Argonne National Laboratory


  • Above: 3-D structures of adenine riboswitch RNA calculated using RS3D, a computer program that runs on the supercomputer Mira. RNAs like adenine riboswitch are biological structures found in all human cells; they help control how and when genes are expressed. Some of these structures are linked to cancer and other diseases, and by using RS3D to learn more about them, researchers can better understand how associated diseases evolve, which could lead to better treatments or cures. (Image by Wei Jiang, Argonne National Laboratory; Yuba Bhandari and Yun-Xing Wang, National Cancer Institute.)

    Tackling disease in three dimensions: supercomputers help decode RNA structure

    Full Story »

    In collaboration with staff from the Argonne Leadership Computing Facility, researchers at the National Cancer Institute have perfected a technique that accurately computes the 3-D structure of RNA sequences. This method, which relies on a computer program known as RS3D and supercomputer Mira gives researchers studying cancer and other diseases structural insights about associated RNAs that can be used to advance computer-assisted drug design and development.