Argon neé ANL/MCS-TM-331

NATIONAL LABORATORY

Performance Analysis of Darshan 2.2.3
on the Cray XE6 Platform

Mathematics and Computer Science Division

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,
at 9700 South Cass Avenue, Argonne, lllinois 60439. For information about Argonne

and its pioneering science and technology programs, see www.anl.gov.

Availability of This Report
This report is available, at no cost, at http://www.osti.gov/bridge. It is also available
on paper to the U.S. Department of Energy and its contractors, for a processing fee, from:
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
phone (865) 576-8401
fax (865) 576-5728
reports@adonis.osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of
document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,
Argonne National Laboratory, or UChicago Argonne, LLC.

ANL/MCS-TM-331

Performance Analysis of Darshan 2.2.3
on the Cray XE6 Platform

by
P. Carns, K. Harms, R. Latham, and R. Ross
Mathematics and Computer Science Division, Argonne National Laboratory

October 31, 2012

Performance Analysis of Darshan 2.2.3
on the Cray XE6 Platform

Philip Carns, Kevin Harms, Robert Latham, and Robert Ross
Argonne National Laboratory
October 2012

Abstract—Darshan is a production-quality I/0 characteriza-
tion tool that captures and summarizes the I/O behavior of
parallel applications. It records a variety of information with
minimal overhead, including access patterns, number of files
accessed, and the amount of time consumed by I/O routines.
Darshan’s lightweight design makes it suitable for full-time
deployment for workload characterization of large HPC systems.

Although Darshan was designed for portability, Darshan 2.2.3
is the first release to feature fully integrated support for the
Cray XE6 platform, including support for PGI, Cray, Intel, and
GNU compilers as well as both static and dynamic linking. This
document presents a brief study of Darshan performance and
runtime overhead on the Beagle Cray XE6 system operated by
the Computation Institute and the Biological Sciences Division
of the University of Chicago and Argonne National Laboratory.
We find that Darshan introduces negligible end-to-end overhead
for I/O-intensive applications and can store characterization data
for over 12 million unique files in less than 5 seconds.

1. BACKGROUND

Previously published studies outline the design of Dar-
shan [1] and the types of analysis that it enables [2]. One of
Darshan’s key design goals is to be as efficient and unobtrusive
as possible so that it does not interfere with application
behavior. This allows Darshan to transparently instrument the
behavior of all production activity on large-scale HPC systems
without disturbing user productivity.

Previous studies have demonstrated the efficiency of Dar-
shan on the IBM Blue Gene/P platform. This report seeks to
validate that Darshan exhibits the same efficiency on the Cray
XE6 platform.

II. TEST ENVIRONMENT

The experiments in this section were performed on Beagle,
a Cray XE6 computer operated by the University of Chicago
Computation Institute. Beagle contains 17,856 processor cores
distributed across 744 compute nodes. All Darshan log files
and application data were stored on Beagle’s Lustre file
system, which is built atop a DDN SFA 10000 storage array.

All experiments were performed with Darshan version
2.2.3-prel. The Darshan library itself was built by using GNU
GCC compilers. All test applications were built by using the
default PGI compilers. The Darshan library is compatible with
PGI, GCC, Intel, and Cray compilers; but we do not expect
the choice of application compiler to play a significant role in
I/O performance or the performance of Darshan itself.

III. EVALUATION

In this section we describe experiments on a large-scale
I/O-intensive benchmark and on low-level benchmarks.

A. Darshan impact on overall application run time

We begin by evaluating the impact of Darshan on the overall
run time of a large-scale, I/O-intensive benchmark application.
We used version 2.10.3 of the IOR benchmark for this purpose.
IOR is a synthetic benchmark developed by Lawrence Liver-
more National Laboratory that can be configured to emulate a
variety of workloads [3]. In this case, we configured IOR to
use the MPI-IO API to write and read 128 MiB per process
from 3,072 processes for an aggregate of 384 GiB of data.
Each process wrote to a unique file using an access size of
128 KiB. The data was then read back by an adjacent process
(rather than the process that wrote the data) in order to mitigate
client-side read caching to some extent. The IOR configuration
file is shown below.

IOR START

api=MPIIO
repetitions=1
verbose=1
blockSize=128M

fsync=0

writeFile=1

readFile=1

keepFile=0
transferSize=128K
filePerProc=1
reordertasksconstant=1
testFile = /lustre/beagle/carns/data/ior.dat
RUN

IOR STOP

This IOR configuration requires Darshan to capture infor-
mation from 3,072 processes, 3,072 unique files, and over 6
million I/O operations at two distinct API instrumentation lev-
els: POSIX and MPI-IO. Because of the expected variability in
I/O performance at this scale [2], we cannot reliably measure
Darshan overhead based on just two job samples. We instead
submitted 40 independent jobs: 20 compiled with Darshan
support, and 20 compiled without Darshan support. We used
scheduler dependencies to prevent concurrent execution and
ensure that the samples alternated fairly between each of
the two configurations. The execution time for each job was
measured as the elapsed time taken for the aprun command
to complete. We chose this measurement, rather than the

440

420

380 -

T |

360 q

Seconds

340 [4

300

1 1
Without Darshan With Darshan

Fig. 1. Box plot of IOR execution time on Beagle (20 samples with Darshan,
20 samples without Darshan)

run time reported by the scheduler, in order to eliminate
any potential variance introduced by the scheduler or job
environment itself.

Figure 1 shows a box plot of the samples obtained with this
methodology. The plot indicates the min, max, median, first
quartile, and third quartile for each sample population. The two
scenarios produced similar variability. The median execution
time with Darshan was 397.9 seconds, while without Darshan
it was 398.5 seconds. A typical job achieved approximately
1.6 GiB/s of write performance and 2.5 GiB/s of read perfor-
mance.

We used a t test, as computed using R [4], to check for the
presence of a statistically significant difference in execution
time between the two independent sample sets. The results of
that analysis are presented in Table I. With a p value of 0.9463,
and a 95% confidence interval for the difference in means of
-10.09511 to 10.79374, there is no statistical evidence for a
difference in the average run time between the IOR runs that
used Darshan and the IOR runs that did not.

B. Darshan data aggregation and storage costs

We can also use low-level benchmarks to isolate the runtime
overhead of individual Darshan components. There are two
potential sources of runtime overhead in Darshan. The first is
the cost of the wrapper functions that intercept and instrument
I/O function calls. In previous work we have found that
this wrapper overhead is minimal [1] relative to the cost of
an I/O operation, even on systems with relatively low CPU
performance per core. The wrappers themselves perform no
communication or I/O activity. Data is collected independently

TABLE I
TWO-SIDED INDEPENDENT SAMPLE T-TEST SUMMARY FOR THE
DIFFERENCE IN MEANS BETWEEN THE SAMPLES WITH AND WITHOUT
DARSHAN INSTRUMENTATION

t 0.0678
degrees of freedom 35.989
p value 0.9463
95% confidence interval | -10.09511 to 10.79374

Time (seconds)

0.1 | i 4

0.01 L L L L L
768 1536 3072 6144 12288

Number of processes

(a) 1 shared file

10 T T T T T

Time (seconds)
T
|

0.1 L L L L
768 1536 3072 6144

Number of processes

(b) 1024 shared files

L
12288

Fig. 2. Elapsed time consumed by the Darshan shutdown procedure when
instrumenting shared file access

at each process by using efficient data structures and a bounded
amount of memory.

The second potential source of overhead is the cost of aggre-
gating data across processes and writing the data to persistent
storage when the application shuts down. This procedure is
invoked by Darshan at MPI_Finalize () time. Darshan
performs a sequence of steps at this point to prune the amount
of data that it has collected, compress remaining data, and
write the compressed data to a single log file. This procedure
is generally the most significant source of measurable Darshan
overhead. It is also the mechanism in Darshan that is most
likely to perform differently across platforms because of dif-
ferences in I/O capabilities and collective network algorithms.

In this section we measure the time consumed by the
Darshan shutdown procedure using a synthetic benchmark.
The synthetic benchmark does not read or write any ap-
plication data. Instead, it inserts artificial counters into the
Darshan library to mimic various I/O workloads. The Darshan
shutdown routine is invoked after each I/O workload scenario
and instrumented to report the elapsed time.

Figure 2 shows the amount of time consumed by the
Darshan shutdown routine after instrumenting a shared-file
access pattern in which each MPI process opened the same
file. In this case, Darshan uses collective MPI routines to

++

e

Time (seconds)
T
\

s

. . .
8 1536 3072 6144
Number of processes

12288

0.1

Sl

(a) 1 unique file per process

Time (seconds)
T
\

S

+
b

L L L L L
768 1536 3072 6144 12288

Number of processes

(b) 1024 unique files per process

Fig. 3. Elapsed time consumed by the Darshan shutdown procedure when
instrumenting unique files on each process.

combine the characterization records from each process into a
single, unified record before storing the results. Figures 2(a)
and 2(b) illustrate the Darshan performance in this scenario
when recording access to a single shared file or 1,024 distinct
shared files, respectively. Five data points were collected at
each scale, ranging from 768 to 12,288 MPI processes. All log
files were written to the /lustre/beagle file system. The worst
case example added at most 2.2 seconds to the MPI_Finalize()
execution time. This is a fixed cost regardless of the amount
of data accessed by the application.

Figure 3 repeats the same experiments but with each process
opening unique files rather than shared files. In Figure 3(a)
there is one unique file per process, while in Figure 3(b)
there are 1,024 unique files per process. In these scenarios,
Darshan is unable to combine characterization records, but the
shutdown procedure still consumes no more than 4.6 seconds
in the worst case. Note that the worst-case example emulates
an application that opens over 12 million unique files in a
single job run. According to internal Darshan instrumentation,
the biggest factor in the Darshan shutdown time is the amount
of time required to write the compressed log files to disk.

IV. CONCLUSIONS

Our experiments conducted on the Beagle Cray XE6 show
that Darshan introduces negligible overhead in the overall run

time of an I/O-intensive benchmark that reads and writes 384
GiB of data using 3,072 MPI processes. In-depth instrumen-
tation of the Darshan library itself further finds that as many
as 12 million files can be accessed by 12,288 MPI processes
while adding a fixed overhead of less than 4.6 seconds to the
time needed to shut down an application. These results indicate
that Darshan is unlikely to interfere with production activity
on the Cray XE6 platform.

ACKNOWLEDGMENTS

This research was supported in part by NIH through re-
sources provided by the Computation Institute and the Bio-
logical Sciences Division of the University of Chicago and
Argonne National Laboratory, under grant S10 RR029030-01.
We specifically acknowledge the assistance of Lorenzo Pesce.

This work was supported by the Office of Advanced Scien-
tific Computing Research, Office of Science, U.S. Department
of Energy, under Contract DE-AC02-06CH11357.

REFERENCES

[1] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley, “24/7
characterization of petascale I/O workloads,” in Proceedings of 2009
Workshop on Interfaces and Architectures for Scientific Data Storage,
September 2009.

[2] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross, “Understanding and improving computational science storage
access through continuous characterization,” ACM Transactions on Stor-
age (TOS), vol. 7, no. 3, p. 8, 2011.

[3] H. Shan, K. Antypas, and J. Shalf, “Characterizing and predicting the
I/0 performance of HPC applications using a parameterized synthetic
benchmark,” in Proceedings of Supercomputing, November 2008.

[4] R Core Team, R: A Language and Environment for Statistical Computing,
R Foundation for Statistical Computing, Vienna, Austria, 2012, ISBN
3-900051-07-0. [Online]. Available: http://www.R-project.org

Argon neé

NATIONAL LABORATORY

Mathematics and Computer Science Division
Argonne National Laboratory

9700 South Cass Avenue, Bldg. 240

Argonne, IL 60439-4847

www.anl.gov

U.S. DEPARTMENT OF

WENERGY

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

