
Handling Pointers and Dynamic Memory

Laurent Hascöet and Jean Utke

Abstract Proper handling of pointers and the (de)allocation of dynamic memory in
the context of an adjoint computation via source transformation has so far had no
established solution that is both comprehensive and efficient. This paper gives a cat-
egorization of the memory references involving pointers toheap and stack memory
along with principal options to recover addresses in the reverse sweep. The main
contributions are a code analysis algorithm to determine which remedy applies,
memory mapping algorithms for the general case where one cannot assume invari-
ant absolute addresses and an algorithm for the handling of pointers upon restoring
checkpoints that reuses the memory mapping approach for thereverse sweep.

Key words: reverse mode, pointers, dynamic memory, checkpointing

1 Introduction

Computing derivatives of a numerical modelF : X 7→Y : Rn 7→R
m, given as a com-

puter programP, is an important but also computation-intensive task. Automatic
differentiation (AD) [4] inadjoint (or reverse) mode provides the means to obtain
gradients and is used in many science and engineering contexts (refer to [4], the
recent conference proceedings [3, 2], and the AD community website [1]). W.l.o.g
we will assumem = 1, that is the computation of a gradient. Two major groups of
AD tool implementations are operator overloading tools andsource transformation
tools. The latter are the focus of this paper. As a simplified rule, for each intrinsic
floating-point operationφ (e.g., addition, multiplication, sine, cosine) that is exe-

Laurent Hascöet
Team Tropics, INRIA Sophia-Antipolis, France,laurent.hascoet@inria.fr

Jean Utke
Argonne National Laboratory / The University of Chicago, IL,USA,utke@mcs.anl.gov

1

2 Laurent Hascöet and Jean Utke

cuted during run time inP as the sequence

[. . . , j : (u = φ(v1, . . . ,vk)), . . .], j = 1, . . . , p, (1)

of p such operations, the generated adjoint code has to implement the following
sequence that reverses the original sequence inj:

[. . . , j : (v̄1+=
∂φ
∂v1

ū, . . . , v̄k+=
∂φ
∂vk

ū), . . .], j = p, . . . ,1, (2)

with incremental assignments of adjoint variables ¯v for each argumentv of the orig-
inal operationφ . An AD source transformation tool createsP̃ from P to compute the
desired gradient̄X . Making available the original variables required by the partials
∂φ
∂vi

in (2) in the correct order leads to the use of schemes whereinsections ofP are

recomputed from checkpoints. ThereforeP̃ will not consist simply of (1) followed
by (2). Program resources such as dynamic memory can be acquired and released
at any point in (1). The appropriate action in (2), the handling of dynamic memory
and pointers in general when splicing together subsequences of (1) and (2) are the
subject of this paper.

2 Adjoint Data Association and Memory References

An implementation of (2) has to ensure that each original valuev is associated with
the adjoint ¯v. Several valuesv may be stored in a program variablev during its life
span. Association with ¯v happens via the program variables and the two common
approaches areassociation by address andassociation by name. The former pairs
(v, v̄) into a newactive type for v while the latter assumes that the adjoint values ¯v are
held in a variable with a generated name (e.g. herev_ for brevity) following a nam-
ing scheme that guarantees an unambiguous association withthe original variablev.
In either case, if a reference expression in (1) uses pointers then the same expression
in (2) or its adjoint counterpart both use the same pointer mechanism, and therefore
pointer values have to be recovered. Pointer values1, however, generally areoffsets
to base addresses (e.g. the base address of a stack frame) and can change from (1) to
(2). This may happen to memory on the stack orstack variables2 which are automat-
ically relinquished at the end of their scope in (1) and automatically reinstantiated –
possibly at a different location – when their scope reopens in (2). It also happens for
memory on the heap orheap variables that is deallocated explicitly during (1) and
reallocated explicitly during (2) with no guarantee of invariance of the base address.
The following subsections aim at categorizing the memory references according to
restoration options.

1 A pointer value may be more than a mere address. A Fortran90 pointermay define dimension
slices, that must be recovered too. This question is only loosely related to our subject.
2 sometimes, implying Fortran77, mischaracterized as statically allocated variables;

Handling Pointers and Dynamic Memory 3

2.1 Categories of memory references real ::x(10)
...
...x(3)... !reference C1.a:(1)

real ::x_(10)
...
...x_(3)... !adjoint C1.a:(2)

floatfoo(float∗ p)
{return (∗p)∗2;}

floatx,y;
y=foo(&x); C1.b:(1)

void foo_(float∗ p_,floatr_)
{ (∗p_)+=(r_)∗2;}

floatx_,y_;
foo_(&x_,y_); C1.b:(2)

Fig. 1 Example illustrations for cate-
gories C1.a in Fortran and C1.b in C++.

In the following we will see that similar mecha-
nism are used to treat memory references to the
heap and the stack. We therefore start with the
basic categorization of stack variables.
C1.a: a named memory reference to a stack
address that has a fixed offset from the frame
base pointer; the memory reference to the ad-
joint value is done reusing the name; exam-
ples are scalar local/global variables, struc-
ture instances, references to local/global ar-
ray variables with constant index, C++ refer-
ences instantiated to refer to the above, and C99
variable-length arrays;
C1.b: memory referenced by items in C1.a, accessed via dereferencing a nested life-
span quasi-constant instantiated3 pointer; analysis needs to establish that the pointer
is quasi-constant (single assignment) and the scope of the pointee encloses the scope
of the pointer; the memory reference to the adjoint value is done by replicating
the single assignment at pointer instantiation during (2) followed by replicating the
pointer dereference;

Both C1 sub-categories for phases (1) and (2) are illustrated in Fig. 1 using as-
sociation by name. One can see that for the pointer parameterp of foo the scope
condition with respect tox is trivially satisfied.
C2: memory references as in C1 with an additional non-constant offset; the memory
reference to the adjoint value is done by recovering the non-constant offset and the
actions indicated for C1.a or C1.b, respectively; see Fig. 2(left half).
C3: a named memory reference to an address in the heap with an optional non-
constant offset; the memory reference to the adjoint value is done by restoring
the size information for the heap memory, reallocating to the corresponding name;
restoring the non-constant offset and replicating the memory reference expression;
The most important example is the Fortranallocatable array illustrated in Fig. 2
(right half). Note that this Fortran construct has syntactic scope and its base address

void foo(
float∗ a,int j) {
floatr[10];
...;i=f(j); ...
∗(a+i)=r[i];}

void foo_(
float∗ a_,int j) {
floatr_[10];
// recover i
r_[i]+=∗(a_+i); ...}

subroutinefoo(n)
real, allocatable ::x(:)
...; allocate(x(n));...
...x(j)... !reference

subroutinefoo_(n)
real, allocatable ::x_(:)
...; !recover n
allocate(x_(n))
...; !recover j
...x_(j)...

C2:(1) C2:(2) C3:(1) C3:(2)

Fig. 2 C++ example for C2 memory references∗(a+i) andr[i] (left half) and a Fortran example
for a C3 memory referencex(j) (right half) for the respective phases (1) and (2).

3 initialized at declaration time

4 Laurent Hascöet and Jean Utke

(in the heap) is always accessible via the given name4.
C4: a memory reference via a generic computed stack address (i.e. C2 without the
nested scope and pointer instantiation requirement); the memory reference to the
adjoint value is done (i) under the optimistic assumption ofinvariant offsets in the
stack between executing (1) and (2) by restoring the absolute address value or (ii)
under the pessimistic assumption of varying offsets in the stack by Alg. 2;

Even when we can assert that the path in the call tree when running (2) replicates
the call tree path when running (1), the optimistic assumption (i) does not hold true
for the general case because of possible compiler optimizations such as inlining and
slicing, because only Fortran(77) has the potential to keepthe base address of a stack
frame invariant with respect to control flow, and because of implementation choices
like separate adjoints, see also Sect. 2.2. The overhead forAlg. 2, however, may
warrant the additional testing to ascertain the validity ofthe optimistic assumption
for certain Fortran codes in conjunction with the encapsulated adjoint approach.
C5: a pointer reference to unnamed heap memory or via a generic computed address
that cannot be restricted to one of the previous categories;the memory reference to
the adjoint is done via Alg. 2. This is the typical category for memory allocated with
malloc or new or Fortran’s pointerallocate where no syntactic scope is enforced
on the allocated memory chunk and therefore, in contrast to C3, no guarantee can
be given that it always be accessible by a single name.

2.2 Options to recover addresses

As indicated in Sect. 2.1 in C4 one may make optimistic or pessimistic assumptions
regarding invariance of stack offsets. More generally, recording only an absolute
address for memory references C4 and C5 is insufficient when the base address of
the underlying memory changes between (1) and (2). If they vary, base addresses
may be recorded along with the absolute addresses, into anaddress map during (1),
and used in (2) for a run-time conversion discussed in Sect. 4. Its overhead is non-
negligible, and therefore it is important to filter out all cases of the benign categories
C1-3 (mostly by checking syntactic properties) and furtheridentifying cases with
invariant bases among categories C4 and C5. For categories C1-3 the recovery of
addresses can simply be characterized as a recomputation that may involve taking
the address of a stack variable or calling the Fortranallocate intrinsic.

Whether or not base addresses vary between (1) and (2) dependson the memory
scope and implementation choices for the AD transformation. Certainly, any heap
memory not deallocated before the last instruction of (1) will still be available in
the relevant section of (2). Likewise, all stack variables (in particular global ones)
at or above the stack frame of the “driver” subroutine that implements (without
returning) the execution of (1) and (2) will not change base addresses. The latter can

4 The semantically closest C++ construct is a class whose constructor allocates memory and deal-
locates that memory in the destructor thereby giving the memory the syntactic scope of the class
instance.

Handling Pointers and Dynamic Memory 5

be identified by syntactic scope checking. In some cases heapmemory can be made
invariant simply by skipping over deallocation statementsin (1). However, this has
the obvious risk of memory leaks.

Otherwise, base addresses of memory references to the heap or stack can gener-
ally not be considered invariant. The reasons briefly mentioned in Sect. 2.1 under
C4 are as follows. Typically,P consists of a set of subroutiness each implementing
sections of statements in (1). An AD source transformation may elect to place the
adjoint statements into aseparate adjoint routine ¯s. This implies different stack off-
sets between variables ins and ¯s and therefore varying base addresses already for the
Fortran77 memory model. Alternatively, the tool may createa modified ˜s contain-
ing the original statements together with theencapsulated adjoint statements and
use some control flow structure to decide which sequence of statements to execute.
Assuming no stack changes are implied by compiler optimizations (such as inlin-
ing) this can yield invariant stack bases in the Fortran77 model. In C/C++ programs,
variables declared in nested basic block scopes imply possibly different declaration
scopes for the adjoint code compared to the original code thereby effectively shifting
the base address even for encapsulated adjoints. Using pointer analysis the following
information can be statically determined.

Destsi(p): the set of possible destinations (aka pointees) of pointervariablep at
instructioni;

VaryingBasei: for instructioni, an overestimated set of pointer variables with at
least one target whose base address may change.

Thus, we can determinep at instructioni to have an invariant base if alld ∈
Destsi(p) have an invariant base and can store the address. Instead of storing the
address, similar to categories C1-3 we may under certain circumstances be able to
recompute the value if there is a unique defining instruction. Using the above sets
we present a data-flow analysis in Sect. 3 that enables an adjoint AD tool distinguish
these scenarios and determine recomputation when possible.

3 An algorithm for Address Recovery

We propose an algorithm to detect the possibility of recovering addresses by ex-
act repetition in (2) of some of the statements that compute the addresses in (1).
This data-flow algorithm, shown in Alg. 1 for a Basic BlockI1:N , tracks uses of
pointer variables in the source code of the original programP. Loosely following
[6] the model for tracking dependencies is to consider for each instructioni the pairs
(m,D) of a memory reference (expression)m occurring ini and the setD of possible
defining instructions for the value held bym. This makes a suitable connection be-
tween program variables and the values they may hold. In turn, the differentm each
are mapped to a set of possible memory locationsl(m) such thatm andm′ may alias
if l(m)∩ l(m′) 6= /0. The alias and reaching definitions analyses are not subject of

6 Laurent Hascöet and Jean Utke

this paper and here just added for the occasional illustration and to achieve closure
for nested indirection. Typically a pointer variablep is used in sequences as follows:

1. In instructioni the pointer variablep is assigned a valuep, an address, computed
from some variables in an expression using address arithmetic or other intrinsics
such as an address-of operator or anallocate call. We set the pairs(p,{i}) and
(*p,δ), δ being the set of the defining instructions of the dereferenced right-
hand side if applicable. The right-hand sider of the assignment ini determines
l(p) as l(r), e.g.l(r) = /0 for p=NULL. We drop pairs(p, .) (*p, .) representing
any previous value held byp from propagation.

2. The pointer variablep is used
a. by address arithmetic, where the address valuep is used but not dereferenced;

the analysis refers to(p,{i})
b. by dereferencingp, e.g.∗p, in computations that will be differentiated, making

it required for (2); The analysis will also refer to(*p,δ).
3. For tracked pairs(p, .), (*p, .), an instructioni that implies any of the following

scenarios may trigger the need to recover the pointer value at the corresponding
adjoint ofi:
a. p is overwritten (see item 1);
b. p goes out of scope (the scope exit is marked by a placeholder instruction);
c. the value held in∗p becomes ”adjoint-dead”, which means that none of the

further uses, if any, are required for (2);
d. ∗p becomes inaccessible, e.g. upon leaving the scope of a localstack variable

whose address was assigned top being pointer variable in an enclosing scope
(cf. the scope condition in C2 vs. C4).

Considering these scenarios, the data flow algorithm in Alg.1 propagates forward
the following information:

ARI: (for “address recomputation instructions”) a set of(m,D) pairs for pointer
uses (see item 2 above), whereD contains a single defining instructioni and that
instruction’s right-hand side value can be “cheaply” recomputed at the adjoint
of the instructions mentioned in item 3. What is considered “cheap” depends
on the implementation. Certainly, addresses computed for memory references of
category C1 are considered cheap. This does not include allocation statements
(C3 and C5) because they have to be handled by Alg. 2.

RecAi, j: the j-th scheduled recomputationd for a pair(m,{d}) triggered by in-
structioni, to be prepended beforēi. It is used in Alg. 2.

StoAi: the set of pairs(m,D) scheduled for store/restore at instructioni/ī. The use
is shown in Alg. 2.

StackTargets: a global set of the stack variables that must be managed by address
mapping, see also Alg. 2.

Alg. 1 also uses the following data-flow information, precomputed backwards:

AdjLivei: the set of pairs(m,D) whose value after instructioni is eventually
needed for the derivative computation.

Handling Pointers and Dynamic Memory 7

AdjOuti: the set of pairs(m,D) that may be overwritten by the instructions fol-
lowing i in (1).

We rely on the “to be recorded” algorithm [5] integrated as lines01, 02, 08, and13 in
Alg. 1. In line 02, before each instructioni, the algorithm adds the adjoint required
pairs (i.e.,(m,D) ∈ use(ī)) to TBR. All pairs in TBR thati may overwrite (i.e.
(m,D)∈ out(i)) are added to StoAi , see line08, and all pairs completely overwritten
by i are removed from TBR, see line13. All pairs (m,D) required in (2) will be in
TBR at some moment. An address recomputation(m,{d}) remains in ARI during

Algorithm 1 Address Recomputation algorithm through a Basic Block
GivenI1:N and the sets TBR, ARI either from previous basic block or /0
01 for i = I1 to IN

02 TBR := TBR∪use(ī)
// Schedule appropriate address recomputation before ī:

03 j := 0
04 while [∃p ≡ (m,{d}) ∈ ARI \AdjLivei |

(

∀(m′,{d′}) ∈ ARI : p /∈ use(d′)
)

∨ (use(d)∪{p})∩out(i) 6= /0
]

05 RecAi, j++ := d
06 TBR := (TBR\{p})∪use(ARI(p))
07 ARI := ARI⊖{p}

// Use storage as last resort for pointers about to be overwritten:
08 StoAi := TBR∩out(i)
09 ∀(m,D) ∈ StoAi if m is a pointer then StackTargets∪= Destsi(m)
10 ARI := ARI⊖out(i)

// Collect i as potential address recomputation candidate:
11 if [(i assigns pointerm) ∧

(m,{i}) ∈ AdjLivei ∩ (AdjOuti ∪VaryingBasei)\use(i)]
12 ARI := ARI∪{(m,{i})}
13 TBR := TBR\kill (i)

propagation unless it is invalidated byi, i.e. i overwritesm or something used by
d. Operation ARI⊖ (m,D) effectively removes from ARI all recomputations invali-
dated by the instructions inD. Also, control flow merges (not shown in Alg. 1) imply
forming the union of defining instruction sets but only pairswith single definitions
remain in ARI.

The condition on line04 triggers the recomputation as soon asp turns adjoint-
dead (p /∈ AdjLivei) and still can be recomputed (p ∈ ARI); recomputation is sched-
uled at the corresponding step into (2) and is removed from ARI and from TBR. The
condition also tests that the defining instructiond, because it is moved to instruction
ī, can in fact still be executed. The condition also manages the order between re-
computation of different pointers. Line08 finally triggers the last resort store/restore
mechanism. Alg. 2 covers the conversion of addresses from (1) to (2). Thus, Alg. 1
gives priority to recomputation over store/restore by the chosen order of actions on
ARI and StoA.

8 Laurent Hascöet and Jean Utke

4 An algorithm for Address Mapping
int foo(float∗p, const intn) {
float∗pr=p+n; int rc=0;
while (p<pr && ∗p<3.0) ++p;
if (p<pr) rc=1; // in range
returnrc; }

Fig. 3 Marching Pointers go out of
range

For a program symbolv let bv denote the base
address andev the end address ofv (andv_ the
associated adjoint symbol). If the program sym-
bol p is a pointer, then letp denote the pointer
value (i.e. the address) in the range test referenced
in the following Alg. 2. Lines18 and20 of Alg. 2
assume that pointer arithmetic is available in the target language. If pointer arith-
metic is unavailable one could push/pop along with(b,e) the number of allocated
instances of the given type.

Algorithm 2 Code generation for runtime address mapping and heap memoryhan-
dling for in-range pointers for subroutines and its adjoint ¯s

Given StoAi, StackTargets and global5 setsM,M̄ prepopulated with(0,0) ∈ M and(0,0,0) ∈ M̄:
01 ∀v ∈ StackTargets:
02 in s generate code
03 on entry: add(bv,ev) to M
04 on exit: appendPUSHRANGE(bv,ev); remove(bv, .) from M
05 in s̄ generate code
06 on entry: prependPOPRANGE(bv,ev); add(bv,ev,bv̄) to M̄
07 on exit: remove(., .,bv̄) from M̄
08 ∀i ∈ [I1, . . . , IN]:
09 if i allocates memory range(b,e) :
10 in s generate code to add(b,e) to M
11 in s̄ generate code to remove(., ., b̄) from M̄; deallocate(̄b)
12 if i deallocates memory range(b,e) :
13 in s afteri generate code to remove(b,e) from M; PUSHRANGE(b,e)
14 in s̄ generate code toPOPRANGE(b,e); b̄ = allocate(e−b); add(b,e, b̄) to M̄
15 Prepend all recomputation instructions RecAi, j, for j = J−1→ 0, beforeī in s̄
16 ∀(p, .) ∈ StoAi:
17 in s beforei successively append generated code for:
18 if ∃(b∗,e∗) ∈ M : p ∈ [b∗.e∗] thenPUSH(p) else abort
19 in s̄ beforeī successively prepend generated code for:
20 POP(p); find (b∗,e∗, b̄∗) ∈ M̄ : p ∈ [b∗,e∗]; p = b̄∗+(p−b∗)

As indicated in line18, the algorithm will fail if the pointer value in question is
not initialized to0 and instead has some random value or is outside of any of the
ranges registered inM. This last case can be constructed in C/C++ , see Fig. 3, as can
be a case where such a pointer then happens to fall into another (wrong) range. The
Fortran pointer semantic is fortunately more restrictive and does not as easily permit
a pointer out of range scenario. This scenario can, however,reliably be tackled only
with run time base address and offset tracking shown in Alg. 3. Each useful pointer
value in a program is computed by applying some offset eitherto a base address. The
idea is simply to generate for each pointer variablep occurring in the StoAi a pair
(pb, po) of base address and offset. The base addresspb can be either the address of

Handling Pointers and Dynamic Memory 9

a named stack variable, the address yielded by dynamic memory allocation (e.g. via
new) or 0 which is also the default initializer. Any computed addressassigned to a
pointer p = q+ o can be expressed as another address, the value of pointerq, plus
an offseto. The pair(pb, po) for the assignmentp = q+o is updated as follows:

(pb, po) =

{

(0,0) if qb ≡ 0 (to imply 0 offsetsqo ≡ o ≡ 0)
(qb,qo +o) otherwise

(3)

Using these pairs we can now formulate a modified algorithm that does not require
pointer values to remain in a single valid range.

Algorithm 3 Code generation for runtime address mapping and heap memoryhan-
dling with run time offset tracking.
Given StoAi, StackTargets and global6 setsM,M̄ the algorithm is the same as Alg. 2 except for the
following changes. Within the loop implied by line08 add:
08+1 if i assigns to a pointerp:
08+2 in s beforei prepend code to updatepb andpo according to (3)

and change lines18 and20 as follows:
18’ find (b∗,e∗) ∈ M : pb = b∗ thenPUSHPAIR(pb, po)
20’ POPPAIR(pb, po); find (b∗,e∗, b̄∗) ∈ M̄ : pb = b∗; p = b̄∗+ po

5 Bookkeeping for Checkpoints

For handling the checkpointing of pointers and heap memory one might start with
the simple criterion that the purpose of checkpointing mustenable recovery not only
of all values and but also of pointers to start computation from said checkpoint. As
opposed to checkpoints for fault tolerance the reverse modetradeoff requires to keep
around as many checkpoints as one can afford. It is imperative to minimize their size
which typically excludes system-level checkpointing and the tools geared toward it.
Instead, one uses incremental (application-level) checkpoints created either manu-
ally by the user or automatically by the AD tool. Restoring anincremental check-
point implies it is done inside of a running process. This implies solving problems
similar to the forward to reverse sequence mapping of stack and heap addresses.
In particular, we can attach a given checkpoint to a (subroutine call) instructioni
for which side effect analysis cumulatively determines allthe data modified by the
instruction and thereby cumulatively determines StoAi. Then, instead of generat-
ing stack push and pop calls referenced in Alg. 2 and Alg. 3 lines 18, 18’, 20, and
20’, respectively, the system generates checkpoint write and read calls. In addition,
the checkpoint will also have to contain the current state ofthe global mapM at
the checkpoint instruction. To facilitate address mappingfor stack addresses during
checkpoint restoration we also require the top-down cumulative StackTargetsc and

10 Laurent Hascöet and Jean Utke

an additional fieldδ in M that discriminates between heap and stack memory and,
for Fortran, may contain anallocatable variable name where applicable. Then,
upon restoring state from the checkpoint, one first retrieves the checkpointed map
into Mc. The difference in the memory state is reflected in the difference between
the current state ofM and the restored copyMc. From this difference Alg. 4 popu-
latesM′. Note that for lines4 and6, if δ indicates anallocatable variable then the

Algorithm 4 Code generation for checkpoint restoration.
GivenM, Mc, and StackTargetsc, start withM′ = /0 and generate code for:
1 ∀(b,e,δ) ∈ M∩Mc:
2 M′ := M′∪{(b,e,b,δ)}
3 ∀(bc,ec,δ) ∈ Mc \M:
4 if (δ is heap)then b′ := allocate(ec −bc);M′ := M′∪{(bc,ec,b′,δ)}
5 ∀(b, .,δ) ∈ M \Mc:
6 if (δ is heap)∧ 6 ∃(., .,b) ∈ M̄ then deallocate(b)

Fortran allocate and deallocate statements will have to be all generated at compile
time for symbols in question and their execution be made dependent on the condi-
tion in lines3 and5, respectively. GivenM′, Alg. 2 can be easily adapted to produce
a modified recomputation routines′ with M′ in place ofM̄ and the adjustments for
forward instead of reverse statement order.

An implementation of the algorithms discussed in this paperis not yet available
but will be undertaken by the authors in the AD tools Tapenadeand OpenAD/ADIC.

Acknowledgements This work was supported by the U.S. Department of Energy, undercontract
DE-AC02-06CH11357.

References

1. AD community website:http://www.autodiff.org
2. Bischof, C.H., B̈ucker, H.M., Hovland, P.D., Naumann, U., Utke, J. (eds.): Advances in Au-

tomatic Differentiation,Lecture Notes in Computational Science and Engineering, vol. 64.
Springer, Berlin (2008). DOI 10.1007/978-3-540-68942-3

3. Bücker, H.M., Corliss, G.F., Hovland, P.D., Naumann, U., Norris,B. (eds.): Automatic Differ-
entiation: Applications, Theory, and Implementations,Lecture Notes in Computational Science
and Engineering, vol. 50. Springer, New York, NY (2005). DOI 10.1007/3-540-28438-9

4. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation, 2nd edn. No. 105 in Other Titles in AppliedMathematics. SIAM, Philadelphia,
PA (2008). URLhttp://www.ec-securehost.com/SIAM/OT105.html

5. Hascöet, L., Naumann, U., Pascual, V.: “To be recorded” analysis in reverse-mode automatic
differentiation. Future Generation Computer Systems21(8), 1401–1417 (2005). DOI 10.1016/
j.future.2004.11.009

6. OpenAnalysis:http://openanalysis.berlios.de/

