Handling Pointersand Dynamic Memory

Laurent Hascét and Jean Utke

Abstract Proper handling of pointers and the (de)allocation of dyiesarmemory in
the context of an adjoint computation via source transféionehas so far had no
established solution that is both comprehensive and efficidis paper gives a cat-
egorization of the memory references involving pointersgap and stack memory
along with principal options to recover addresses in thens sweep. The main
contributions are a code analysis algorithm to determinelhvhemedy applies,
memory mapping algorithms for the general case where ongotassume invari-
ant absolute addresses and an algorithm for the handlinginfgss upon restoring
checkpoints that reuses the memory mapping approach foeteese sweep.

Key words. reverse mode, pointers, dynamic memory, checkpointing

1 Introduction

Computing derivatives of a numerical modrel X — Y : R" — R™, given as a com-
puter progranP, is an important but also computation-intensive task. fatc
differentiation (AD) [4] inadjoint (or reverse) mode provides the means to obtain
gradients and is used in many science and engineering d¢sr(tefer to [4], the
recent conference proceedings [3, 2], and the AD communrgtysite [1]). W.l.0.g
we will assumem = 1, that is the computation of a gradient. Two major groups of
AD tool implementations are operator overloading tools smgrce transformation
tools. The latter are the focus of this paper. As a simplifidd,rfor each intrinsic
floating-point operatiorp (e.g., addition, multiplication, sine, cosine) that is exe

Laurent Hascét
Team Tropics, INRIA Sophia-Antipolis, Frandeaur ent . hascoet @nri a. fr

Jean Utke
Argonne National Laboratory / The University of Chicago, USA, ut ke@rcs. anl . gov

2 Laurent Hascét and Jean Utke

cuted during run time i as the sequence

[..,]:(u=0@(Vi,...,%)),---], J=1,...,p, (1)

of p such operations, the generated adjoint code has to imptettmeriollowing
sequence that reverses the original sequenge in

- o _ 140 .
)i (Vi = —=—U,..., g+ = =—U),... =p,...,1 2
[0t (vt Iy Vet (9Vk_)7 , i=p....L)
with incremental assignments of adjoint variablder each argumentof the orig-
inal operationp. An AD source transformation tool create$érom P to compute the
desired gradienX. Making available the original variables required by thetipés
g—\‘fi’ in (2) in the correct order leads to the use of schemes wheegitions of° are

recomputed from checkpoints. Therefdtavill not consist simply of (1) followed
by (2). Program resources such as dynamic memory can beradand released
at any point in (1). The appropriate action in (2), the hargibf dynamic memory
and pointers in general when splicing together subseqsesfdd) and (2) are the
subject of this paper.

2 Adjoint Data Association and Memory References

An implementation of (2) has to ensure that each originalenais associated with
the adjointv. Several values may be stored in a program variableluring its life
span. Association witlr happens via the program variables and the two common
approaches arassociation by address andassociation by name. The former pairs
(v,V) into a newactive typefor v while the latter assumes that the adjoint valuase
held in a variable with a generated name (e.g. kerfr brevity) following a nam-
ing scheme that guarantees an unambiguous associatiotheithiginal variable .

In either case, if a reference expression in (1) uses pagittien the same expression
in (2) or its adjoint counterpart both use the same pointerhrarism, and therefore
pointer values have to be recovered. Pointer valusswever, generally araffsets

to base addresses (e.g. the base address of a stack frame) and can change fréon (1
(2). This may happen to memory on the stacktack variables® which are automat-
ically relinquished at the end of their scope in (1) and awattcally reinstantiated —
possibly at a different location — when their scope reopei®). It also happens for
memory on the heap dreap variables that is deallocated explicitly during (1) and
reallocated explicitly during (2) with no guarantee of ireace of the base address.
The following subsections aim at categorizing the memofgremces according to
restoration options.

1 A pointer value may be more than a mere address. A Fortran90 paiatgdefine dimension
slices, that must be recovered too. This question is only looskdierkto our subject.

2 sometimes, implying Fortran77, mischaracterized as staticatigatttd variables;

Handling Pointers and Dynamic Memory

2.1 Categories of memory references

In the following we will see that similar mecha-
nism are used to treat memory references to the
heap and the stack. We therefore start with the

real ::x(10)
x(3)...reference | CL.a:(1)
real ::x_(10)

x_(3)...1adjoint | CLax(2)

basic categorization of stack variables.
Cl.a: a named memory reference to a stack
address that has a fixed offset from the frame

floatf oo(floatx p)
{return ¢p)*2;}
floatx,y;

y=f 00(&X); Cl.b:(1)

base pointer; the memory reference to the ad-
joint value is done reusing the name; exam-
ples are scalar local/global variables, struc-

void f oo_ (floatx p_,floatr)

{ (xp)+=(r D)*2;}

floatx_y_;

. . Cl.b:(2
ture instances, references to local/global ar-Lf00_(&x_y.): @

ray variables with constant index, C++ refefgiy 1 Example illustrations for cate-
ences instantiated to refer to the above, and CQ&ies C1.ain Fortran and C1.b in C++.
variable-length arrays;

C1.b: memory referenced by items in C1.a, accessed via derefagemoested life-
span quasi-constant instantiatguinter; analysis needs to establish that the pointer
is quasi-constant (single assignment) and the scope obthtep encloses the scope
of the pointer; the memory reference to the adjoint valueasedby replicating
the single assignment at pointer instantiation during ¢2pWed by replicating the
pointer dereference;

Both C1 sub-categories for phases (1) and (2) are illustraté&ig. 1 using as-
sociation by name. One can see that for the pointer parametef oo the scope
condition with respect ta is trivially satisfied.

C2: memory references as in C1 with an additional non-consfésgtothe memory
reference to the adjoint value is done by recovering thecmrstant offset and the
actions indicated for C1.a or C1.b, respectively; see F{tef2half).

C3: a named memory reference to an address in the heap with amabption-
constant offset; the memory reference to the adjoint vatudoine by restoring
the size information for the heap memory, reallocating todbrresponding name;
restoring the non-constant offset and replicating the mgmeference expression;
The most important example is the Fortrdn ocat abl e array illustrated in Fig. 2
(right half). Note that this Fortran construct has syntastiope and its base address

void f 00(void f oo_(subroutinef 00_(n)
N - subrouting oo(n) real, allocatable x_(:)
float a,intj) {| float- a_,intj) { real, allocatable x(:)| ...; !recover n
ﬂo,?tf[%joii ;}Orﬁzzﬁe[rli()]' ...; allocatex(n));... | allocatek_(n))
w@+i)=r[i I;}| r_[i [+=*(a_+i); ...} +X()... treference ...;X!re(jC(;verj
c2:(D) C2:0) C3:(D) ~ C3(@)

Fig. 2 C++ example for C2 memory referencgg+i) andr [i] (left half) and a Fortran example
for a C3 memory reference(j) (right half) for the respective phases (1) and (2).

3 initialized at declaration time

4 Laurent Hascét and Jean Utke

(in the heap) is always accessible via the given rfame

C4: a memory reference via a generic computed stack addres€Z2i.without the
nested scope and pointer instantiation requirement); tteany reference to the
adjoint value is done (i) under the optimistic assumptiomeériant offsets in the
stack between executing (1) and (2) by restoring the absalddress value or (ii)
under the pessimistic assumption of varying offsets in taeksby Alg. 2;

Even when we can assert that the path in the call tree whemngi(®) replicates
the call tree path when running (1), the optimistic assuompti) does not hold true
for the general case because of possible compiler optilmimsuch as inlining and
slicing, because only Fortran(77) has the potential to keepase address of a stack
frame invariant with respect to control flow, and becausenpi€émentation choices
like separate adjoints, see also Sect. 2.2. The overheadligo2, however, may
warrant the additional testing to ascertain the validityhaf optimistic assumption
for certain Fortran codes in conjunction with the encapsdladjoint approach.

C5: a pointer reference to unnamed heap memory or via a genenpwted address
that cannot be restricted to one of the previous categahiesnemory reference to
the adjoint is done via Alg. 2. This is the typical categoryrftemory allocated with
mal | oc or newor Fortran’s pointenl | ocat e where no syntactic scope is enforced
on the allocated memory chunk and therefore, in contrast3{on@ guarantee can
be given that it always be accessible by a single name.

2.2 Optionsto recover addresses

As indicated in Sect. 2.1 in C4 one may make optimistic oripgisic assumptions
regarding invariance of stack offsets. More generallypréing only an absolute
address for memory references C4 and C5 is insufficient wineiase address of
the underlying memory changes between (1) and (2). If they, 'sase addresses
may be recorded along with the absolute addresses, irdddrass map during (1),
and used in (2) for a run-time conversion discussed in Setts éverhead is non-
negligible, and therefore it is important to filter out alkea of the benign categories
C1-3 (mostly by checking syntactic properties) and furtidentifying cases with
invariant bases among categories C4 and C5. For categotigste recovery of
addresses can simply be characterized as a recomputatiom#ly involve taking
the address of a stack variable or calling the Forsidrocat e intrinsic.

Whether or not base addresses vary between (1) and (2) depetits memory
scope and implementation choices for the AD transformat@ertainly, any heap
memory not deallocated before the last instruction of (1) still be available in
the relevant section of (2). Likewise, all stack variablesparticular global ones)
at or above the stack frame of the “driver” subroutine thaplements (without
returning) the execution of (1) and (2) will not change baddrasses. The latter can

4 The semantically closest C++ construct is a class whose constrilioatas memory and deal-
locates that memory in the destructor thereby giving the memergyhtactic scope of the class
instance.

Handling Pointers and Dynamic Memory 5

be identified by syntactic scope checking. In some casesmeary can be made
invariant simply by skipping over deallocation statementgl). However, this has
the obvious risk of memory leaks.

Otherwise, base addresses of memory references to the hetgelocan gener-
ally not be considered invariant. The reasons briefly mestioin Sect. 2.1 under
C4 are as follows. Typicallyp consists of a set of subroutinegach implementing
sections of statements in (1). An AD source transformati@ay elect to place the
adjoint statements intoseparate adjoint routines. This implies different stack off-
sets between variablessmndsand therefore varying base addresses already for the
Fortran77 memory model. Alternatively, the tool may cremt@odifiedscontain-
ing the original statements together with tecapsulated adjoint statements and
use some control flow structure to decide which sequenceatdraents to execute.
Assuming no stack changes are implied by compiler optiriurat(such as inlin-
ing) this can yield invariant stack bases in the Fortran7dehdn C/C++ programs,
variables declared in nested basic block scopes imply Iplgsdifferent declaration
scopes for the adjoint code compared to the original codelblyesffectively shifting
the base address even for encapsulated adjoints. Usintg pairalysis the following
information can be statically determined.

Dests(p): the set of possible destinations (aka pointees) of powagablep at
instructioni;

VaryingBase for instructioni, an overestimated set of pointer variables with at
least one target whose base address may change.

Thus, we can determing at instructioni to have an invariant base if afl €
Dests(p) have an invariant base and can store the address. Instesatinfghe
address, similar to categories C1-3 we may under certatnrmistances be able to
recompute the value if there is a unique defining instructidgging the above sets
we present a data-flow analysis in Sect. 3 that enables ambdo tool distinguish
these scenarios and determine recomputation when passible

3 An algorithm for Address Recovery

We propose an algorithm to detect the possibility of recogeaddresses by ex-
act repetition in (2) of some of the statements that comphaeatdresses in (1).
This data-flow algorithm, shown in Alg. 1 for a Basic Blotky, tracks uses of
pointer variables in the source code of the original progRarhoosely following
[6] the model for tracking dependencies is to consider foheastruction the pairs
(m,D) of a memory reference (expressionpccurring ini and the seb of possible
defining instructions for the value held oy This makes a suitable connection be-
tween program variables and the values they may hold. In thendifferentm each
are mapped to a set of possible memory locatiémg such thamandm’ may alias

if 1(m)NI(m) # 0. The alias and reaching definitions analyses are not cibje

6 Laurent Hascét and Jean Utke

this paper and here just added for the occasional illustraid to achieve closure
for nested indirection. Typically a pointer varialplés used in sequences as follows:

1. Ininstructioni the pointer variable is assigned a valug, an address, computed
from some variables in an expression using address arithoredther intrinsics
such as an address-of operator onfnocat e call. We set the pair§,{i}) and
(xp,0), & being the set of the defining instructions of the dereferémaght-
hand side if applicable. The right-hand sidef the assignment indetermines
I(p) asl(r), e.g.l(r) = O for p=NULL. We drop pairdp,.) (xp,.) representing
any previous value held hyfrom propagation.

2. The pointer variable is used
a. by address arithmetic, where the address valigseised but not dereferenced:;

the analysis refers t@, {i})
b. by dereferencing, e.g.xp, in computations that will be differentiated, making
it required for (2); The analysis will also refer tep, d).

3. For tracked pairép, .), (* p,.), an instructior that implies any of the following
scenarios may trigger the need to recover the pointer valtheaorresponding
adjoint ofi:

a. p is overwritten (see item 1);

b. p goes out of scope (the scope exit is marked by a placeholsiguation);

c. the value held inp becomes "adjoint-dead”, which means that none of the
further uses, if any, are required for (2);

d. xp becomes inaccessible, e.g. upon leaving the scope of adtaadd variable
whose address was assigneg toeing pointer variable in an enclosing scope
(cf. the scope condition in C2 vs. C4).

Considering these scenarios, the data flow algorithm in Algropagates forward
the following information:

ARI: (for “address recomputation instructions”) a set(of D) pairs for pointer
uses (see item 2 above), wh@eontains a single defining instructioand that
instruction’s right-hand side value can be “cheaply” repoited at the adjoint
of the instructions mentioned in item 3. What is considereteap” depends
on the implementation. Certainly, addresses computed éonony references of
category C1 are considered cheap. This does not includeatibo statements
(C3 and C5) because they have to be handled by Alg. 2.

RecA j: the j-th scheduled recomputati@hfor a pair(m,{d}) triggered by in-
structioni, to be prepended beforelt is used in Alg. 2. _

StoA: the set of pairgm, D) scheduled for store/restore at instructibnThe use
is shown in Alg. 2.

StackTargets: a global set of the stack variables that neustdnaged by address
mapping, see also Alg. 2.

Alg. 1 also uses the following data-flow information, pregurted backwards:

AdjLive;: the set of pairdm,D) whose value after instructionis eventually
needed for the derivative computation.

Handling Pointers and Dynamic Memory 7

AdjOut: the set of pairgm,D) that may be overwritten by the instructions fol-
lowingi in (1).

We rely on the “to be recorded” algorithm [5] integrated a®$o1, 02, 08, andizin
Alg. 1. In line oz, before each instruction the algorithm adds the adjoint required
pairs (i.e.,(m D) € us€i)) to TBR. All pairs in TBR thati may overwrite (i.e.
(m,D) € out(i)) are added to StoA see linens, and all pairs completely overwritten
by i are removed from TBR, see line. All pairs (m,D) required in (2) will be in

TBR at some moment. An address recomputatior{d}) remains in ARI during

Algorithm 1 Address Recomputation algorithm through a Basic Block

Givenliny and the sets TBR, ARI either from previous basic block or 0
o1 fori=I1toly _
02 TBR:=TBRUuUsHi) _

/I Schedule appropriate address recomputation beforei:
03 j:=0
04 while[3Ip= (m,{d}) € ARI\ AdjLive; |

(V(m',{d'}) € ARI: p¢ used’)) Vv (us€d)u{p})nouti)#0]

05 RecA j, =d
06 TBR = (TBR\ {p}) Uus€ARI(p))
07 ARI:=ARI© {p}

/I Use storage as last resort for pointers about to be overwritten:
08 StoA :=TBRNout(i)
09 V(mD) e StoA if mis a pointer then StackTargets= Dests(m)
10 ARIl:=ARISouti)

/I Collect i as potential address recomputation candidate:
11 if [(i assigns pointem) A

(m,{i}) € AdjLive; N (AdjOut, U VaryingBase) \ us€i)]

12 ARI:=ARIU{(m{i})}
13 TBR:=TBR\Kkill (i)

propagation unless it is invalidated byi.e. i overwritesm or something used by
d. Operation ARE (m, D) effectively removes from ARI all recomputations invali-
dated by the instructions D. Also, control flow merges (not shown in Alg. 1) imply
forming the union of defining instruction sets but only paiith single definitions
remain in ARI.

The condition on linev triggers the recomputation as soonmturns adjoint-
dead 6 ¢ AdjLive;) and still can be recompute@ € ARI); recomputation is sched-
uled at the corresponding step into (2) and is removed frorhakid from TBR. The
condition also tests that the defining instructthiecause it is moved to instruction
i, can in fact still be executed. The condition also manageother between re-
computation of different pointers. Lineg finally triggers the last resort store/restore
mechanism. Alg. 2 covers the conversion of addresses frypmo (2). Thus, Alg. 1
gives priority to recomputation over store/restore by thesen order of actions on
ARl and StoA.

8 Laurent Hascét and Jean Utke

4 An algorithm for Address Mapping

int f oo(float«p, constintn) {
float«pr =p+n;intr c=0;

For a program symbal let by denote the base| while (p<pr && *p<3.0) +4p;
address aney the end address of (andv_ the | if (P<pr)rc=1;//inrange
associated adjoint symbol). If the program sym-retumrc: '

bol p i; a pointer, then. lep denote the pointer Fig 3 Marching Pointers go out of
value (i.e. the address) in the range test referencggl,e

in the following Alg. 2. Linesis and2o of Alg. 2

assume that pointer arithmetic is available in the targeguage. If pointer arith-
metic is unavailable one could push/pop along whte) the number of allocated
instances of the given type.

Algorithm 2 Code generation for runtime address mapping and heap mdraary
dling for in-range pointers for subroutiseand its adjoins
Given StoA, StackTargets and gloBasetsM, M prepopulated withi0,0) € M and(0,0,0) € M:

01 Vv € StackTargets:
02 in sgenerate code

03 on entry: addby ,ey) toM

04 on exit: appendPUSHRANGE(by , ey); remove(by,.) from M
05 insgenerate code _
06 on entry: prepen®OPRANGE(by ,ev); add(by ,ev,by) toM
07 on exit: remove.,.,by) fromM

08 Vi e [|1,...,|N]Z
09 if i allocates memory rangé, e) :

10 in sgenerate code to adt, e) to M _ B

11 in sgenerate code to remoye.,b) from M; deallocatel)

12 if i deallocates memory rangb,e) :

13 in safteri generate code to remoyb, e) from M; PUSHRANGE(b, €) L
14 in Sgenerate code BOPRANGE(b,e) ; b=al | ocat e(e—b) ; add(b,e b) toM

15 Prepend all recomputation instructions RegAor j =J—1— 0, beforei in s
16 VY(p,.) € StoA:

17 in sbeforei successively append generated code for:

18 if 3(b*,e") € M : p e [b*.e*] thenPUSH(p) else abort

19 in Sheforei successively prepend generated code for:

20 POP(p) ; find (b*,e*,b*) e M : pe [b*,e]; p-=b*+ (p—Db*)

As indicated in linets, the algorithm will fail if the pointer value in question is
not initialized too0 and instead has some random value or is outside of any of the
ranges registered M. This last case can be constructed in C/C++, see Fig. 3, as can
be a case where such a pointer then happens to fall into ar(@treng) range. The
Fortran pointer semantic is fortunately more restrictivd does not as easily permit
a pointer out of range scenario. This scenario can, howeslably be tackled only
with run time base address and offset tracking shown in Alge&h useful pointer
value in a program is computed by applying some offset etthaibase address. The
idea is simply to generate for each pointer varigbleccurring in the StoAa pair
(pb, Po) Of base address and offset. The base adgigsan be either the address of

Handling Pointers and Dynamic Memory 9

a named stack variable, the address yielded by dynamic nyeatiocation (e.g. via
new) or 0 which is also the default initializer. Any computed addrassigned to a
pointerp = q+ 0 can be expressed as another address, the value of pgiiiels
an offseto. The pair(py, Po) for the assignmenp = g+ o is updated as follows:

~ [(0,0) if gpb=0 (toimply O offsetsg, =0=0)
(Po: Po) = { (Ob, Qo+ 0) Otherwise (3)

Using these pairs we can now formulate a modified algoritrethdioes not require
pointer values to remain in a single valid range.

Algorithm 3 Code generation for runtime address mapping and heap mdraary
dling with run time offset tracking.
Given StoA, StackTargets and glol§aetsM, M the algorithm is the same as Alg. 2 except for the

following changes. Within the loop implied by lires add:
o8+1 if i assigns to a pointgp:

08+2 in sbeforei prepend code to updafg andp, according to (3)
and change liness and20 as follows:

18 find (b*,€*) € M : pp = b* thenPUSHPAI R(pp, Po) _

20’ POPPAI R(pp, Po) ; find (b*,&*,b*) e M : pp =b*; p_=b*+ po

5 Bookkeeping for Checkpoints

For handling the checkpointing of pointers and heap memnogyright start with
the simple criterion that the purpose of checkpointing nenstble recovery not only
of all values and but also of pointers to start computatiomfsaid checkpoint. As
opposed to checkpoints for fault tolerance the reverse riradeoff requires to keep
around as many checkpoints as one can afford. It is impertiminimize their size
which typically excludes system-level checkpointing ameltools geared toward it.
Instead, one uses incremental (application-level) cheickp created either manu-
ally by the user or automatically by the AD tool. Restoringimeremental check-
point implies it is done inside of a running process. Thisliegsolving problems
similar to the forward to reverse sequence mapping of stackheap addresses.
In particular, we can attach a given checkpoint to a (sulmeutall) instructioni
for which side effect analysis cumulatively determinegfad data modified by the
instruction and thereby cumulatively determines StoPaen, instead of generat-
ing stack push and pop calls referenced in Alg. 2 and Alg. &slis, 18, 20, and
20, respectively, the system generates checkpoint write ead calls. In addition,
the checkpoint will also have to contain the current statéhefglobal mapV at
the checkpoint instruction. To facilitate address mappangtack addresses during
checkpoint restoration we also require the top-down cutivelé&tackTargetsand

10 Laurent Hascét and Jean Utke

an additional field in M that discriminates between heap and stack memory and,
for Fortran, may contain aal | ocat abl e variable name where applicable. Then,
upon restoring state from the checkpoint, one first retadghe checkpointed map
into M¢. The difference in the memory state is reflected in the difiee between
the current state d¥l and the restored copy. From this difference Alg. 4 popu-
latesM’. Note that for lines ande, if d indicates aral | ocat abl e variable then the

Algorithm 4 Code generation for checkpoint restoration.

GivenM, M, and StackTargetsstart withM’ = 0 and generate code for:
V(b,e,d) € MNMc:

M =M U{(b,eb,d)}
V(be, &, 0) € Mc \ M:

if (0 is heapthenb/:=al | ocat e(e —b¢) ;M =M U{(bc,e,b,0)}
V(b,.,8) e M\ M¢: _

if (0 is heapn A(.,.,b) € M then deal | ocat e(b)

O U~ WN

Fortran allocate and deallocate statements will have tdltieeaerated at compile
time for symbols in question and their execution be made mi#ge on the condi-
tion in liness ands, respectively. Give’, Alg. 2 can be easily adapted to produce
a modified recomputation routirewith M’ in place ofM and the adjustments for
forward instead of reverse statement order.

An implementation of the algorithms discussed in this papeot yet available
but will be undertaken by the authors in the AD tools TapersaatOpenAD/ADIC.

Acknowledgements This work was supported by the U.S. Department of Energy, ucalract
DE-AC02-06CH11357.

References

1. AD community websiteht t p: / / www. aut odi ff. org

2. Bischof, C.H., Bicker, H.M., Hovland, P.D., Naumann, U., Utke, J. (eds.): Adesnin Au-
tomatic Differentiation,Lecture Notes in Computational Science and Engineering, vol. 64.
Springer, Berlin (2008). DOI 10.1007/978-3-540-68942-3

3. Bicker, H.M., Corliss, G.F., Hovland, P.D., Naumann, U., NoBis(eds.): Automatic Differ-
entiation: Applications, Theory, and Implementatiolbecture Notes in Computational Science
and Engineering, vol. 50. Springer, New York, NY (2005). DOI 10.1007/3-528438-9

4. Griewank, A., Walther, A.: Evaluating Derivatives: Piiples and Techniques of Algorithmic
Differentiation, 2nd edn. No. 105 in Other Titles in Applisththematics. SIAM, Philadelphia,
PA (2008). URLht t p: / / www. ec- secur ehost . com SI AM OT105. ht nl

5. Hascét, L., Naumann, U., Pascual, V.: “To be recorded” analysis \ien®e-mode automatic
differentiation. Future Generation Computer Syst@i(8), 1401-1417 (2005). DOI 10.1016/
j-future.2004.11.009

6. OpenAnalysishtt p: // openanal ysi s. berl i os. de/

