicators, info object, naming & attribute

caching, implementation information

• Virtual topologies

o including neighborhood communication +MPI_BOTTOM

• One-sided Communication

• Shared Memory One-sided Communication

o including hybrid MPI and MPI-3 shared memory

programming

o MPI memory models and synchronization rules

• Derived datatypes

o including advanced features, alignment, resizing

• Parallel File I/O

• MPI and Threads, e.g., hybrid MPI and OpenMP

• Probe, Persistent Requests, Cancel

• Process Creation and Management

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

:: 18 / 31Rolf Rabenseifner

The network

of HLRS

courses

• Cooperation

with several

centers in

Germany and

EU

• 1007 partici-

pants

in 39 courses

in 2016

25 Years of MPI

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

:: 19 / 31Rolf Rabenseifner

The MPI shared memory interface

25 Years of MPI

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

:: 20 / 31Rolf Rabenseifner

MPI-3 shared memory interface

• Help users to understand the MPI-3 shared memory interface

– mainly for minimizing memory needs for replicated data

(only once per shared memory node)

– advanced synchronization rules for minimizing latencies

when synchronizing MPI shared memory accesses

25 Years of MPI

Höchstleistungsrechenzentrum Stuttgart
Rolf RabenseifnerMPI Course

[3] Slide 21 / 31

Programming opportunities with MPI shared memory:
1) Reducing memory space for replicated data

[6A]

Chap.11 Shared Memory 1-Sided

MPI-3.0 shared memory can be used

to significantly reduce the memory needs for replicated data.

R R

R R

R R

R R

R R

R R

R = Replicated data
in each MPI process

Cluster of SMP nodes
without using MPI
shared memory methods

R R R

R = Shared memory
���� replicated data

only once within
each SMP node

Using MPI
shared memory methods

Direct loads & stores,
no library calls

Short
tour

Höchstleistungsrechenzentrum Stuttgart
Rolf RabenseifnerMPI Course

[3] Slide 22 / 31

Programming opportunities with MPI shared memory:
2) Hybrid shared/cluster programming models

• MPI on each core (not hybrid)

– Halos between all cores

– MPI uses internally shared memory and
cluster communication protocols

• MPI+OpenMP

– Multi-threaded MPI processes

– Halos communica. only between MPI processes

• MPI cluster communication + MPI shared memory
communication

– Same as “MPI on each core”, but

– within the shared memory nodes,
halo communication through direct copying
with C or Fortran statements

• MPI cluster comm. + MPI shared memory access

– Similar to “MPI+OpenMP”, but

– shared memory programming through
work-sharing between the MPI processes
within each SMP node

MPI inter-node communication
MPI intra-node communication
Intra-node direct Fortran/C copy
Intra-node direct neighbor access

[6A]

Chap.11 Shared Memory 1-Sided

Short
tourSkip-point: Skip rest of this course chapter

1 SMP node with 4 cores

Höchstleistungsrechenzentrum Stuttgart
Rolf RabenseifnerMPI Course

[3] Slide 23 / 31

Chap.11 Shared Memory One-sided Communication

1. MPI Overview

2. Process model and language bindings

3. Messages and point-to-point communication

4. Nonblocking communication

5. The New Fortran Module mpi_f08

6. Collective communication

7. Error Handling

8. Groups & communicators, environment management

9. Virtual topologies

10. One-sided communication

11. Shared memory one-sided communication
– (1) MPI_Comm_split_type & MPI_Win_allocate_shared

Hybrid MPI and MPI-3 shared memory programming

– (2) MPI memory models and synchronization rules

12. Derived datatypes

13. Parallel file I/O

14. MPI and threads

15. Probe, Persistent Requests, Cancel

16. Process creation and management

17. Other MPI features

18. Best Practice

put

get

Chap.11 Shared Memory 1-Sided

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

MPI_Init()
MPI_Comm_rank()

Höchstleistungsrechenzentrum Stuttgart
Rolf RabenseifnerMPI Course

[3] Slide 24 / 31

Lowest latencies

• Usage of MPI shared memory without one-sided synchronization
methods

• MPI provides the shared memory, but used

– only with compiler generated loads & stores

– together with C++11 memory fences

Chap.11 Shared Memory 1-Sided

Höchstleistungsrechenzentrum Stuttgart
Rolf RabenseifnerMPI Course

[3] Slide 25 / 31

Two memory models

• Query for new attribute to allow applications to tune for cache-coherent
architectures

– Attribute MPI_WIN_MODEL with values

• MPI_WIN_SEPARATE model

• MPI_WIN_UNIFIED model on cache-coherent systems

• Shared memory windows always
use the MPI_WIN_UNIFIED model

– Public and private copies are eventually

synchronized without additional RMA calls
(MPI-3.0 / MPI-3.1, Section 11.4, page 436 / 435 lines 37-40 / 43-46)

– For synchronization without delay: MPI_WIN_SYNC()
(MPI-3.1 Section 11.7: ”Advice to users. In the unified memory model…”
on page 456, and Section 11.8, Example 11.21 on pages 468-469)

– or any other RMA synchronization:
“A consistent view can be created in the unified memory model (see Section 11.4)
by utilizing the window synchronization functions (see Section 11.5) or explicitly
completing outstanding store accesses (e.g., by calling MPI_WIN_FLUSH).”

(MPI-3.0 / MPI-3.1, MPI_Win_allocate_shared, page 410 / 408, lines 16-20 / 43-47)

Figures: Courtesy of Torsten Hoefler

Chap.11 Shared Memory 1-Sided

M
e
s
s
a
g
e
 P

a
s
s
in

g
 In

te
rfa

c
e
 (M

P
I) [0

3
]

Höchstleistungsrechenzentrum Stuttgart
Rolf RabenseifnerMPI Course

[3] Slide 26 / 31

“eventually synchronized“ – the Problem

• The problem with shared memory programming using libraries is:

X is a variable in a shared window initialized with 0.

Process
Rank 0

X = 1

MPI_Send(empty msg to rank 1)

Process
Rank 1

MPI_Recv(from rank 0)

printf … X

X can be still 0,

because the “1” will be eventually visible to the other process,
i.e., the “1” will be visible but maybe too late ���� ���� ����

Or any other
process-to-
process
synchronization,
e.g., using also
shared memory
stores and loads

Chap.11 Shared Memory 1-Sided

Höchstleistungsrechenzentrum Stuttgart
Rolf RabenseifnerMPI Course

[3] Slide 27 / 31

“eventually synchronized“ – the Solution

• A pair of local memory fences is needed:

Now, it is guaranteed that
the “1” in X is visible in this process

☺☺☺☺ ☺☺☺☺ ☺☺☺☺

X is a variable in a shared window initialized with 0.

Process
Rank 0

X = 1

MPI_Send(empty msg to rank 1)

Process
Rank 1

MPI_Recv(from rank 0)

printf … X

local memory fence

local memory fence

Chap.11 Shared Memory 1-Sided

Höchstleistungsrechenzentrum Stuttgart
Rolf RabenseifnerMPI Course

[3] Slide 28 / 31
Chap.11 Shared Memory 1-Sided

“eventually synchronized“ – Last Question

How to make the ?

– C11 atomic_thread_fence(order)
• Advantage: one can choose appropriate order = memory_order_acquire, or

…_release to achieve minimal latencies

– MPI_Win_sync
• Advantage: works also for Fortran

• Disadvantage: may be slower than C11 atomic_thread_fence with appro. order

– Using RMA synchronization with integrated local
memory fence instead of MPI_Send � MPI_Recv

• Advantage: May prevent double fences

• Disadvantage: The synchronization itself may be slower

X is a variable in a shared memory window initialized with 0.X = 1

MPI_Send(empty msg to rank 1) MPI_Recv(from rank 0)

printf … X

local memory fence

local memory fence

local memory fence

S
e

v
e

ra
l
o

p
ti
o

n
s
 &

 h
e

a
v
y

d
is

c
u

s
s
io

n
s
 i
n

 t
h

e
 M

P
I

F
o

ru
m

5 sync methods,
see next slide

X is a variable in a shared memory window initialized with 0.X = 1
MPI_Win_fence MPI_Win_fence

printf … X

Include needed
memory fence

Includes needed
memory fence

Höchstleistungsrechenzentrum Stuttgart
Rolf RabenseifnerMPI Course

[3] Slide 29 / 31

General MPI-3 shared memory synchronization rules
(based on MPI-3.0/3.1, MPI_Win_allocate_shared, page 410/408, lines 16-20/43-47: “A consistent view …”)

and having …

A=val_1
Sync-from

load(B)
Sync-from

C=val_3
Sync-from

Sync-to
load(A)

Sync-to
B=val_2

Sync-to
C=val_4
load(C)

then it is guaranteed that …

… the load(A) in P1 loads val_1
(this is the write-read-rule)

… the load(B) in P0 is not affected by the store of val_2 in P1
(read-write-rule)

… that the load(C) in P1 loads val_4
(write-write-rule)

Defining Proc 0

Sync-from

Proc 1

Sync-to

being MPI_Win_post1)

or MPI_Win_complete1)

or MPI_Win_fence1)

or MPI_Win_sync
Any-process-sync2)

or3) MPI_Win_unlock1)

and the lock on process 0 is granted first

MPI_Win_start1)

MPI_Win_wait1)

MPI_Win_fence1)

Any-process-sync2)

MPI_Win_sync

MPI_Win_lock1)

1) Must be paired according to the general on-sided
synchronization rules.
2) "Any-process-sync" may be done with methods from MPI
(e.g. with send-->recv as in MPI-3.1 Example 11.21, but also
with some synchronization through MPI shared memory loads
and stores, e.g. with C++11 atomic loads and stores).
3) No rule for MPI_Win_flush (according current forum discus.)

See next slide

Chap.11 Shared Memory 1-Sided

Höchstleistungsrechenzentrum Stuttgart
Rolf RabenseifnerMPI Course

[3] Slide 30 / 31

“Any-process-sync” & MPI_Win_sync on shared memory

• If the shared memory data transfer is done without RMA operation,
then the synchronization can be done by other methods.

• This example demonstrates the rules for the unified memory model if the data
transfer is implemented only with load and store (instead of MPI_PUT or MPI_GET)
and the synchronization between the processes is done with MPI communication
(instead of RMA synchronization routines).

Process A Process B

MPI_WIN_LOCK_ALL(MPI_WIN_LOCK_ALL(

MPI_MODE_NOCHECK,win) MPI_MODE_NOCHECK,win)

DO ... DO ...

X=...

MPI_F_SYNC_REG(X) 1)

MPI_WIN_SYNC(win)

MPI_Send

MPI_Recv

MPI_WIN_SYNC(win)

MPI_F_SYNC_REG(X) 1)

local_tmp = X

MPI_F_SYNC_REG(X) 1)

MPI_WIN_SYNC(win)

MPI_Send

MPI_Recv print local_tmp
MPI_WIN_SYNC(win)

MPI_F_SYNC_REG(X) 1) 1) Fortran only.

END DO END DO

MPI_WIN_UNLOCK_ALL(win)MPI_WIN_UNLOCK_ALL(win)

• The used synchronization must be
supplemented with MPI_WIN_SYNC,
which acts only locally as a
processor-memory-fence.
For MPI_WIN_SYNC, a passive
target epoch is established with
MPI_WIN_LOCK_ALL.

• X is part of a shared memory window
and should be the same memory
location in both processes.

• See also MPI-3.1, Section 11.8, Example 11.21
on pages 468-469.

Also needed due to read-write-rule

Data exchange in this direction,
therefore MPI_WIN_SYNC is
needed in both processes:
Write-read-rule

� See Exercise 3

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

:: 31 / 31Rolf Rabenseifner

Thank you for your interest –

any questions?

25 Years of MPI

:: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

:: 32 / 31Rolf Rabenseifner

Appendix

Abstract

As a long-standing member of the MPI forum, I try to sketch my special way

through the times of this standardization body, which also lead to become the

publisher of the MPI books. From the very first, I was involved in the MPI-Fortran

nightmare. At the end, we significantly enhanced the existing MPI module and

added the new mpi_f08 module, which is the first one that is fully consistent with

the Fortran standard. Having the MPI standard is nothing without good libraries,

but having such libraries is nothing if the users do not use them. For that, I tried

to develop a complete MPI course that includes all the new MPI-3.0 and MPI-3.1

methods, which were developed to better serve the needs of the parallel

computing user community, including better platform and application support.

My own special interest here is the new MPI-3 shared memory interface.

25 Years of MPI

