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Abstract. Exascale supercomputers will have the potential for billion-
way parallelism. While physical implementations of these systems are
currently not available, HPC system designers can develop models of
exascale systems to evaluate system design points. Modeling these sys-
tems and associated subsystems is a significant challenge. In this paper,
we present the Co-design of Exascale Storage System (CODES) frame-
work for evaluating exascale storage system design points. As part of our
early work with CODES, we discuss the use of the CODES framework to
simulate leadership-scale storage systems in a tractable amount of time
using parallel discrete-event simulation. We describe the current stor-
age system models and protocols included with the CODES framework
and demonstrate the use of CODES through simulations of an existing
petascale storage system.

Keywords: exascale computing, storage system design, parallel discrete-
event simulation

1 Introduction

Several challenges arise in developing reliable, high-performance exascale storage
systems. In particular, the availability of hardware and system software compo-
nents for these systems is still years away. System designers therefore must model
and simulate these systems in order to understand potential exascale storage sys-
tem designs and use cases. Simulation results can then be used to influence the
design of future exascale system components. Most of the recent studies [14, 13,
7,9] of this type are based on massively parallel discrete-event models.

In this paper, we present our recent work developing an end-to-end storage
system model of the Argonne Leadership Computing Facility’s (ALCF) comput-
ing and data storage environment. This work is a prerequisite to modeling and
simulating exascale storage systems because it verifies that we can accurately
and quickly model an existing storage system. CODES framework leverages the
Rensselaer Optimistic Simulation System (ROSS) [19,18,4]. ROSS is a parallel



discrete-event simulation framework that allows simulations to be run in paral-
lel, decreasing the run time of massive simulations. Using CODES and ROSS,
we validate the storage system models against data collected from the ALCF’s
storage system for a variety of synthetic I/O workloads and scales. we present a
model of the PVFS storage system and the I/O subsystem of the Intrepid IBM
Blue Gene/P (BG/P) system in the ALCF. As an early study of the CODES
project, our simulators can quickly and accurately simulate a petascale storage
system using medium-fidelity hardware models and an accurate representation
of the storage system software protocols.

In this paper, we describe the ALCF computing environment, present the
CODES models developed for this environment, and analyze simulation results
produced by these models. Section 2 of this paper describes the ALCFEF’s In-
trepid storage system architecture. Section 3 describes the CODES models that
compose the end-to-end storage system. Section 4 focuses on the experimental
simulation results on the standard I/O models. We discuss related work in Sec-
tion 5. We conclude this paper in Section 6 with a brief discussion of future
work.

2 The ALCF Computing Environment

Leadership-computing systems are on the cutting edge of computing hardware
and system software. Many of the I/O hardware and software components have
unique features needed by such systems. This section provides an overview of
the ALCF’s PVFS [5] storage system and I/O subsystem on the Intrepid IBM
BG/P [1].
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Figure 1 illustrates the architecture of Intrepid’s storage subsystem. Like
other other large HPC centers [3,17], the ALCF provides a large, parallel storage
system shared between multiple HPC resources. Intrepid is composed of several
networks and several layers of computation and storage devices. The BG/P plat-
form provides several networks that are tightly coupled with the BG/P compute
nodes, so that the BG/P system can satisfy the high-performance requirements
of leadership-class applications. The three-dimensional torus network is used for
point-to-point communication among compute nodes (CNs), while the collective
network (also known as the tree network) allow CNs to perform file I/O op-
erations to the I/O forwarding nodes (IONs) and supports some inter-process
collective operations. In the BG/P system, IONs are distinct from the storage
server nodes and compute nodes. The IONs host file system clients and delegate
file I/O requests on behalf of a group of compute nodes. For each group of 64
CNs on Intrepid, a single ION receives I/O requests from the CNs in that group
and forwards those requests over its 10-Gigabit Ethernet network interface to
PVFS and GPFS [15] storage systems. Myricom Myri-10G network infrastruc-
ture is used to translate the ION Ethernet traffic to Myrinet for the Myri-10G
connected file servers. For the research described in this paper, we limited our
analysis to Intrepid’s PVF'S storage system because a component-level study of
the storage system was available [6] and the open-source nature of PVFS made it
easier for us to validate our models. The PVFES file system stores data on logical
units (LUNs) exported by 16 DataDirect Network (DDN) 9900 storage devices.

Intrepid provides several layers of storage software and services. The top
most layer of the stack is comprised of high level I/O (HL-IO) libraries such
as HDF5 or PnetCDF. These high level libraries map application data models
onto conventional files and directories. The I/O middleware layer is provided by
MPI-IO, which leverages both the BG/P tree network and the 3D-torus network
to provide aggregate file optimizations such as two-phase I/O. Eventually, all the
application I/0 requests are translated into POSIX I/O requests at each CN.
IBM’s CIOD [10] client is used to forward the POSIX I/O requests across the
BG/P tree network to the IONs. At the IONs, the CIOD server replays the
forwarded 1/0 requests by directly issuing the POSIX file I/O requests. Each
of Intrepid’s IONs mounts PVFS and GPFS file system shared by all ALCF
resources. PVFS file system clients on each ION communicate with PVFS servers
running on the 128 storage system servers. The PVFS storage servers store file
system data in LUNs exported by the DDN storage devices.

3 Modeling the ALCF Computing Environment

In this section, we describe how hardware and software components of the ALCF
computing environment are modeled in CODES. The end-to-end storage system
model is composed of several component models that capture the interactions
of the system software and hardware interactions for I/O operations. Figure 2
illustrates the networks, hardware components, and software protocols modeled
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Fig.2: CODES models for the ALCF computing environment. The models in-
clude networks (top labels), hardware components (middle labels), and software
protocols (bottom labels).

in our simulations. The storage system model also provides several configuration
parameters that dictate the execution behavior of application I/O requests.

We abstracted the common features of each Blue Gene/P hardware compo-
nent into CN, ION, file server, and DDN models. These models are the logical
processes (LPs) in our end-to-end storage system model, which are the most
basic physical units of our parallel discrete-event model. The various BG/P net-
works are modeled as the links connecting each LP. Each LP is composed of
three buffers. The incoming buffer is used to model the queuing effects from
multiple LPs trying to send messages to the same LP. The outgoing buffer is
used to model queuing effects when an LP tries to send multiple messages to
different LPs. The processing buffer is used to model queuing effects caused by
a processing unit, such as CPU, DMA engine, storage controller, or router pro-
cessors. The units process incoming messages in FIFO order. Each LP also has a
local hash table for recording the connections between LPs. The hash table can
be viewed as a routing table from the perspective of network modeling.

The BG/P tree network is modeled by the network links that connect each
CN LP with its parent and child network nodes. The root CN LP in the tree net-
work connects to the ION LP. Network connection between two LPs are modeled
as messages transmitted between the two LPs, where each LP’s incoming buffer
is connected to the other LP’s outgoing buffer. Furthermore, the commodity
networks (Ethernet and Myrinet networks) are modeled by the links connecting
the IONs with the storage servers. If we increase the fidelity of our models in
the future, additional network components, such as routers and switches, can be
modeled as LPs.

The hardware models consist of several configurations parameters. We model
the throughput and latency of the network links interconnecting distributed



hardware models using Equation 1.

Dp
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Equation 1 computes the perceived throughput of a network operation (T') based
on the size of the data payload (Dp), the maximum link throughput (77),
and the size of non-payload data associated with the transfer (Do). The data
throughput and access latency of the DDN storage devices are modeled as a
simple, constant function. Parameters for both models were obtained by using
micro-benchmarks that measured the observed throughput between the various
devices in the ALCF computing environment.

Multiple software layers are involved in Intrepid’s I/O path. Our software
models approximate the interfaces, protocols, and interactions of the software
components deployed in the ALCF computing environment. The software models
and interfaces sit on top of the hardware LPs and trigger hardware events for
I/O operations. At the application layer, our models provide a POSIX-like I/O
interface. Our application-level models translate application I/O requests into
CIOD client requests using a series of CN and ION events. These CN and ION
events reflect the interaction between the CIOD clients and servers. The CIOD
server receives the CIOD client requests and generates a series of ION and storage
server hardware requests that approximate the interaction of the CIOD server
and the PVFS file system. The PVFS file system then generates a series of
storage server and DDN events that approximate the interactions between the
storage server and the DDN storage devices. The number and types of events
generated by our models depend upon the complexity of the I/O system software
protocol for a specific I/0O layer.

Several parameters are associated with the software models. The most im-
portant parameters are the CIOD transfer size and the PVFS stripe size. CIOD
limits the amount of data that can be transferred in a single I/O operation (4
MiB default value on Intrepid). CIOD requires multiple operations to transfer
requests larger than 4 MiB. The PVFS stripe size dictates the block size dis-
tributed to the PVFS file servers (4 MiB default value on Intrepid) and file
alignment. Requests that are not aligned on a 4 MiB boundary or exceed a 4
MiB capacity require access to multiple PVFS servers per I/O operation.
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Fig.3: CODES file write request model for Intrepid.



The CODES storage system simulator implements the necessary protocols to
provide application-level file open, close, read, and write using the ALCF hard-
ware and software models. Figure 3 depicts the PDES model used for application
write operations. Application open, close, and read operation models have dif-
ferent implementation details from that of the write; they are not covered in this
paper because of limited space.

4 Model Validation and Discussion

The goal of our initial investigation using this storage system model was to
validate the model’s performance against data collected from Intrepid and the
ALCF’s PVFS storage system. Our validation of these models focused on repli-
cating the behavior of the IOR [2] benchmark. IOR is a flexible, robust, and
well-understood I/O benchmark. Validating our model against IOR gives confi-
dence that our model is operating correctly for common I/O patterns and can
be used as a springboard for future investigations into application-specific I/O
patterns.

In prior work [6], we presented a thorough evaluation of the ALCF’s PVFS
storage system for a variety of I/O workloads and application scales. We lever-
aged the data generated from that past investigation to validate our simulator.
We configured our simulator to be as similar as possible to the PVFS storage
system described in our prior work. The experiments documented in our prior
work were performed during Intrepid’s acceptance testing period before the ma-
chine and file system were available for production users. During the previous
investigation, the experiments used PVFS 2.8.0 with a file system configura-
tion that consisted of 123 file servers. Each PVFS server handled both data and
metadata operations. The PVFS file servers were configured with a stripe unit
of 4 MiB and the CIOD maximum buffer size was set to 4 MiB.
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Fig. 4: Comparison of simulated and observed IOR performance. Figure 4a illus-
trates results using IOR write workloads. Figure 4b illustrates results using IOR
read workloads.



We evaluated the model using a variety of IOR workloads, including shared
file, file-per-process, stripe-aligned, stripe-unaligned, read, and write file access
patterns. The shared file experiments forced each process to concurrently store
data into a single file. The file-per-process experiments allowed each process to
store its data into a unique file that was inaccessible by other processes. The
file-per-process tests required the file system to perform additional metadata
operations, such as file creations, that are not required in the shared file tests.
The stripe-aligned tests used 4 MiB (4 x 220 bytes) accesses for a total of 64 MiB
per process. Stripe-aligned accesses caused each processes file requests to align
with the stripe of the file. This allowed 4 MiB accesses to be made directly to
the DDN LUN. The stripe-unaligned tests used 4 MB (4 x 10° bytes) accesses
for a total of 64 MB per process. The stripe-unaligned accesses spanned multiple
file stripes and required most requests to processed by more than one file server.

The results of our IOR write validation experiments closely follows the results
observed during our previous study. The results for these experiments are illus-
trated in Figure 4a. The overall file system performance trend for write requests
is correctly captured by our simulator. Like the results reported in our previous
study, the simulator performance for write requests levels off at 64K processes
and remains constant at larger scales. Our simulated results capture the perfor-
mance variations from 2K to 128K client processes at roughly a 10% error rate.
Specifically, the model is able to capture the extra overhead for both the stripe-
unaligned experiments and file-per-process experiments. In the prior study, we
observed network contention within the storage system network has caused file
system performance degradation. We believe that we can capture this behavior
within our models through increasing model and simulation fidelity. Specifically,
we can increase network fidelity by developing and integrating commodity net-
work hardware components, such as routers or switches, and commodity network
protocols, such as Myrinet, into our storage system simulator. With these addi-
tions, we expect the total number of LPs to grow less than 100% compared to
the current models size. The overall simulation runtime will stay at same level.
We believe this adjustment will improve the error rate of the stripe-unaligned
tests.

Figure 4b illustrates the IOR benchmark throughput for observed and simu-
lated read operations. Like the write experiments, the stripe-aligned and stripe-
unaligned accesses were investigated using 4 MiB and 4 MB PVFS stripe sizes.
Our results show that the stripe-aligned read throughput closely follows the ob-
served performance of Intrepid’s PVFS storage systems. Our model is able to
capture most of the performance variations for stripe-aligned read and file-per-
process read experiments. It yields more error in stripe-unaligned read tests. The
discrepancy is attributed to the low fidelity of our network model. We believe
that the previously mentioned network contention modifications will correct this
behavior as well.

All the experimental studies ran on an SMP system with a configuration of
8 cores (Intel Xeon x5430, 2.67 GHz) and 32 GiB memory. The largest test case
with 128K client processes (represented as LPs in the simulation) finished within



a couple of minutes, showing that our tools are capable of simulating interesting
storage system designs while using modest resources. In prior work [19], we
demonstrated ROSS’s high efficiency attributes when modeling large-scale TCP
networks. With the aid of a supercomputer resource, such as Intrepid, and by
exploiting the efficiency of ROSS, we believe the simulator will be able to run
an exascale storage system model in a reasonable amount of time, achieving our
project goal of simulating one week worth of exascale storage system activity
in O(days) runtime. On Intrepid, we are currently preparing our simulator for
evaluating larger scale storage system and network models. Evaluation of these
large scale simulations will be a focus of our future work with CODES.

5 Related Work

As part of the exascale co-design process, there is significant interest in under-
standing how parallel system software such as MPI/MPI-IO and the associated
supercomputing applications will scale on future architectures. For example,
Perumalla’s pum system [13] will allow MPI programs to be transparently ex-
ecuted on top of the MPI modeling layer and simulate the MPI messages. In
particular, pum has executed an MPI job that contained over 27 million tasks
and was executed on 216,000 Cray XT5 cores. A number of universities and
national labs have joined together to create the Structural Simulation Toolkit
(SST) [14]. SST includes a collection of hardware component models including
processors, memorys and networks at different accuracy. These models use par-
allel component-based discrete event simulation based on MPI. The users are
able to leverage multi-scale nature of SST by trading off between accuracy, com-
plexity, and time to solution. BigSim [20] focused on the model and prediction
of sequential execution blocks of large scale parallel applications. The model is
based on trace-driven and it uses the scalable trace gained from machine learn-
ing for predicting overall performance. While our simulator accurately captures
the large-scale storage system characteristics, these systems are more focused on
providing accurate, large-scale computational performance models.

Researchers have also developed a number of parallel file system simula-
tors. The IMPIOUS simulator [9] was developed for fast evaluation of parallel
file system designs. It simulates PVFS, PanFS, and Ceph file systems based
on user-provided file system specifications, including data placement strategies,
replication strategies, locking disciplines, and caching strategies. The HECIOS
simulator [16] is an OMNeT++ simulator for PVFS. HECIOS was used to eval-
uate scalable metadata operations and file data caching strategies for PVFS.
PFSsim [8] is an OMNeT++ PVFS simulator that allows researchers to ex-
plore I/O scheduling algorithm design. PVFS and ext3 file systems have been
simulated using colored Petri nets [12, 11]. This simulation method yielded low
simulation error, with less than 10% error reported for some simulations. The fo-
cus of CODES sets it apart from these related simulation tools. One of the goals
of CODES is to accurately and quickly simulate large-scale storage systems. To
date, CODES has been used to simulate up to 131,072 application processes,



512 PVFS file system clients, and 123 PVFS file servers. The existing simulators
limited their simulations to smaller parallel systems (up to 10,000 application
processes and up to 100 file servers).

6 Conclusions and Future Work

In this paper we presented an early work using our storage system framework
to simulate an existing leadership-class storage system. The presented parallel
discrete-event model is able to capture most tests cases of an existing, large-scale
storage system with less than 10% error rate. The tests are experimented on an
eight-core workstation in O(minutes) runtime. Our initial simulation results are
encouraging.

There are several areas of future work for this storage system simulator. We
will develop standard, application-level I/O interfaces. Using these I/O inter-
faces, we will develop and evaluate application I/O workloads. Our plan also
includes the construction of a burst buffer model and different parallel file sys-
tem models. Moreover, we will construct a platform where application users can
study the I/0 effects and system designers can evaluate the best design points
for exascale storage systems. We plan to incorporate our packet-level-accurate
torus network model [7] into the current simulator and investigate its impact on
storage system behaviors.
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