
Malleable Model Coupling with Prediction
Daihee Kim

State University of New York at Binghamton
dkim17@cs.binghamton.edu

J. Walter Larson
Argonne National Laboratory

larson@mcs.anl.gov
University of Chicago

The Australian National University

Kenneth Chiu
State University of New York at Binghamton

kchiu@cs.binghamton.edu

Abstract—Achieving ultrascalability in coupled multiphysics
and multiscale models requires dynamic load balancing both
within and between their constituent subsystems. Intercon-
stituent dynamic load balance requires runtime resizing—or
malleability—of subsystem PE cohorts. We enhance the Malleable
Model Coupling Toolkit’s Load Balance Manager (LBM) to
incorporate prediction of a coupled system’s constituent com-
putation times and coupled model global iteration time. The
prediction system employs piecewise linear and cubic spline
interpolation of timing measurements to guide constituent cohort
resizing. Performance studies of the new LBM using a simplified
coupled model testbed similar to a coupled climate model show
dramatic improvement (≈ 77%) in the LBM’s convergence rate.

Keywords-MPI, Dynamic Load Balance, Model Coupling, Mul-
tiphysics Modeling, Multiscale Modeling

I. INTRODUCTION

Simulation of complex multiphysics and multiscale—or,
more generally, coupled—systems in science and engineer-
ing often relies on compound applications that incorporate
multiple interacting subsystem models, or constituents. Cou-
pled systems appear in numerous interdisciplinary research
areas. The interactions between subsystems amount to inter-
constituent data dependencies; in distributed-memory parallel
implementations interconstituent data transfer is parallel and
frequently called M ×N transfer [1], [2]. More generally, the
transport and transformation (e.g., intermesh interpolation) of
one subsystem’s output into another’s input is called coupling
and, on multiprocessors, parallel coupling [3].

A key challenge in building scalable, parallel coupled
systems is runtime resource allocation, that is, the mapping
of constituents to collections of processing elements (PEs),
or cohorts. In a coupled system using parallel composition—
constituent PE cohorts are non-overlapping—scalability and
computational intensity of the constituents inform sizing of
their respective cohorts. Load balancing a parallel coupled
model is complicated by its interconstituent data traffic and
the wall-clock time it consumes. Resources (in our case PEs)
must be allocated to constituents harmoniously to reduce the
wait time caused by load imbalance and data-dependency-
driven interconstituent synchronization. Resource allocation to
a coupled model’s constituents is generally performed through
trial and error, consuming much time and effort. Frequently
these resource allocations are static, even though the runtime
load per constituent may vary with time. Furthermore, load

balance configurations are platform-dependent. Thus, develop-
ers of parallel coupled model could benefit from infrastructure
that supports automatic, runtime interconstituent load balance,
both for implementing dynamic load balance at runtime and
for determining static load-balance sweet spots. This need will
become more pronounced with trends toward more complex
coupled models (with increasing number of constituents) and
exascale computer hardware (with increasing numbers of PEs).

We call the ability to reallocate constituent PE cohorts
malleability [4]. We call a coupled model that allows dy-
namic interconstituent load balance a malleable coupled model
(MCM). In previous work [5], we introduced the Malleable
Model Coupling Toolkit (MMCT), which is an extension of
the Model Coupling Tooklit (MCT; [6], [7]) that supports
dynamic load balance in parallel coupled models. MMCT
consists of MCT, a load balance manager (LBM), and a
dynamic process and communicator management system. The
present work focuses on improvements to the LBM. The
simple and practical LBM originally developed for MMCT
converges too slowly to support production use. Our objective
is to improve the LBM’s convergence properties and final load-
balance solution.

We describe related work in Section II and malleable model
coupling and MMCT in Section III. The improved, prognostic
load-balancing algorithm is presented, and its performance in
a simplified coupled-model testbed is reported in Sections
IV and V, respectively. We summarize our conclusions and
outline future work in Section VI.

II. RELATED WORK

Some research has been done to apply malleability to paral-
lel iterative applications for dynamic load-balancing. SRS [8]
allows a parallel application to reconfigure PE cohorts by
stopping and restarting its execution. PCM/IOS [9], [10]
enables profiling of parallel applications and triggering of
reconfigurations to support malleable, iterative MPI applica-
tions. The ReSHAPE [11] framework changes PE allocations
of malleable parallel applications during job scheduling for
system resource utilization. Utera et al. [12] also dealt with
malleability for efficient job scheduling. None of these ap-
proaches, however, are immediately applicable to malleable
model coupling since they concentrate on applying malleabil-
ity to monolithic parallel applications.

Ko et al. [13] introduced a coupled multiphysics simulation

atm cpl ocn

Climate benchmark

mpiexec Out of band communication (socket)

Load Balance Manager

(LBM)

MPD

(MPICH2)

Placement

list

Fig. 1. Climate testbed runtime architecture with MPD and LBM.

system that is able to optimize PE allocation. Their load-
balancing algorithm, however, is applicable only to a coupled
model with two constituents and with the assumption that
computation time is reduced ideally by parallelization. The
CSCAPES project [14] has as one of its foci dynamic load-
balancing for parallel applications. Hypergraph-based repar-
titioning with Zoltan [15], one of CSCAPES contributions,
performs dynamic load-balancing through data/computation
migration within a model’s PE cohort. Data/computation mi-
gration cannot, however, occur between different models.

III. MALLEABLE MODEL COUPLING AND MMCT

A coupled model’s state evolves in time as its N
constituents solve their respective equations of evolution,
exchanging flux and state data with their peers as required.
Interconstituent data exchanges and attendant processing are
called coupling events [3]. These events can be threshold-
driven and unpredictable or regularly scheduled. A coupled
system whose coupling events are scheduled and fall into a
repeatable sequence within a constant time interval ∆T has a
coupling cycle [3] with period ∆T ; ∆T may be viewed as the
irreducible overall “timestep,” of the coupled system because
it represents the minimum time over which all interconstituent
data dependencies arise. For example, the Community Climate
System Model (CCSM) [16], [17] has ∆T = 1 model day.

The global iteration time τG and constituent iteration time
τi represent the respective wall clock times required to com-
plete a coupling cycle by the coupled system and its ith
constituent [5]. One may decompose τi as τi = τ comp

i +τ coup
i ,

the sum of its constituent computation and (non-overlapped)
constituent coupling wall clock times, respectively. The object
of dynamic, interconstituent load-balancing is minimization of
τG through constituent PE pool reallocation—malleability—to
harmonize the values of (τ comp

i , τ coup
i), i = 1, . . . , N .

MMCT enables straightforward MCM construction by
offering infrastructure for interconstituent PE reallocation
and global PE cohort (i.e., MPI COMM WORLD) resizing.
MMCT extends MCT with a dynamic process and com-
municator management system (PCMS) and centralized load
balance manager. The runtime architecture of a simple MMCT-
based MCM is shown in Figure 1. At startup, the head node
of each constituent is created by mpiexec [18], and the LBM
sends it a PE placement list to initialize its cohort. The
LBM communicates with each constituent’s head node via
socket-based, out-of-band communication. The LBM gath-

ers and analyzes throughput information—values of τG and
(τ comp

i , τ coup
i), i = 1, . . . , N—to make PE cohort reallocation

decisions; its analyses are guided by a load balance algorithm,
which is the central focus of this paper. The head node/process
of each constituent gathers timings from all its nodes and
provides the LBM summary statistics. The PCMS executes
the LBM’s decisions through dynamic process creation and
termination. The system performs these operations over a
predefined load balance interval (LBI), which corresponds
to the coupling cycle period ∆T . At the end of each LBI,
each constituent performs one of three actions: SHRINK
(EXPAND) to reduce (increase) the number of PEs in its
cohort, or PRESERVE the current number of PEs in its
cohort. resizings require checkpointing and redistributing data
and re-handshaking of M×N interconstituent communications
schedules. The former must be supplied by the user; the
latter is an MCT function. Further details on the software
implementation of MMCT and its relationship to MCT can
be found in [5]. MMCT’s LBM initially used a gradient
descent-based method [19] to make its allocation decisions [5].
This algorithm worked by selecting a direction composed of
two constituents: a donor constituent releases a PE that is
subsequently allocated to a recipient constituent. Selection and
reallocation occur until no other possible direction exists and
τG is reduced. This approach was sufficient to demonstrate
the viability of malleable model coupling, but it suffered from
the following problems. First, it could reallocate only one PE
per LBI because we had no clear method for determining how
many PEs could be reallocated at a time. Second, all possible
directions had to be tried because of the sensitivity of τG

to τ comp
i and τ coup

i . Third, LBM decisions were adversely
impacted by timing noise; if the changes in τG were on the
order of or less than the timing noise in τ comp

i , the LBM could
easily make the wrong decision, undoing (confirming) a wise
(an unwise) reallocation. In sum, the gradient descent-based
LBM algorithm was slow to converge.

IV. PREDICTIVE LOAD-BALANCING ALGORITHM

We assume that τ comp
i = fi(pi), a function of pi, the

number of PEs in its cohort. The constituent computation
time τ comp

i decreases (increases) monotonically with pi for
pi < p∗i (pi > p∗i). Scaling saturates at pi = p∗i , where
τ comp
i has its minimum. For pi > p∗i , overheads such as

communication cost begin to dominate τ comp
i . Our algorithm

starts with an initial PE allocation ~P 0 = (p0
1, . . . , p

0
N) to

the system’s N constituents. Analyzing measurements of τG

and {τ comp
1 , . . . , τ comp

N } at the jth LBI, the LBM determines
a PE cohort reallocation (pj

1, . . . , p
j
N) → (pj+1

1 , . . . , pj+1
N).

Quick and accurate optimization through reallocation requires
prediction of τG for candidate PE cohort allocations. Pre-
diction proceeds in two phases: (1) predict τ comp

i (Section
IV-A) and (2) use τ comp

i to predict τG (Section IV-B). Load
balance decisions are made in a subsequent optimization phase
(Section IV-C) that utilizes forecast values of τ comp

i and τG

to identify more advantageous PE cohort allocations.

A. Constituent Computation Time Prediction

We estimate τ comp
i using either modified piecewise linear

interpolation or cubic spline interpolation. Values of τ comp
i

are measured in each LBI and stored with their correspond-
ing number of PEs as points (pj

i , τ
(comp,j)
i), that is, with

pj
i (τ comp

i) as the ordinate (abscissa). Analysis for each
constituent is performed in its respective two-dimensional
(pi, τ

comp
i) space. After the first LBI, the algorithm has only

one measurement (p0
i , τ

comp
i). We shoot linearly from this

point with slope δτ comp
i = −τ comp

i /p0
i . This initial step is

used for both the linear and cubic interpolation algorithms.
For subsequent LBIs, timing data is collected, building up a
timing database {(p0

i , τ
(comp,0)
i), . . . , (pj

i , τ
(comp,j)
i)}.

The piecewise linear interpolation algorithm (Figure 2)
operates on these data as follows. If there is more than one
measurement for a constituent, we divide the domain into two
regions at pi = 1

2 max{p0
i , . . . , p

j
i}. Within each region, we

connect the data points with line segments if there is more than
one point, or else we use the aforementioned linear shooting
technique for a single measurement. At the interface between
the two regions, we extend the rightmost line segment in the
left region and the leftmost line segment in the right region
until the lines meet. If these two lines do not intersect within
the region between the rightmost and the leftmost points, the
points are merely connected. The justification for dividing the
domain into two regions and interpolating separately is that in
situations with few measurements it can more reasonably esti-
mate min{τ (comp,j)

i } and its corresponding PE value p∗i than
using piecewise linear interpolation over the whole domain.

The cubic spline interpolation algorithm (Figure 3) operates
as follows. For the initial LBI, it uses linear shooting. For
subsequent LBIs, there are multiple timing observations, and it
interpolates over the entire domain using a global method [20].

B. Global Iteration Time Prediction

Values of τG are affected by the constituents’ PE allocation
and their intercommunication pattern, which are related to
pi and τ comp

i , respectively. In the simplest case of purely
concurrent constituent execution with communications isolated
to the beginning or ends of their respective time loops,
τG ≥ max{τ comp

i , . . . , τ comp
N }, tracking execution of the

slowest constituent. Based on this observation, we defined a
linear heuristic approach to predict τG with respect to PE
allocation by using τ comp

i and to determine the constituent
whose τ comp

i should be reduced to improve coupled model
throughput. The heuristic model computes multiple estimators
of τG, each a weighted sum of τ comp

i . The forecast for τG is

τ j+1
G = max

{
N∑

i=1

Wkiτ
(comp,j+1)
i

}
, k = 1, . . . , NE . (1)

The user supplies an NE ×N weight matrix W whose ele-
ments Wki are tuned to represent interconstituent serializations
and communications patterns. The number NE of estimators is

{τcomp
i = a× x3 + b× x2 + c× x + d}

{comp is an array of references storing τcomp
i with the number of PEs

and [a, b, c, d]. It is sorted in increasing order of the number of PEs.}
{x is the number of PEs. y is τcomp

i with x.}
comp[0].a = comp[0].b = 0;
comp[0].c = -comp[0].y / comp[0].x;
comp[0].d = comp[0].y - (comp[0].c × comp[0].x);
if comp.size > 1 then

center x = comp[comp.size-1].x / 2;
comp[i].a = comp[i].b = 0 where 0 ≤ i < comp.size;
left comp = comp[0] to comp[m] where comp[i].x ≤ center x;
right comp = comp[m+1] to comp[comp.size-1];
Calculate [c, d] of elements of left comp;
Calculate [c, d] of elements of right comp;
if left comp.size ≥ 1 and right comp.size ≥ 1 then

call connect;
end if

end if
procedure connect
if right comp.size = 1 then

y = left comp[m].c × center x + left comp[m].d;
Insert (center x, y) into left comp;
Calculate [c, d] of (left comp[m], left comp[m+1], right comp[0]);

else if linear lines of left comp[m] and right comp[0] intersect then
Calculate intersect(x, y) and insert it to left comp;
Calculate [c, d] of (left comp[m], left comp[m+1], right comp[0]);

else
Calculate [c, d] of left comp[m] and right comp[0];

end if
end connect

Fig. 2. Algorithm for constituent computation time prediction via linear
interpolation. The input to this algorithm is the comp array with x and y
members set in each element. The output is the same array, but with the a,
b, c, d members properly computed and set in each element.

comp[0].a = comp[0].b = 0;
comp[0].c = -comp[0].y / comp[0].x;
comp[0].d = comp[0].y - (comp[0].c × comp[0].x);
if comp.size = 2 then

center x = comp[1].x / 2;
if center x ≤ comp[0].x then

Calculate [c, d] of comp[0] and comp[1] via linear interpolation;
else

y = comp[0].c × center x + comp[0].d;
Insert (center x, y) into comp; {Now, comp.size is 3}

end if
end if
if comp.size > 2 then

Calculate [a, b, c, d] of elements of comp via cubic spline interpolation;
end if

Fig. 3. Constituent computation time prediction via cubic interpolation.
Variables, input, and output are described in Fig. 2 and its caption.

a complex, application-specific function of N and the number
of interconstituent couplings present.

We present two simple examples to illustrate this approach.
For two constituents in sequential composition with negligible
communications costs, τG = τ comp

1 + τ comp
2 . For a more

complex example in which two constituents are running se-
quentially for 40% of their coupling cycle and the balance is
concurrent execution, τG has two estimators and is

τG = max{[0.4(τ comp
1 + τ comp

2) + 0.6τ comp
1],

[0.4(τ comp
1 + τ comp

2) + 0.6τ comp
2]}.

Each quantity in square brackets is a τG estimator. Note that
each estimator can be reorganized into a weighted sum as in
(1).

{num procs is an array storing numbers of PEs potentially reallocated for
each pair of a donor and a recipient}
{prediction conuter indicates the upper bound of the total number of PEs
potentially reallocated in a direction}
call initialize;
repeat

cur iter time = τG;
Collect or Update τcomp

i and τG with current PE configuration;
Perform linear or cubic spline interpolation for measurements of τcomp

i
if cur iter time ≤ prev iter time then

if [prev donors, prev recipients, prev num procs] exists then
Increase the value of prediction counter;

end if
Choose [donors, recipients, num procs] using SELECTION;
call update;

else
{Undo condition}
Decrease the value of prediction counter;

donors, recipients, num procs
= [prev recipients, prev donors, prev num procs];
call initialize;

end if
if [donors, recipients, num procs] exists then

reallocate([donors, recipients, num procs]);
end if

until [donors, recipients, num procs] exists
procedure initialize
prev iter time = infinity;

prev donors, prev recipients, prev num procs = [-1, -1, -1];
end initialize
procedure update
prev iter time = cur iter time;
prev donors = donors;
prev recipients = recipients;
prev num procs = num procs;
end update

Fig. 4. OPTIMIZATION algorithm. Measurements of τcomp
i are interpolated

using the piecewise linear algorithm (Fig 2) or cubic spline algorithm (Fig 3).

C. Optimization

The OPTIMIZATION algorithm (Figure 4) determines PE
cohort reallocations to reduce τG. A PE cohort configuration
(pj

1, . . . , p
j
N) is a vector ~P j ∈ NN , and reallocation to

~P j+1 = (pj+1
1 , . . . , pj+1

N) corresponds to the vector difference
~P j+1 − ~P j that defines the direction of the reallocation in
PE space. Donor (Recipient) constituents in a reallocation
~P j → ~P j+1 are identified by negative (positive) values of
pj+1

i −pj
i ; unchanged allocations correspond to pj+1

i = pj
i . The

original MMCT LBM navigated this multidimensional space
only one dimension and one PE at a time, making it slow and
highly sensitive to measurement noise in τ comp

i and τG.
The LBM’s new optimization algorithm identifies possible

reallocations that can comprise multiple donors and recipients,
and many—as opposed to one—PEs may be moved between
donor/recipient pairs. The result is larger steps through the
PE configuration space, resulting in fewer time-consuming PE
reallocations and reduced sensitivity to measurement noise.

The LBM optimizer collects and updates τ comp
i and τG val-

ues at each LBI. Linear or cubic interpolation is performed for
all available measurements of τ comp

i . A candidate reallocation
is determined by the SELECTION algorithm (Figure 5).

The previous reallocation direction is deemed successful
(unsuccessful) if τ j+1

G ≤ τ j
G (τ j+1

G > τ j
G). The algorithm tries

to select another direction after increasing the value of the

{max models is an array of models whose τcomp
i is a component of term

in an estimator having the greatest value in decreasing term’s value order.}
{pre map is a map storing prediction information (pre info) including the
slope of linear model or cubic spline model’s tangent keyed by a PE
allocation. pre info is retrieved by pre map.find}
for i = 0 to max models.size− 1 do

model id = max models[i].id;
pre info = pre map.find(model id, max models[i].cur npes);
if linear interpolation then

decision slope1 = pre info.right slope;
decision slope2 = pre info.left slope;

else if cubic spline interpolation then
decision slope1 = pre info.tangent line slope;
decision slope2 = decision slope1;

end if
max npes = the value of prediction counter;
if decision slope1 ≤ 0 then

recipient cand = max models[i];
donor cands = all other models except recipient cand;
donor recipient cands = all possible reallocating directions with PEs
≤ max npes and corresponding target PE allocations;
Pick [donors, recipients, num procs] among donor recipient cands
using DECIDE;
if [donors, recipients, num procs] exists then

return [donors, recipients, num procs];
end if

end if
if decision slopes2 ≥ 0 then

donor cand = max models[i];
recipient cands = all other models except donor cand;
donor recipient cands = all possible reallocating directions with PEs
≤ max npes and corresponding target PE allocations;
Pick [donors, recipients, num procs] among donor recipient cands
using DECIDE;
if [donors, recipients, num procs] exists then

return [donors, recipients, num procs];
end if

end if
end for
return [-1, -1, -1];

Fig. 5. SELECTION algorithm using prediction information. It is used by
the OPTIMIZATION algorithm.

Predict all τG of target PE allocations in donor recipient cands;
Sort donor recipient cands in increasing τG value order;
for i = 0 to donor recipient cands.size− 1 do

PE alloc = donor recipient cands[i].PE allocation;
if PE alloc is untried and donor recipient cands[i].τG ≤ cur iter time
then

donors = donor recipient cands[i].donors;
recipients = donor recipient cands[i].recipients;
num procs = donor recipient cands[i].num procs;
return [donors, recipients, num procs];

end if
end for
return [-1, -1, -1];

Fig. 6. DECIDE algorithm used by the SELECTION algorithm.

prediction counter. The prediction counter whose initial value
is 22 is always incremented or decremented by a multiple of
2 from 20 to 24 and defines the upper bound of the total
number of PEs that can be reallocated in a direction. Once a
direction fails to improve throughput, the previous reallocation
is undone to recover the previous PE allocation, and the
value of prediction counter is decreased. PE configurations
previously determined by the LBM will not arise unless a
subsequent PE reconfiguration is undone. The SELECTION
algorithm chooses donor and recipient constituents by first

identifying constituents whose τ comp
i must be decreased to

reduce τG based on its modeled value using (1). Constituents
are sorted in decreasing order by their linear term contributions
to the estimators in (1). The algorithm then iterates through
the sorted constituents in search of donor/recipient candidates.
A constituent is selected as a recipient (donor) candidate if its
τ comp
i can be reduced by adding (removing) PEs to (from)

its cohort. The slope of either the piecewise linear model or
the cubic spline model’s tangent is used to determine whether
τ comp
i would be reduced by adding or removing PEs. Once

a donor (recipient) is identified, the algorithm searches for a
reallocation direction in PE space by identifying corresponding
recipients (donors) among other constituents. We consider all
possible PE reallocation vectors whose magnitude is less than
or equal to the value of the prediction counter.

The DECIDE algorithm (Figure 6) picks the PE space
reallocation direction. It first calculates τG for all possible
candidate PE reallocation vectors, sorting them keyed by in-
creasing order of predicted τG. Then, a direction is chosen that
results in a previously untried PE allocation that is expected
to reduce τG.

Note that our system depends critically on the timing
history of the various PE cohort configurations. If the load
changes at runtime, as is known to occur in climate models,
previous values of (pi, τ

comp
i) will not necessarily reflect

current conditions. A simple strategy would be deleting the
history upon detecting such a situation, but this requires further
investigation and is beyond the scope of the current work.

V. PERFORMANCE STUDIES

To evaluate our algorithms, we have constructed a mal-
leable coupled model benchmark application that emulates a
parallel coupled climate model (Figure 7). The benchmark
comprises an atmosphere (atm), ocean (ocn), and coupler
(cpl) constituent. The ocn and atm exchange interfacial flux
and state data via cpl; cpl has grid information for both atm
and ocn and carries out intergrid interpolation of state and flux
data. The atm and ocn have the same grids as corresponding
constituents of CCSM. MCT’s functionality is used to describe
the domain decomposition and perform M ×N data transfer
between constituents and data interpolation in cpl. We used
two types of load: a simulated load using sleep() based
on linear interpolation of CCSM benchmarking data [21]
(sload()), and an example computational load using a parallel
conjugate gradient (CG) solver to emulate the computation
and intraconstituent communication done by each constituent
to solve its state equations (rload()). The rload() CG solves a
system of linear equations with 1500×1500 and 2000×2000
symmetric matrices for atm and ocn, respectively.

In addition to sload() or rload(), constituents call mct-
load(), send(), and recv() in each time step. The mctload()
function performs MCT distributed data transformation, such
as intergrid interpolation and time integration of flux and state
data. Interconstituent communications between atm and cpl
and between ocn and cpl are performed through the MCT
send() and receive() communication calls. This pattern allows

atm
Foreach (day) {

mctload()

Foreach (hour) {

sload()

send_cpl()

recv_cpl()

}

}

cpl
Foreach (day) {

Foreach (hour) {

recv_atm()

sload()

send_atm()

}

mctload()

send_ocean()

recv_ocean()

mctload()

}

ocn
Foreach (day) {

sload()

recv_cpl()

mctload()

send_cpl()

}

Foreach (day) {

mctload()

rload()

send_cpl()

recv_cpl()

}

Foreach (day) {

recv_atm()

sload()

send_atm()

mctload()

send_ocean()

recv_ocean()

mctload()

}

Foreach (day) {

rload()

recv_cpl()

mctload()

send_cpl()

}

Fig. 7. Climate benchmark application using sload() (top) or rload()
(bottom). The arrows indicate the intercommunication pattern.

ocn to run concurrently while atm performs its computation
and communicates with cpl. Two patterns are used, depending
on which load functions are used. When models use sload(),
atm is working with cpl in a nested time loop representing 24
hours [3]. When atm and ocn use rload(), atm communicates
with the coupler once in a time step, because the matrix
problems we used for rload() could not reasonably be sized
small enough to send hourly data.

Performance analyses of the sload() testbed are presented
in Sections V-A and V-B. A performance study of the
rload() testbed is presented in Section V-C. Benchmark-
ing was performed on a 64-node linux cluster at SUNY
Binghamton. Each node has dual 2.66 GHz Xeon dual-core
processors with 8GB memory. Nodes communicate via an
InfiniBand 40 interconnect. The application was compiled
with gcc/g++/gfortran version 4.4.6 and the MPICH2 version
1.2.1 MPI-2 implementation was used. We distributed each
constituent’s PEs randomly across the cluster. We found that
doing so helps prevent network congestion and packet loss,
minimizing timing variability.

In each study we evaluated the LBM optimizer, forecasting
τ

(comp,j+1)
i using both piecewise linear (SEL1) and cubic

spline (SEL2) interpolation schemes. Forecasts of τG used the
following estimation scheme, which corresponds to a nested
composition [22] with ocn on its own cohort and (atm, cpl)
composed sequentially on a shared cohort:

τG = max{τ comp
ocn , τ comp

cpl + τ comp
atm }. (2)

Reallocation is requires three coupling cycles to complete, be-
cause of synchronization between constituents and the LBM:
one cycle waiting for the beginning of a timing cycle, another
for timing, and a third waiting for reallocation instructions
from the LBM. The new allocation can then be used for
the next cycle. Reallocation is an expensive process because
of constituent synchronization wait time, operating system
overhead, and constituent checkpointing and restart costs.

We also varied initial sizes of the global PE pool. For
the sload() benchmark we used P 0 = 160 (TESTBED1)

TESTBED1 using sload() with 160 PEs TESTBED2 using sload() with 100 PEs TESTBED3 using rload() with 40 PEs
INIT1 INIT2 INIT3 INIT1 INIT2 INIT3 INIT1 INIT2 INIT3

SEL1 SEL2 SEL1 SEL2 SEL1 SEL2 SEL1 SEL2 SEL1 SEL2 SEL1 SEL2 SEL1 SEL2 SEL1 SEL2 SEL1 SEL2
Inital τG 24.84 24.85 31.6 31.51 25.12 25.12 35.97 35.97 52.48 52.6 42.05 42.32 20.85 20.79 27.52 28.23 20.79 20.74
Final τG 19.07 19.05 19.15 19.11 19.17 19.12 26.18 26.36 26.09 26.02 26.15 26 15.21 15.38 15.33 15.97 14.94 15.77
Found at 24.8 45.6 27.2 56 28 34.4 41.6 40.8 23.2 41.6 19.2 35.2 42.8 31.2 30.8 34.8 54.8 38
#Realloc 6.2 11.4 7 14 7 8.6 10.4 10.2 5.8 10.4 4.8 6.8 10.7 7.8 7.7 8.7 13.7 9.5
Undo(%) 19.4 33.3 20 28.6 17.1 27.9 17.3 23.5 6.9 15.4 4.2 8.8 23.4 24.4 18.2 24.1 33.6 27.4

Fig. 8. Summary of LBM convergence properties and global iteration time statistics (seconds).

0 10 20 30 40 50 60

Number of coupling cycles

10

20

30

40

50

60

70

80

90

N
u
m

b
e
r

o
f

P
E
s

16

18

20

22

24

26

G
lo

b
a
l
it

e
ra

ti
o
n
 t

im
e
 (

se
c)

cpl_SEL1 atm_SEL1 ocn_SEL1 cpl_SEL2 atm_SEL2
ocn_SEL2 tau_G_SEL1 tau_G_SEL2

Fig. 9. Optimization using TESTBED1 with SEL1 and SEL2 for INIT1 case:
SEL1 found (24, 53, 83) with τG = 19.1s at the 24th coupling cycle, and SEL2
found (26, 53, 81) with τG = 19.1s at the 44th coupling cycle.

0 10 20 30 40 50 60

Number of coupling cycles

0

10

20

30

40

50

60

70

80

N
u
m

b
e
r

o
f

P
E
s

20

30

40

50

60

G
lo

b
a
l
it

e
ra

ti
o
n
 t

im
e
 (

se
c)

cpl_SEL1 atm_SEL1 ocn_SEL1 cpl_SEL2 atm_SEL2
ocn_SEL2 tau_G_SEL1 tau_G_SEL2

Fig. 10. Optimization using TESTBED2 with SEL1 and SEL2 for INIT2 case:
SEL1 found (5, 45, 50) with τG = 26.1s at the 20th coupling cycle, and SEL2
found (7, 42, 51) with τG = 25.9s at the 32nd coupling cycle.

and P 0 = 100 (TESTBED2); the former a standard CCSM3
configuration, the latter an underprovisioned situation. For
the rload() benchmark we assigned P 0 = 40 (TESTBED3).
Throughout this section, we define a coupled model PE
allocation as ~P = (Ncpl, Natm, Nocn).

The results for experiments using sload() and rload() are
summarized in Figure 8. Values of τG are obtained by the
LBM employing SEL1 and SEL2 schemes for three sets of
initial conditions P 0. Sections V-A, V-B, and V-C provide
further experimental setup details. The number of coupling
cycles required to find a PE allocation solution is presented,
as is the numberof reallocations (#REALLOC) and percentage
of reallocations that were undone (UNDO(%)).

A. TESTBED1 using sload() with 160 PEs

We ran TESTBED1 with P 0 = 160 PEs from three initial
configurations: INIT1, with ~P 0 = (54, 53, 53), INIT2, with
~P 0 = (10, 110, 40), and INIT3, with ~P 0 = (10, 40, 110).
INIT1 allocates PEs between constituents uniformly and over-
supplies cpl with PEs. INIT2 and INIT3 were intended to
oversupply atm and the slowest constituent ocn, respectively.
We also ran TESTBED1 without the LBM, confirming the
“ideal” value of τG = 19.13s for ~P = (16, 64, 80), a con-
figuration determined by CCSM developers through trial and
error [21].

For all initial cases with SEL1 and SEL2, solutions for
τG were almost equivalent to the ideal τG value with simi-
lar corresponding PE allocations to ideal configuration. The
number of coupling cycles required to finish the optimization
is slightly different between SEL1 and SEL2. For INIT1 and
INIT2, SEL1 takes fewer coupling cycles than does SEL2.

Since sload() was implemented by using piecewise linear
interpolation of the constituents’ previously measured timing
curves, SEL1 apparently is more suitable than SEL2, resulting
in the higher rate of correct predictions than SEL2.

We performed the same experiments with the former LBM
with INIT1, INIT2, and INIT3. The current optimization algo-
rithm with SEL2 required approximately 23% of the coupling
cycles required by the former LBM to reach final solutions
for ~P .

Figure 9 shows the convergence behavior of ~P and τG from
INIT1 with LBM optimization using SEL1 and SEL2. cpl
donated redundant PEs to ocn mainly because both SEL1 and
SEL2 predicted that the computation time of ocn must be
reduced and balanced with the sum of computation time of cpl
and atm to improve the throughput as per (2). SEL1 did not try
to reallocate PEs for atm since it predicted that ocn’s τ comp

i

cannot be reduced by either obtaining or shedding PEs after
undoing the donation from ocn to cpl that occurred at 24th
coupling cycle. SEL2, however, persisted in trying donations
from ocn to cpl and atm several times because it mispredicted
that ocn’s τ comp

i could be reduced by donations, and it undid
four reallocations as a result.

B. TESTBED2 using sload() with 100 PEs

The TESTBED2 experiments have the following initial
conditions: INIT1, with ~P 0 = (34, 33, 33); INIT2, with
~P 0 = (5, 70, 25); and INIT3, with ~P 0 = (5, 25, 70). The
idea behind these experiments is that overall the system is
underprovisioned with respect to an optimal configuration.
Both SEL1 and SEL2 reduced τG on average by 27%, 50%,
and 38% for the INIT1, INIT2, and INIT3 cases, respectively.

For the same reason as in TESTBED1, SEL1 required fewer
coupling cycles than did SEL2 to find a final solution for ~P for
the INIT2 and INIT3 initializations, SEL1 and SEL2 required
almost the same number of coupling cycles to find a final
solution for ~P for INIT1.

Although sload()’s underlying performance model is piece-
wise linearization of constituent scaling curves, SEL1 and
SEL2 perform comparably, since in the INIT1 case, τ comp

i

for atm and ocn decreased dramatically as their PE cohorts
were increased in size by the LBM.

LBM convergence behavior for SEL1 and SEL2 with INIT2
initialization is shown in Figure 10. Here SEL1 kept forcing
atm to donate PEs to ocn, which was the slowest model and
chosen as a recipient. This donation was stopped, and ocn
donated a PE to atm, which was chosen as recipient at the 20th
coupling cycle because SEL1 predicted that atm had handed
over a PE to ocn unnecessarily. Although the value of τG was
reduced in this case, the LBM determined that the value of
τG could be reduced further if atm obtained back a PE from
ocn. In this case, the optimization was completed at the 20th
coupling cycle with five reallocations.

SEL2 forced atm to donate too many PEs to ocn at the
16th coupling cycle because of inaccurate prediction. It caused
two reallocations to find a more appropriate PE configuration.
Moreover, cpl was chosen as a recipient instead of atm at
28th coupling cycle since SEL2 predicted that if ocn and atm
were chosen as a donor and recipient, respectively, the value
of τG would be increased because τ comp

i of ocn would be
greater than the sum of τ comp

i of cpl and atm. This decision
introduced two reallocations. As a result, the optimization with
SEL2 was completed at the 32nd coupling cycle with eight
reallocations.

C. TESTBED3 using rload() with 40 PEs

We used 40 PEs for the TESTBED3 experiments because
that is approximately the scalability limit for the conju-
gate gradient method we use in rload(). LBM experiments
were run from the following initializations: INIT1, with
~P 0 = (14, 13, 13); INIT2, with ~P 0 = (5, 30, 5); and INIT3,
with ~P 0 = (5, 5, 30). In contrast to the TESTBED1 and
TESTBED2 experiments, SEL1 required more coupling cycles
than does SEL2 for the INIT1 and INIT3 cases. SEL1,
however, for all initial cases, found a superior solution for ~P
with lower τG than did SEL2. For example, the best solution
found by SEL1 has τG = 14.94s versus τG = 15.77s for SEL2
(Figure 8).

For the INIT3 case (Figure 11), both SEL1 and SEL2
primarily chose atm as a recipient and ocn as a donor. Once
atm was allocated enough PEs to be chosen as a donor, SEL1
reallocated PEs between cpl and atm several times until 8 and
11 PEs were assigned to cpl and atm, respectively. In contrast,
SEL2 tried a reallocation that was subsequently undone with
only one PE from atm to cpl once. SEL1 thus found a better
solution of ~P = (8, 11, 21) than SEL2’s ~P = (4, 14, 24). SEL1
and SEL2 forecasts for cpl and atm compute times (Figure 12)
show the information the LBM was using before donations

0 10 20 30 40 50 60 70 80

Number of Coupling Cycles

0

5

10

15

20

25

30

N
u
m

b
e
r

o
f

P
E
s

cpl_SEL1
atm_SEL1
ocn_SEL1
cpl_SEL2
atm_SEL2
ocn_SEL2

0 10 20 30 40 50 60 70 80
14

16

18

20

22

24

G
lo

b
a
l
it

e
ra

ti
o
n
 t

im
e

tau_G_SEL1
tau_G_SEL2

Fig. 11. Optimization using TESTBED3 with SEL1 and SEL2 for INIT3
case: SEL1 found (8, 11, 21) with τG = 14.9s was found at the 60th coupling
cycle, and SEL2 found (4, 14, 22) with τG = 15.9s at the 28th coupling cycle.
It clearly shows that cpl should be allocated more than 5 PEs to reduce τG.

0 2 4 6 8 10 12 14

Number of PEs

0

5

10

15

20

25

P
re

d
ic

te
d

 c
o
m

p
u
ta

ti
o
n
 t

im
e
 (

se
c)

cpl_SEL1
atm_SEL1
cpl_SEL2
atm_SEL2
cpl_SEL1
atm_SEL1
cpl_SEL2
atm_SEL2

Fig. 12. Predicted τcomp
i of cpl and atm with SEL1 on (5, 12, 23) at

31st coupling cycle and with SEL2 on (4, 10, 26) at 19th coupling cycle
for TESTBED3/INIT3 case. Marker indicates measured τcomp

i . Reallocation
cannot be tried to allocate cpl more than 5 PEs with SEL2

occurred from atm to cpl at the 32nd and at 20th coupling
cycles, respectively, for the INIT3 case. SEL1 predicted that
cpl’s τ comp

i could be improved by expanding its allocation,
in accordance with its linear τ comp

i prediction line for more
than five PEs—this in spite of the absence of timing data
in this vicinity. SEL2’s cubic spline interpolation, however,
predicted that cpl’s τ comp

i would be increased dramatically
if it was allocated more than five PEs. As a result, SEL1
performed more reallocations that were subsequently undone.
SEL1 reallocated PEs for cpl aggressively because of defec-
tive linear prediction beyond its supporting measurements. In
contrast, SEL2 reallocated PEs for cpl defensively because its
model for τ comp

i showed growth beyond the set of available
measurements so that SEL2 performed fewer reallocations but
obtained a solution for τG larger than that for SEL1.

These findings suggest a hybrid prediction strategy for
τ comp
i : Suppose that the SEL2 prediction curve for atm’s

τ comp
i is instead a linear fit to measurements between 6 PEs

and 10 PEs. In this case, SEL2 could reallocate PEs more
defensively when atm is chosen as a donor. Thus, if we
require aggressive load balancing between general scaling
constituents, we could use linear extrapolation to predict
τ comp
i into data-poor regions of the PE domain and use cubic

spline interpolation to predict τ comp
i in well-observed regions

of the PE domain. In the unusual situations where SEL2
forecasts for τ comp

i dramatically decrease with increasing PE
count into an unobserved region of the PE domain but grow
dramatically with PE count in observed regions, using cubic
spline extrapolation into the unobserved region and linear
interpolation within the observed portion of the PE domain
would enable aggressive reallocation.

For INIT2, SEL1 found a slightly better solution for (~P , τG)
than did SEL2—the SEL1 solution for τG is approximately
4% lower than for SEL2. In this case, linear interpolation
made slightly more accurate predictions than did SEL2. This
can be recognized by comparing the percentage of allocations
undone for SEL1 and SEL2—18.2% versus 24.1% for SEL1
and SEL2, respectively.

VI. CONCLUSIONS AND FUTURE WORK

Coupled models of complex multiphysics and multiscale
systems present grand computational science challenges. We
are working toward a generic, runtime, dynamic load-balance
coupling infrastructure that will bring ultrascalability in these
systems closer to a reality. To this end, we have built on
previous MMCT development work to improve its LBM algo-
rithm’s convergence rate and resultant load-balance configura-
tion to increase coupled model throughput. We have improved
the MMCT’s LBM algorithm by predicting the computation
time of constituents and the global iteration time of a coupled
model through linear and cubic interpolation of constituent
computation and coupling timings, with the object of reducing
the coupled system’s global iteration time. The predictive
LBM allows trying more beneficial reallocations, removal
of unnecessary reallocations, and allocation of multiple PEs
across multiple constituents, resulting in fast, efficient, and
precise load-balancing. Experimental results using a simplified
coupled model application similar to CCSM show that the
new LBM with prediction discovers a well-balanced PE con-
figuration for a coupled model approximately 77% faster than
did the former algorithm. We have also distinguished different
effects between linear and cubic spline interpolation prediction
methods.

In future work, we plan to refine MMCT’s LBM algorithm
by applying it to more realistic, coupled model testbed prob-
lems. The current work has relaxed the previous assumption of
parallel process composition to support nested and sequential
compositions, but further work is needed to refine the τG

estimation procedure. We also anticipate investigating other
avenues of model throughput prediction that might improve the
LBM, such Monte Carlo coupled model throughput simulation
based on performance statistics. Ultimately, we hope to apply
the work described here to a full coupled model such as the
Community Earth System Model.

ACKNOWLEDGMENT

Argonne National Laboratory is supported by the U.S.
Department of Energy under Contract DE-AC02–6CH11357.
Work at SUNY Binghamton is supported by the National

Science Foundation under award number 0941573.

REFERENCES

[1] F. Bertrand, R. Bramley, D. E. Bernholdt, J. A. Kohl, A. Sussman, J. W.
Larson, and K. Damevski, “Data redistribution and remote method in-
vocation for coupled components,” J. Parallel Distrib. Comput., vol. 66,
no. 7, pp. 931–946, 2006.

[2] R. Jacob, J. Larson, and E. Ong, “M×N communication and parallel
interpolation in CCSM3 using the Model Coupling Tookit,” Int. J. High
Perf. Comp. App., vol. 19, no. 3, pp. 293–308, 2005.

[3] J. W. Larson, “Ten organising principles for coupling in multiphysics
and multiscale models,” ANZIAM Journal, vol. 48, pp. C1090–C1111,
2009.

[4] D. G. Feitelson and L. Rudolph, “Towards convergence in job schedulers
for parallel supercomputers,” in Proceedings of the Workshop on Job
Scheduling Strategies for Parallel Processing. Springer-Verlag, 1996,
pp. 1–26.

[5] D. Kim, J. W. Larson, and K. Chiu, “Toward malleable model cou-
pling,” in Procedea Computer Science (Proceedings of the International
Conference on Computational Science, ICCS 2011), vol. 4, 2011, pp.
312–321.

[6] J. Larson, R. Jacob, and E. Ong, “The Model Coupling Toolkit: A new
Fortran90 toolkit for building multi-physics parallel coupled models,”
Int. J. High Perf. Comp. App., vol. 19, no. 3, pp. 277–292, 2005.

[7] “Model Coupling Toolkit Web site,” http://mcs.anl.gov/mct/.
[8] S. S. Vadhiyar and J. J. Dongarra, “SRS - a framework for developing

malleable and migratable parallel applications for distributed systems,”
Parallel Processing Letters., vol. 13, no. 2, pp. 291–312, 2003.

[9] K. E. Maghraoui, B. K. Szymanski, and C. Varela, “An architecture
for reconfigurable iterative MPI applications in dynamic environments,”
in Proceedings of the Sixth International Conference on Parallel Pro-
cessing and Applied Mathematics (PPAM2005), number 3911 in LNCS.
Springer Verlag, 2005, pp. 258–271.

[10] K. El Maghraoui, T. J. Desell, B. K. Szymanski, and C. A. Varela,
“Dynamic malleability in iterative MPI applications,” in Proceedings of
the Seventh IEEE International Symposium on Cluster Computing and
the Grid, CCGRID ’07. IEEE, 2007, pp. 591–598.

[11] R. Sudarsan and C. Ribbens, “ReSHAPE: A framework for dynamic
resizing and scheduling of homogeneous applications in a parallel
environment,” in Parallel Processing, 2007, ICPP2007. IEEE, 2007.

[12] G. Utrera, J. Corbaln, J. Labarta, and D. D. D. Computadors, “Im-
plementing malleability on MPI jobs,” in Proceedings 13th Interna-
tional Conference on Parallel Architecture and Compilation Techniques
(PACT’04). IEEE Computer Society, 2004, pp. 215–224.

[13] S.-H. Ko, N. Kim, J. Kim, A. Thota, and S. Jha, “Efficient runtime envi-
ronment for coupled multi-physics simulations: Dynamic resource allo-
cation and load-balancing,” in Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, 2010,
pp. 349–358.

[14] “Institute for Combinatorial Scientific Computing and Petascale Simu-
lations,” http://www.cscapes.org/.

[15] U. Catalyurek, E. Boman, K. Devine, D. Bozdag, R. Heaphy, and
L. Riesen, “Hypergraph-based dynamic load balancing for adaptive
scientific computations,” in Procceedings, 21st International Parallel
and Distributed Processing Symposium (IPDPS’07). IEEE, 2007.

[16] “Community Climate System Model Web Site,”
http://www.cesm.ucar.edu/models/ccsm4.0/.

[17] A. P. Craig, B. Kaufmann, R. Jacob, T. Bettge, J. Larson, E. Ong,
C. Ding, and H. He, “CPL6: The new extensible high-performance
parallel coupler for the Community Climate System Model,” Int. J. High
Perf. Comp. App., vol. 19, no. 3, pp. 309–327, 2005.

[18] “The Message Passing Interface (MPI) standard,” http://www-
unix.mcs.anl.gov/mpi/.

[19] J. C. Meza, “Steepest descent,” in Wiley Interdisciplinay Revies: Com-
putational Statistics, vol. 2, no. 6, 2010, pp. 719–722.

[20] D. B. Carl, “A practical guide to splines (revised edition).” Springer,
2001.

[21] J. W. Larson, R. L. Jacob, E. T. Ong, A. Craig, B. Kauffman, T. Bettge,
Y. Yoshida, J. Ueno, H. Komatsu, S.Ichikawa, C. Chen, and P. Worley,
“Benchmarking a parallel coupled model,” poster presented at Super-
computing ’03, 2003.

[22] J. W. Larson, “Visualizing process composition and load balance in
parallel coupled models.” Procedia CS, vol. 4, pp. 831–840, 2011.

DISCLAIMER

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the
Government.

