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ABSTRACT 

Template-based methods for predicting protein structure provide models for a significant portion 

of the protein but often contain insertions or chain ends (“InsEnds”) of indeterminate 

conformation. The local structure prediction “problem” entails modeling the InsEnds onto the 

rest of the protein. A well known limit involves predicting loops of ≤ 12 residues in crystal 

structures. InsEnds, however, may contain as many as ~ 50 amino acids, and the template-based 

model of the protein itself may be imperfect. To address these challenges, we present a free 

modeling method for predicting the local structure of loops and large InsEnds in both crystal 

structures and template-based models. The approach uses single amino acid torsional angle 

“pivot” moves of the protein backbone with a Cβ level representation. Nevertheless, our accuracy 

for loops is comparable to existing methods. We also apply a more stringent test, the blind 

structure prediction and refinement categories of the CASP9 tournament, where we improve the 

quality of several homology based models by modeling InsEnds as long as 45 amino acids, sizes 

generally inaccessible to existing loop prediction methods. Our approach ranks as one of the best 

groups in the CASP9 refinement category that involves improving template-based models so that 

they can function as molecular replacement models to solve the phase problem for 

crystallographic structure determination.  

 

KEYWORDS: long loops, insertions, loop modeling, local protein structure prediction, 

molecular replacement 
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INTRODUCTION 

Homology-based methods use known structures as templates and have proven extremely 

successful in modeling larger proteins in a computationally efficient fashion. The success of 

these methods, however, depends on the quality of the alignments between the target sequence 

and those of the templates 1. Frequently, the sequence alignments contain gaps that correspond to 

regions in the sequence where no reliable structural information can be extracted from the 

templates. These gaps may be insertions or additions at the termini (Fig. 1). Inevitably, the model 

assembled from the templates lacks these local regions. In order to model the entire structure, 

alternative methods are required. The problem of reconstructing local regions in a protein is 

neither new nor exclusive to homology modeling. Experimentally determined structures from 

crystallography often contain regions that are difficult to characterize because they are flexible or 

mobile. Consequently, crystal structures can contain loops that have weak or missing electron 

density. This issue is particularly significant because protein function is often mediated by loops; 

for example, loops often act as molecular recognition or binding sites and play a crucial role in 

executing the protein’s function 2-4. The specificity of protein interactions as mediated by active 

sites and binding pockets is also a consequence of local protein structure. These issues highlight 

the need for reliable methods to reconstruct local regions in protein structures.     

 Three important problems arise in developing methods for predicting local spatial structure. 

First, the local regions must be modeled subject to the constraints imposed by the rest of the 

protein structure. , e.g., the loop termini must end at the correct anchor positions. Some 

approaches to this long-standing “loop closure problem” seek analytical solutions to bond angles 

that properly position the ends 5-7. While exact solutions have been found for short polypeptide 
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segments, no general analytical solution is possible for segments containing more than a few 

amino acids in proteins. Other robotics-inspired algorithms for loop closure 8,9 likewise 

experience decreasing accuracy as the size of the loops increases. Additionally, analytical 

approaches to the closure problem very often yield solutions that place backbone dihedral angles 

in disallowed regions of Ramachandran (Rama) space and thus generate sterically forbidden 

conformations.  

Second, irrespective of how the loop closure is performed, a procedure is required for sampling 

various conformations of the local region. Existing approaches for predicting local regions in 

protein structures can be broadly categorized into two classes: database and de novo  (free 

modeling) methods 10,11.   Database methods search for loop fragments that best match the 

anchor geometries, 10,12 but these approaches usually are confined to short insertions because of 

poor database coverage for larger fragments. While these methods tend to be fast, the speed 

comes at the cost of the greater flexibility in exploring the conformational space of the loops 

permitted by free modeling methods.  The applicability of these methods is further challenged in 

the modeling of InsEnds in template-based models because the regions are likely to correspond 

to parts of the sequence that are inaccessible to the homology methods.  

In contrast, de novo methods sample sterically feasible loop conformations that are scored with 

physics-based or statistical potentials. For example, MODELLER places loop atoms uniformly 

between the anchor positions and optimizes the atom positions using conjugate gradient and MD 

with simulated annealing, scoring the loops using a combination of the CHARM22 force field 

and statistical preferences of the dihedral angles and atom contacts 13. Other free modeling 

methods like RAPPER 14  and PLOP 15 build loop fragments by sampling from a dihedral angle 
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library for each residue, beginning from one or both anchors and eventually attempting to close 

the loop while avoiding steric clashes.  

The third challenge is associated with the scoring of various conformations. Because the number 

of residues whose conformation vary between the different structural candidates is small, 

accurate energy functions can be crucial to guide the conformational search and score the final 

structures. Both statistical potentials 16 and physics-based force fields 14 have been used as 

scoring functions in loop modeling. Some methods use statistical potentials only for filtering, 

while the final ranking employs all atom force fields 17.Other methods focus on all atom energy 

functions designed specifically for loop modeling 18,19.  However, energy functions that are good 

at guiding the conformational search during the loop building stage might be inadequate for the 

final ranking of the decoys, especially in methods where the loop building is performed 

incrementally and separately from closure. 

Until recently, efforts in the study of local protein structure have largely centered on predicting 

loops in defined crystal structures. However, InsEnds predictions are made in the context of 

template-based models where the structures for the remainder of the protein may be imperfect, 

being constructed from one or more crystal structures and relying on a sequence alignment. As a 

result of this imperfection, the structure prediction algorithm must be lenient, thereby 

fundamentally distinguishing this problem from traditional loop modeling.  

Although both the treatment of loops and InsEnds involve local protein modeling, they can 

present different sets of challenges. While loops in crystal structures are defined as regions 

connecting different secondary structure elements, InsEnds are defined as regions devoid of 

information extracted from sequence alignments. Hence, InsEnd may include regions with 
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complete secondary structure elements. In addition, the length of loops is governed by the 

structural context, and, consequently, usually contain a limited number of residues. InsEnds, on 

the other hand, can be of arbitrary lengths. Furthermore, the boundaries of loops are generally 

well defined whereas the boundaries of InsEnds are determined by the gaps in the alignments. 

When multiple templates are combined to generate one model, the gap regions may appear with 

different boundaries in different templates, thereby rendering the InsEnds boundaries ambiguous. 

Our method is designed to address these issues. We demonstrate the robustness of our methods 

by successfully predicting the structures of long loop regions in crystal structures as well as 

providing blind structural predictions of InsEnds in the top homology models from our 

submissions to CASP9. We present a fragment free method for local structure prediction.  

Approach  

Our approach assumes that the principles governing the folding of proteins are equally applicable 

for modeling InsEnds.  We have shown that single backbone (φ,ψ) pivot moves provide an 

effective way to sample conformations, provided the moves are contingent upon the identities 

and conformations of the nearest neighbors (NNs). These moves have been used successfully in 

the fragment-free de novo prediction of the structures of single domain proteins 20,21.   

Our local structure prediction method generates random local conformations using the same 

single pivot (φ,ψ) move set as for our global structure prediction scheme (Fig. 2). The interaction 

energy is calculated both within the local regions and between the local region and the rest of the 

protein. The total energy is used to guide the conformational search, an approach that differs 

from many methods in which the loop fragment is constructed one residue at a time while 

simultaneously trying to satisfy the loop closure constraint at the end. In contrast to some 
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existing methods that separate loop building and closure into two subsequent stages, our 

approach integrates the two into a single simulated annealing Monte Carlo (MCSA) scheme, thus 

retaining the tertiary context of the entire protein during the simulation while attempting to 

rapidly find the best local conformation. This tertiary context can be critical for identifying 

crucial loop-protein interactions, thus greatly reducing the search space. The algorithm is 

designed to handle multiple loops in the same MCSA trajectory. Hence, when two loops are 

close enough to interact, they are modeled simultaneously.  

The conformational search proceeds through MCSA scheme (described in detail in the Methods 

section) that is guided by a combination of the pairwise additive, orientationally dependent 

statistical potential DOPE-PW, along with a harmonic ligation energy term to close the loop. The 

relative weight of the ligation energy increases during the MCSA to enforce loop closure. 

Explicit side chains are absent during the sampling stage of the simulation since the DOPE-PW 

statistical potential and backbone torsional move set implicitly incorporates sufficient 

information concerning the side groups 20. Final conformations are scored using a combination of 

structural clustering and accessible surface area of the hydrophobic residues to select the best 

solutions. The standard deviation in the positions of a given loop residue in a cluster (i.e., the 

tightness of the cluster) provides a metric for assessing the local quality of the predictions for the 

loop.  

RESULTS AND DISCUSSION 

Three different modeling scenarios are considered. First, we address the traditional loop 

modeling problem in crystal structures where the structure surrounding the loop is known. We 

next address InsEnds modeling as applied in the CASP9 blind prediction competition, where the 
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InsEnds are as large as 45 aa regions in template-based models generated by Xu’s RAPTOR-X 

algorithm 22. The third scenario is for the CASP9 refinement category in which the InsEnds 

algorithm is applied to the best structure from the server predictions and where the starting 

model and boundaries are specified by the organizers.  

Loops in crystal structures.  

In order to demonstrate the applicability to larger loops in crystal structures, 26 loops of lengths 

8 to 12 have been randomly selected from standard loop benchmarking studies 15. Loop 

boundaries for each target are taken as previously specified, and the loops are modeled using our 

method. Figure 4 illustrates the process of selecting the top 5 predictions, and Table 1a presents 

the best and the remaining four top predictions. After the predictions are clustered according to 

the RMSD between the loop structures, the largest five clusters are ranked using a linear 

combination of the Z-scores for the cluster tightness (RMSD between structures in the cluster), 

size, and average DOPE-PW energy, defined as Zt, Zs, and ZE, respectively, 

,  

where the Z-score for  the property of structure X, is Zi=(Xi-<Xi>)/σi, and  <Xi> and σi are the 

mean and standard deviation, respectively. After ranking the clusters, one representative from 

each cluster is selected using a combination of the DOPE-PW energy and the SASA to obtain the 

top 5 predictions. Although DOPE-PW is very successful in guiding the protein backbone into a 

proper conformation based on the orientation of the Cα - Cβ vectors, it is unable to resolve the 

details of solvation at an atomistic level because it is parameterized only at the Cβ level,. Hence, 

explicit SASA calculations are necessary to properly account for the solvation energy.  



  10 

  As discussed in the Methods section, the SASA scores are determined from a combined ranking 

of the hydrophilic and hydrophobic ASAs. Similarly, the structures are ranked using the DOPE-

PW energy function as well. The structure with the lowest total DOPE-PW + SASA rank in a 

given cluster is taken as the predicted structure from that cluster. Models are discarded when the 

distance between the free end and the anchor point fails to return to within 1.5 Å of the initial 

distance. If the largest cluster contains less than 5% of the structures, the scoring for the top 5 

candidates uses only the sum of DOPE-PW and SASA scores As shown in Supplementary 

Figure 1, the inclusion of SASA to the DOPE-PW energy improves the selection of the top 

structure in most cases compared to simply using DOPE-PW energy to select the top structure.  

A residue-specific deviation quantifies the local confidence score of the prediction for each 

residue individually in each of the top 5 predictions.  The local confidence scores are illustrated 

by color and thickness in Figure 4. The thicker (redder) portions in the predicted local region 

correspond to residues displaying the largest deviation within the cluster. 

 The simulations for loops of length 12 and 8-11 residues generate conformations with global 

loop RMSDs of 2.76Å and 1.93 Å, respectively, where the RMSD is calculated for the loop 

residues after aligning the structures without the loop regions (Table 2). These results can be 

compared to Table II  of Lee et al. 8 which presents the minimum backbone RMSDs found using 

different existing loop sampling protocols. Simulations for 12 and 8 residue loops in crystal 

structures with the cyclic coordinate descent (CCD) protocol 9 generates minimum RMSDs of  

3.05 Å and 1.59 Å,  the CJSD 8 method obtains 2.34 Å and 1.01 Å, the self organizing algorithm 

using an alternating scheme of pairwise distance adjustments(SOS)23 yields 2.29 Å and 1.19 Å 

and the FALC 8 scheme finds 1.84 Å and 0.78 Å, respectively .  
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The average RMSDs of our top ranked predicted loops are 3.98 Å and 3.13 Å for loops with 12 

and 8-11 amino acids respectively (Table 2). These results are comparable to those from two 

different methods, RAPPER 14 and FALC 8, ranked by DFIRE 16 as listed in Table IV in Lee et 

al. 8, where the average RMSDs of the top ranked 12 residue loop decoys for RAPPER and 

FALC are 4.32 Å and 3.84 Å respectively. Rossi et al. 24 compare four different commercial loop 

modeling packages - Prime (Schrödinger, LLC), MODELLER (Accelrys Software, Inc.), ICM 

(Molsoft, LLC) and Sybyl (Tripos, Inc.) – which obtain RMSD values ranging from 3 to 5 Å for 

loops with 10-12 amino acids. Our performance is comparable to these methods.  

We also compare our results to a recent atomic level loop modeling study which has sub-

angstrom level accuracy25. Although our Cβ level modeling certainly limits us in terms of 

obtaining sub-angstrom models, we still are able to obtain better or comparable models for some 

of the same benchmark proteins than the high resolution Kinematic Closure (KIC) protocol 

(Supplementary Table 1 in Ref.26). For instance, our top predicted model for 1hfc with 3.69 Å 

RMSD outperforms KIC’s 8.2 Å prediction for the same loop. Similarly, our top predictions for 

the other targets 4i1b, 1msc, 1cyo and 1pmy from our benchmark set in Table 1a yield RMSDs 

of 2.03 Å, 5.5 Å, 2.47 Å and 2.97 Å that are better or comparable to the high resolution KIC 

method’s top predictions of 3.8 Å, 3.2 Å, 5.2 Å and 2.6 Å, respectively, for the same 10-12 

amino acid loops.  The results demonstrate that a Cβ level representation of the protein chain 

without a costly analytical closure constraint is sufficient to achieve accuracy comparable to 

existing methods for relatively long loops in the context of crystal structures. 

Ends in crystal structures. 
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Another challenge involves modeling the termini of protein structures, a challenge that has 

attracted only limited study27,28. Unlike loops, end regions require no loop closure. To 

demonstrate that our method is also applicable to end regions, we have refolded the termini for 

six proteins (Table 1b). In each of the case, twenty residues in the C terminal end of the native 

proteins are first randomized while the rest of the structure is kept fixed. Starting from these 

pseudo-random structures, the end residues are sampled and clustered using the loop modeling 

protocol.  Because no loop closure is required, the termini are folded using only the DOPE-PW 

energy function.  

In 3/6 cases (1af7, 1o2f, 1r69), the best and the predicted structures have a global RMSD of 

under 3 Å (Table 1b), with the best local RMSD under 5 Å. Although direct comparisons are 

unavailable for the same proteins, the results are comparable to another method28 for refolding of 

terminal secondary structures where the average RMSDs of 4.6 Å and 2.0 Å are obtained for 10-

23 residue ends after three minimizations using the DFIRE and dDFIRE energy functions. We 

select the last 20 residues in each of the proteins for modeling irrespective of where the 

secondary structure boundaries lie. This protocol better mimics the situation encountered in 

authentic template based modeling where the number of unknown residues that require modeling 

is determined by the gaps in the sequence alignment and where no reliable information is often 

available about secondary structure type or boundaries.    

 

CASP9 blind InsEnds predictions. 

Methods designed for predicting the structure of internal loops may be inappropriate for termini 

of proteins because the energy functions and sampling generally used for loop modeling assume 
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both ends are fixed. Furthermore, InsEnds can encompass whole secondary structure elements. 

The existing loop modeling methods have been benchmarked for loops in crystal structures 

where the remaining structure and loop boundaries are known. The situation for homology 

modeling, however, is more complex, being highly dependent on the quality of the sequence 

alignments, template identification, and boundary determination. Consequently, the starting point 

for InsEnds modeling is imperfect and inexact.  

 The biannual CASP experiments present a unique platform for testing new and benchmarking 

developed methods through blind predictions. Our participation in CASP9 as MidwayFolding 

(groups TS435 and TS477) focused on testing our local structure prediction method and on 

improving poorly predicted local regions in template-based models. Our analysis begins with 

models generated by the program RAPTOR-X, which utilizes homology to identify template 

structures appropriate to a target sequence through sophisticated sequence/structure alignments. 

The templates are processed by MODELER to generate our starting model. We also use the 

sequence alignments of RAPTOR-X to identify the InsEnds regions in the models. Five entries 

may be submitted to CASP9 for each target, and Figure 5 displays the best of the 5 blind models 

submitted to CASP9 for each target. 

The CASP9 targets serve as examples to illustrate several strengths of our method. Several of the 

insertion regions contain secondary structure elements in the targets. The target T0464 from 

CASP8 presents a case where the insertion region is a helix, which our method predicts 

correctly, improving the model’s RMSD from 9.6 Å to 4.5 Å, as exhibited in Figure 5A.  

Another target, T0623 has a 25 residue gap in a region that is, in fact, a hairpin that is correctly 

predicted by our method as well (8.2 Å RMSD improved to 6.3 Å).  
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The largest InsEnds contains 45 residues (T0585), and the RAPTOR-X+MODELER programs 

describe them as a large loop. Our method correctly identifies that the missing region 

corresponds to three helices that pack into the protein core, thereby improving the model 

substantially from 15.1 Å to 9.1 Å overall RMSD as depicted in Figure 5H. The target TR606 

presents an example where the local modeling is performed for both termini simultaneously to 

form a pair of beta strands, thereby improving the overall RMSD from 4.9 Å to 3.8 Å for the 

target as a result of modeling the ends (Fig. 5G).  

Other CASP targets contain InsEnds that are loops connecting different secondary structures. For 

instance, the targets T0520, T0594 and T0612 yield initial models with loops containing as many 

as 17 residues (identified from the gap boundaries in the sequence alignments). Use of our 

InsEnds protocol for these three loop regions improves the overall RMSDs from 3.2 → 2.6 Å, 

2.2 →1.7 Å and 7.3 → 6.6 Å for T0520, 594 and 612, respectively (Fig. 5C-D).  The 

demonstration that we successfully model various types of InsEnds with the same protocol 

without any prior knowledge of whether they are loops or contain secondary structure elements 

highlights the robustness of the method.  

Blind Prediction of refinement targets in CASP9  

The judges for the refinement category in the CASP experiment select the best of all submitted 

(template-based) models from all participating groups. The local regions that deviate most from 

the native structure are identified to the predictors as the refinement targets. From our 

perspective, the refinement category is distinct because the starting model is guaranteed to be the 

best of the all CASP server models rather than one of RAPTOR-X’s model and because the 
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boundaries for InsEnds are specified based on where the server model differs from the native 

structure (as identified by the organizers) rather than from RAPTOR-X’s sequence alignment. 

On average for the 12 refinement targets, the 24 different refinement methods in CASP8 yield no 

net improvement over the starting models 29.  Table 3 lists the RMSD as well as the Global 

Distance Test (GDT) changes from the starting models along with the ranking of our method 

with respect to all the other refinement methods.  Our method proceeds by first initializing the 

InsEnds regions to a completely random conformation, so that no structural information about 

the InsEnds is retained from the starting model. 

Unlike the RMSD which relies on a single alignment, the GDT scores reflect the structural 

similarities at different distance cutoffs and therefore are generally better at assessing 

improvements in local regions. 30 We have attempted 11 targets for refinement in CASP9 (Fig. 6) 

and improve the GDT scores for 7 of them. Among all groups participating in CASP9 

refinement, 4 out of our 11 predictions (targets TR517, TR568, TR569 and TR517) fall in the top 

10% of all submissions, and 8 out of the 11 reside in the top 25% of all submissions, thereby 

outperforming several of the more costly all atom refinement methods. The improvements are 

achieved for targets with a wide range of starting GDTs (>50). The GDT/RMSD for TR569 

improves from 73.1/3.01 Å to 76.58/2.24 Å, and our method ranks 4th out of the121 total 

submissions for this target. The starting values for TR568 are lower at 53.35/6.39 Å, and we 

improve them to 56.7/5.1 Å with an overall ranking of 6th out of 127 submissions for the target.  

Our method performs much worse than the rest of the methods for one target, TR592, 

presumably because the starting structure is already extremely good (91.2/1.2 Å) that our Cβ 

level representation is inadequate, and, consequently, an all atom side chain representation is 
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required to improve the model further. Moreover, we have not refined the side chains in any of 

the cases, something that probably would have improved the results even more. 

Figure 6 displays all of our predictions for the refinement targets in CASP9. The figure illustrates 

how well the model aligns to the native structure before refinement (initial) and after refinement 

(after) when superposed using the LGA program 30. The improvements introduced into the local 

region also help to align the remainder of the protein in several cases. For example, in TR614, 

even though the actual regions modeled are an insertion from 33-50 and the C terminal residues 

106-121, the local alignment of the N terminal residues improves over the starting model as 

indicated with blue in the LGA alignment for TR614 in Figure 6. 

Molecular Replacement Results for CASP9 refinement targets 

One of the CASP9 refinement metrics assesses how well the predicted models reproduce the 

experimental data 31. Recently, models generated by the structure prediction methods have been 

inserted into the molecular replacement likelihood algorithms for X-ray crystallographic 

refinement to solve the phase problem 32,33. The assessors for CASP9 refinement judge the 

quality of each submitted model in this regard by calculating the Z-score of the best orientation 

of the model in the unit cell of the crystal compared to placing it in a set of random orientations. 

Only models with Z-scores above 6 are considered good enough to solve the phase problem. 

Table 3 in Ref. 31 summarizes how often various groups improve the Z-score of the targets from 

likely unrefinable (< 7) to likely refinable (> 7). Our method performs as well or better than all 

the other groups in this test, with positive results in 2 out of 3 cases attempted. Since our 

approach employs a backbone + Cβ model with the side chains either missing or added simply 

using SCWRL4.0 with no further refinement, some of our submitted models were discarded in 
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the analysis by assessors. Regardless, the fact that our method ranks at the top in the molecular 

replacement test proves its real value in X-ray crystal structure refinement.  

  In contrast to most other methods that expend considerable computing resources on including 

all-atom interactions, our method lacks explicit side chain atoms. This difference highlights the 

distinction between the refinement of crystal structures and template-based models. The all atom 

refinement of crystal structures benefits from having high resolution information for the rest of 

the structure, whereas homology models are usually far from perfect. It is unclear whether the 

expensive modeling of all the atoms in an imperfect environment provides a computationally 

efficient strategy. In contrast, the first step of our approach is designed to obtain the proper 

backbone structure and orientation for the local region using a coarse level of modeling that is 

less sensitive to the atomic level details for the rest of the homology model. Once the coarse 

level model is obtained for the local region, side chains may be added, and more detailed all-

atom refinement can proceed. 

Global InsEnds RMSD vs. local InsEnds RMSD 

RMSDs are calculated in three ways help to quantify the quality of the modeling of local InsEnds 

regions,  

a. Local InsEnds RMSD: Align the loop and calculate the RMSD of only the InsEnds region. 

b. Global InsEnds RMSD: Align all the residues besides the InsEnds, and then calculate the 

RMSD of the InsEnds region. 

c. Global structure RMSD: Optimally align all the residues in the protein and calculate the 

RMSD of the full chain. 
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The local InsEnds RMSD is a measure of how well the InsEnds region itself is modeled, and the 

global InsEnds RMSD provides a measure of how well the modeled InsEnds is oriented with 

respect to the rest of the protein. The global InsEnds RMSD is the ideal measure of loop quality 

when predicting loops in crystal structures because the only difference between the native 

structure and the model can appear in the loop region. In contrast, InsEnds modeling of 

homology models begins from inexact structures, and, therefore, assessing the refinements 

requires accounting for the RMSD of the rest of the structure (besides the InsEnds) with respect 

to the native structure. If the starting homology model deviates significantly from the native 

structure, the alignment of the non-InsEnds region necessarily must skew the anchor regions, and 

therefore the global InsEnds RMSD would not provide as a good a metric for reporting the 

accuracy of InsEnds modeling than either the local InsEnds RMSD or the overall RMSD of the 

structure.  

This utility of the different RMSDs is illustrated for six targets from CASP8 for which the initial 

RAPTOR models have variable RMSDs to the native structures. The 11-12 residue InsEnds 

regions in those models are chosen for (post-dictum) prediction using our method (Table 4). Not 

surprisingly, the global InsEnds RMSD is highly dependent on the quality of the initial model 

(i.e., the RMSD of all but the InsEnds region in the initial model). For target T0478D1, the 

RMSD of the non-InsEnds region in the starting model is 8.07 Å; the best local InsEnds RMSD 

decreases from 2.9  to 1.58 Å: whereas the best global InsEnds RMSD decreases from 12.2 to 

8.4 Å.  

Target T0411D1 has the non-InsEnds RMSD of the starting model much closer to native 

structure at 2.74 Å, and our local InsEnds RMSD improves from 3.53 to 1.85 Å, similar to the 

local InsEnds RMSD improvement in T0478D1(2.9 Å to 1.58 Å). However, the global InsEnds 
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RMSD for this target improves from 10.2 Å to 2.78 Å, which is much more remarkable than the 

global InsEnds RMSD in T0478D1 (12.2 Å to 8.4 Å). The difference can be attributed 

T0411D1’s starting model having the non-InsEnds region much closer to the native structure as 

compared to T0478D1. Figure 7 illustrates this behavior and indicates that the local InsEnds 

RMSD remains relatively unaffected, whereas the global InsEnds RMSD for the same targets are 

quite severely affected by the RMSD of the remaining region. The successes of the modeling 

also support our previous contention from protein structure predictions that the neighbor 

dependent φ,ψ distributions capture local interactions reasonably well 20.  

Applications to protein folding simulations 

Although loop modeling is often called the “mini-folding problem”, traditional approaches to 

loop modeling do not consider the folding mechanism when predicting loops. Our method on the 

other hand, views local modeling in a fashion that fits naturally into the larger problem of protein 

folding.   

Experimental studies indicate that proteins fold through sequential stabilization of tertiary 

structure elements or foldons  34-37. Often, long range contacts form early in the folding pathway 

and produce intermediate species where some entrained local regions are not yet folded. Hence, a 

computational scheme designed to predict structure by mimicking the natural stepwise fashion of 

folding pathways should encounter the problem of folding inside of loops.  

Our InsEnds algorithm is well suited to address this problem because the undetermined local 

regions in the structure that arise during the folding pathway can correspond either to distinct 

secondary structures, loops, or to combinations thereof. As a proof of principle, we test our 
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method by predicting native structures of possible intermediates in the pathways for folding two 

proteins, ubiquitin and barnase. 

The late folding intermediate in ubiquitin lacks the 310 helix and the β5 strand, while the rest of 

the structure is well formed 34,38 (Fig. 8B). Starting from a native-like structure for the 

intermediate, the InsEnds algorithm is used to fold the 18 residues insertion. The InsEnds 

refinement procedure successfully recovers the native structure to a global RMSD of 1.6Å (Fig. 

8C). This illustrates an example where the local region is neither a loop nor a continuous 

secondary structure. Nevertheless, we still obtain the right topology, essentially completing the 

last step of the folding pathway to predict to the native structure. 

Barnase is a 108 residue protein that is atypical for a small protein because it contains 3 distinct 

hydrophobic cores. The two hairpin loops depicted in Figure 8D are crucial to the structure 

because they are involved in formation of the protein’s cores, and, therefore, the correct 

prediction of the loops is essential for the prediction of the global structure. Experiments indicate 

that loop 2 is the last structure to form in the folding pathway 36. Applying the InsEnds method to 

fold both the 10 and 15 residue loops in barnase (Fig. 8E,F), our best predictions in both cases lie 

in the top clusters, and the best global RMSDs are 2.03 and 1.27 Å for loops 1 and 2, 

respectively.   

The problem of folding inside of loops highlights two aspects of our method. The first is that our 

approach treats local and global structure prediction similarly by mimicking the natural protein 

folding mechanism. The second aspect is the demonstration that given the correct boundaries, 

our method is able to reconstruct the local structures irrespective of whether the local regions are 

well defined secondary structures or loops.  
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Simultaneous Folding of multiple InsEnds 

One crucial feature of our approach is the ability of simultaneously modeling multiple local 

regions. When the regions are interacting, simultaneous modeling can be essential because the 

context provided by one local region may be important in guiding the other into place. A good 

example is the CASP target TR606, where the InsEnds correspond to the two termini that form a 

hydrogen-bonded pair of β strands. The initial template model fails to identify the ends as 

strands, and, therefore, the ends are wrongly placed. Accurate modeling requires that they be 

folded simultaneously. Guided only by the orientationally dependent DOPE-PW energy function, 

we have modeled the free termini and correctly predicted the pair of strands in our top 

submission (Fig. 5G). 

 Protein Structure prediction pipeline. 

Here our goal is to combine the respective strengths of free modeling with templated-based 

modeling for an integrated structure prediction pipeline. This goal is realized through an 

automated server, created for CASP9 that integrates the InsEnds, RAPTOR-X and ItFix 

methods. Given a sequence, the pipeline begins by performing homology modeling using 

RAPTOR-X. If no templates are identified, the pipeline directs the sequence for free modeling 

using our existing ItFix algorithm for secondary and tertiary structure prediction. If RAPTOR is 

able to build a template-based model, the InsEnds are modeled to obtain a final structure. The 

pipeline has been used for the CASP9 structure predictions of the MidwayFolding group 

(CASP9 group numbers 435, 477).  

 

Conclusions 
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Loop modeling has been an on-going challenge in protein structure prediction. With the recent 

surge in templated-based modeling, InsEnds modeling is a relatively new topic in need of novel 

approaches. Previous methods have focused on loops in the context of crystal structures and may 

not be generalizable to treat imprecise template-based models. InsEnds pose a more complicated 

situation where the poorly predicted local regions must be modeled without assumptions 

concerning the accuracy of the rest of the structure or the boundaries and secondary structure of 

the local regions being modeled. This work presents a novel free modeling method for local 

protein structure prediction that is applicable for modeling large local regions in both exact and 

inexact environments, as demonstrated by results both for loops in crystal structures and for 

InsEnds in template-based models. We consider this result as a step towards the generalization of 

the local protein structure problem. The work also presents a framework in which free and 

template-based modeling are integrated towards closing the final gaps in protein structure 

prediction. 

 

METHODS 

All backbone heavy atoms are explicitly treated, whereas the side chains are represented by 

single Cβ atoms 20,21. The backbone bond lengths and angles are fixed at their ideal values, and 

only backbone torsional angles φ,ψ  are sampled during the simulation. Loop closure is achieved 

by ligating the free ends of the loops to the beginning of the subsequent chain with a harmonic 

constraint whose strength increases as 1/Temperature during the MCSA procedure (Fig 3). 

 

Ramachandran Map (Pivot) Move Set and Sampling. The study uses our approach for sampling 

single residue (φ,ψ) backbone torsional angles 21. A distribution of φ, ψ angles is generated from 
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a high resolution library of PDB structures for each amino acid (aa), conditional on the identity 

of the flanking amino acids. These nearest neighbor (NN) dependent torsional angle distributions 

are pre-calculated for all 20 aas, resulting in 8000 total Rama Maps that are divided into 50x50 

bins. During each Monte Carlo step, a selected residue’s φ, ψ angles are changed. Besides the 

identity of the NN, the Rama Maps can also be restricted according to secondary structure of the 

aa and its NNs. The data presented in the paper, however, are obtained without the imposition of 

this restriction, thereby enabling the exploration of all regions of torsional space allowed for a 

given amino acid based on its neighbor’s identity. The only exception to this is the CASP8 target 

T0464, where 5 of the 24 residues are restricted to helical angles as the PSIPRED program 39  

predicts them to be helical with high confidence. 

  

Energy functions. The conformational search is guided through the simulation by an energy 

function that is a combination of the pairwise, orientation-dependent statistical potential DOPE-

PW 20 and a harmonic ligation term for the closure of the loop: 

 

where T is the simulation temperature, D/D0 are the current/initial distances between the two 

anchor points, and L/L0 are the distances between the free end and the anchor point at the site of 

the cut. The ligation term becomes stronger as the simulated annealing temperature decreases. 

The initial temperature of the simulations is set to 100, and Tk is chosen such that the 

contributions from the DOPE-PW and ligation energies become comparable by the end of the 

simulation.  
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The interactions in DOPE-PW are parameterized based on the observed distance distributions in 

the PDB, contingent on neighbors, amino acid identities, secondary structures, and side chain 

orientations. DOPE-PW has been demonstrated to perform well in guiding the conformational 

search during prediction of the structure of small proteins. The DOPE-PW term initially 

dominates the total energy and provides greater freedom for the conformational search, thereby 

aiding in properly orienting the loop with respect to the rest of the structure. 

Scoring.  Once the set of final conformations is generated from the MCSA simulations, the best 

candidate among this set of conformations is chosen using a combination of quantities computed 

from clustering, DOPE-PW energies, and solvent accessibility. 

Clustering. Clustering based on the Cα RMSD provides a very effective means to identify 

dominant conformations.  Hierarchical clustering proceeds with a distance cutoff of 5Å, using 

the minimum distance method with the Cluster module in Biopython 40.  Trials with distance 

cutoffs of 4 Å and 6 Å do not significantly alter the results. Clustering is used only when the 

largest cluster contains at least 5% of the total structures. The clusters are ranked as detailed in 

the Results section, while the best individual structures are selected according to the sum of the 

DOPE-PW energy and the solvent accessible surface area (SASA).  

Loop regions reside mostly on the protein surface, and thus solvent interactions can be crucial 

determinants of loop structures. Hence, most successful loop scoring schemes include some 

approximate measure for the extent of solvation as part of the scoring function14,15,17. While the 

DOPE-PW energy function accurately describes the preferred orientations of the side chains of 

both hydrophilic and hydrophobic residues as being directed away and toward solvent, 

respectively, the interactions are still assumed to be pairwise additive between Cα-Cβ bond 

vectors and thus do not explicitly treat the solvent accessibility. Since explicit side chains are 
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absent during the sampling stage, the program SCWRL 4.0 41 is used to add side chains to enable 

calculating the SASA using a rapid approximation with a water radius of 1.4 Å 42. The SASAs of 

each residue are assigned into hydrophobic and hydrophilic components, and the structure that 

minimizes the hydrophobic ASA and maximizes the hydrophilic ASA is presumed to have the 

best ASA score. For this purpose, the structures are ranked using both the hydrophobic and 

hydrophilic ASAs, and the combined rank is taken as the net ASA score.    

MCSA Simulation Procedure. The initial torsional angles of the InsEnds are randomly chosen so 

that no prior information is retained regarding its conformation, while the rest of the protein 

structure is kept fixed. 700-1000 independent MCSA trajectories are run using the energy 

functions described above. Each step of the MCSA trajectory involves selection of a random 

amino acid in the InsEnds whose torsional angle is modified according to the pre-generated NN 

dependent Rama Map for that amino acid. This results in a new InsEnds conformation whose 

energy is evaluated, and the conformation is either accepted or rejected based on the Metropolis 

criteria at that temperature using the energy functions described above. The temperature is 

updated every 500 Monte Carlo steps, using a polynomial time cooling schedule.26 The 

simulation protocol has been implemented in a C library, called the Protein Library, and the  

input/output is handled using the PDB tools from the Biopython package. 

Parallel Scripting. The InsEnds algorithm has been implemented for high throughput structure 

prediction using the parallel scripting language, Swift.43  Swift enables the algorithm to be 

expressed in a high-level logical manner independent of any specific computing resources. Swift 

automatically parallelizes the independent invocations of the lower level protein structure 

manipulation programs, which are written in Python and C. Swift further provides the flexibility 
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of running on multiple, different, parallel architectures by automating job scheduling and error 

handling, and logs the provenance of all data objects produced.  
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Table 1a: Prediction of loops of 8-12 residues in crystal structures 

Local Loop RMSD(Align Loop, RMSD loop) 
 

 
Global Loop RMSD(Align rest, RMSD loop) 

 
  
Target 

  
Loop 
Length  Best  

Pred
1 

Pred
2 

Pred
3 

Pred
4 

Pred
5  Best 

Pred
1 

Pred
2 

Pred
3  Pred4 

Pred
5 

1rcf 12 1.81 2.67 3.39 3.27 3.38 2.79 2.61 3.79 5.29 4.63 4.64 4.53 

1thw 12 1.84 4.61 2.4       4.53 5.94 5.87       

2cpl 12 1.09 1.09 4.14 4.02 4.72 4.37 2.43 2.43 6.34 6.94 6.84 8.37 

1cyo 12 0.75 1.97 3.46 1.67 3.94 5.11 1.23 2.47 4.95 4.09 5.15 7.03 

1hfc* 12 1.91 2.08 2.42 3.38 3.06 3.39 3.69 3.69 4.58 5.6 4.29 7.01 

1onc 12 2.19 3.24 2.19 2.95 2.94 2.99 2.91 3.83 5.26 5.36 5.66 5.22 

1pmy 12 0.57 2.47 1.79 2.28 2.64 3.79 1.24 2.97 3.13 2.98 4.07 7.02 

1rro 12 1.84 2.65 2.98 3.79 2.83 2.82 4.63 6.94 7.78 8.44 6.52 7.34 

1scs 12 2.27 3.48 5.2 4.91     3.1 4.22 7.87 6.95     

1bkf 12 1.55 2.26 2.55 2.9 2.69 2.35 2.48 3.37 4.82 6.82 4.85 3.98 

2tgi 12 2.44 2.85 3.35 3.35 3.48 3.22 3.64 4.19 5.32 5 4.66 4.33 

1eco 12 0.52 3.43 3.85 5.09 4.16 4.12 0.85 2.65 3.01 1.99 3.45 3.09 
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1msc 12 1.96 3.64 5.08 3.57 3.96 5.17 2.57 5.5 7.3 11.9 12.6 7.9 

1acf 11 1.8 2.05 3.59 3.52 3.88 2.22 2.34 2.86 4.21 4.09 4.41 3.19 

1cid 11 1.16 1.17 2.19 1.65 3.34 3.32 1.39 1.83 3.16 2.17 5.47 4.83 

1noa 11 1.68 4.14 4.35 4.7 3.43 4.35 2.59 7.22 6.7 8.3 6.51 7.7 

1plc* 11 1.8 2.05 2 1.8 4.59 1.84 3.42 3.42 4.89 4.08 8.35 3.57 

1xnb 11 0.91 1.62 2.67 3.3 2.72 3.17 1.39 2.41 3.42 4.45 3.67 4.6 

4i1b 11 1.17 1.13 3.72 3.64 3.11   2.03 2.03 9.71 10.3 10.83   

8dfr* 11 1.71 1.71 2.04 3.2 3.85 2.96 2.89 2.89 4.79 6.19 6.37 6.39 

1aaj 11 1.71 2.5 2.69 2.81 3.14 2.62 2.79 3.59 4.66 5.9 7.08 6.03 

5p21 10 1.74 2.78 2.99 2.47 2.67 2.38 2.62 4.27 3.87 3.24 3.94 3.71 

5fx2 10 1.93 2.79 3.42 2.3 3.77 3.92 2.29 3.23 3.55 2.6 5.32 4.7 

1cbs 8 0.74 3.65 0.74       1.74 5.41 1.74       

1xnb 8 0.28 1.49 1.21 0.53 1.16 1.13 0.77 3.53 1.83 0.85 1.86 1.94 

1poa 8 0.44 0.54 0.97 1.01 3.94 2.71 0.76 1.23 2.1 1.59 5.56 4.84 

 

* refers to cases where the top cluster contain less than 5% of the total structures. In those cases, the 
top 5 predictions are selected using DOPEPW+SASA instead; units are in Å. 

- The bold font indicates the best out of the top 5 predictions. 

 

 

Table 1b: Prediction of 20 end residues in crystal structures 

 
Local Ends RMSD(Align Ends, RMSD Ends) 

 

 
Global Ends RMSD(Align rest, RMSD Ends) 

 
  
Target 

 
Type 

  
Ends 
Length  Best  

Pred
1 

Pred
2 

Pred
3 

Pred
4 

Pred
5   Best 

Pred
1 

Pred
2 

Pred
3  Pred4 

Pred
5 

1af7 α 20 1.33 2.36 2.21 3.74 3.8 3.07 2.24 2.24 3.8 4.36 5.58 5.42 
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1o2f αβ 20 1.76 2.01 3.26 3.06 3.07 4.72 2.37 2.80 5.94 4.04 4.29 11.9 

1mky αβ 20 3.47 3.82 4.6 3.71 4.3 4.15 4.11 5.68 5.58 7.78 9.66 8.72 

1b72 α 20 4.06 5.08 4.95 4.69 5.19 5.11 5.2 5.8 6.71 5.6 6.75 6.15 

1r69 α 20 2.17 2.50 3.28 7.46 8.04 8.08 2.72 2.99 5.04 8.35 9.6 8.34 

1tif αβ 20 4.85 5.50 8.75 9.38 9.19 9.68 6.31 7.02 10.6 12.1 11.5 11.6 
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Table 2: Statistics for loops in crystal structures.  

 

Local loop RMSD (Å) Global loop RMSD (Å) 

Best Pred1 Best Pred1 Length 

 Average Stdev Average Stdev Average Stdev Average Stdev 

12 1.59 0.62 2.80 0.85 2.76 1.14 3.98 1.3 

8 to 11 1.31 0.54 1.97 1.09 1.93 0.93 3.13 1.74 
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Table 3: Blind InsEnds prediction of refinement targets in CASP9.   

 

CASP9 

refinement 

target 

GDT 

starting 

RMSD 

starting 

GDT 

MidwayFolding 

RMSD 

MidwayFolding 

Rank of 

MidwayFolding 

TR569 73.1 3.01 76.58 2.249 4/121 

TR568 53.35 6.963 56.7 5.108 6/127 

TR517 71.38 4.646 72.17 4.638 11/119 

TR622 67.42 7.47 69.47 5.773 12/120 

TR606 71.95 4.85 72.56 3.915 19/128 

TR594 87.32 1.805 86.07 1.957 23/134 

TR567 78.34 3.435 78.52 3.46 28/107 

TR557 67.6 4.074 68.2 3.74 28/118 

TR614 75.21 4.1 67.36 4.895 43/118 

TR624 54.71 5.529 52.9 5.577 47/122 

TR592 91.43 1.204 82.38 3.415 111/131 

TR576 48.91 10.926 Ignored since initial GDT<50 

 

The numbers reported are the GDT and RMSD values from the CASP9 website. The values in bold 
indicate targets with an improvement in the GDT score from the starting model. 
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Table 4: Prediction of InsEnds in CASP8 structures (post-diction). 

 

Local InsEnds RMSD to native 

(align InsEnds, RMSD of InsEnds) 

Global InsEnds RMSD to native 

(align non InsEnds, RMSD of 
InsEnds) 

Global protein RMSD to native 

(align all, RMSD of all) 

CASP8 Target InsEnds    
Length 

RMSD of 
InsEnds 
region 

Initial 
model 

(RAPTOR 
+ Modeler) 

 

InsEnds 
Best 

InsEnds 
Predicte

d 

Initial 
model 

(RAPTOR 
+ Modeler) 

 

InsEnds 
Best 

InsEnds 
Predicted 

Initial 
model 

(RAPTOR 
+ Modeler) 

 

InsEnds 
Best 

InsEnds 
Predicted 

T0431D1 11 5.21 0.22 0.52 0.91 5.34 4.14 4.7 4.76 4.04 4.81 

T0456D2 12 2.09 0.49 0.47 0.47 1.44 1.22 2.03 2.04 2.12 2.16 

T0478D1 12 8.07 2.9 1.58 3.05 12.2 8.4 11.8 8.26 8.21 8.31 

T0443D1 12 3.42 4.04 3.7 3.48 11.13 7.3 7.67 5.33 4.42 4.62 

T0411D1 11 2.74 3.53 1.85 3.53 10.2 2.78 4.98 3.87 2.85 3.11 

T0479D1 11 1.54 0.75 0.48 0.97 2.3 1.59 1.69 1.62 1.59 1.59 

 

 

 
 



  35 

 

Figure Legends 

 

Figure 1. The InsEnds modeling problem. A multiple sequence alignment of a target sequence 

to template sequences can contain insertion regions at the same location.  

Figure 2: Local structure prediction algorithm.  

Figure 3. The ligation terms close the loop. Constraints are placed on the distance between the 

two ends of the loop and the distance between the free end of the loop and the anchor residue. 

Figure 4.  Selection of the top 5 loop predictions for 1xnb. After clustering, the largest 5 

clusters are ranked based on Z-scores with respect to cluster tightness, size, and average DOPE-

PW energy. Once ranked, a selection is made from each of the 5 clusters using DOPE-PW + 

SASA. 

Figure 5. CASP9 Ins&Ends blind predictions. Numbers indicate improvement from 

MODELER (Red) to our model (blue), as compared to the native structure (green) after 

modeling the regions enclosed by the boxes. RMSD changes are for the whole structure. 

Figure 6. InsEnds predictions for CASP9 refinement targets.  Difference between CA/CA 

distance across the sequence of the initial (starting) /native and final (refined using InsEnds 

method)/native after superposition using sequence-dependent LGA protocol. Official data from 

CASP9 official website (http://predictioncenter.org/casp9/) . For each target, the arrows indicate 

the regions where the InsEnds modeling has been performed. The blue to green color change 

designates regions where the InsEnds modeling improves upon the given target based on LGA 

superposition to native structures.   
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Figure 7. Global versus local RMSD. The RMSD of non InsEnds region is plotted against the 

global InsEnds RMSD (red) and local InsEnds RMSD (blue) for six CASP8 targets. The global 

InsEnds RMSD is affected severely by the quality of the homology model. 

Figure 8. InsEnds algorithm applied to protein folding pathways. A) The β5 and 310 helix in 

ubiquitin that are the last structures to form in the pathway. Their structures are depicted as 

disordered in the model B) of the folding intermediate and C) predicted using the InsEnds 

algorithm. D) Barnase native structure highlighting the two hairpin loops that are part of two 

different cores, and E) and F) predictions of the loops using InsEnds algorithm, respectively.  

Supplementary Figure 1. Improvement in model selection after including SASA : The 

combination of DOPE-PW+SASA improves the selection of the top prediction in most cases 

compared to using only DOPE-PW. 


