
J. Parallel Distrib. Comput. 73 (2013) 698–711
Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

BlobCR: Virtual disk based checkpoint-restart for HPC applications on
IaaS clouds

Bogdan Nicolae a,∗, Franck Cappello b,c

a IBM Research, Ireland
b INRIA Saclay, France
c University of Illinois at Urbana-Champaign, United States

a r t i c l e i n f o

Article history:
Received 9 August 2012
Received in revised form
28 December 2012
Accepted 22 January 2013
Available online 1 February 2013

Keywords:
IaaS clouds
High performance computing
Checkpoint-restart
Fault tolerance
Virtual disk snapshots
Rollback of filesystem changes

a b s t r a c t

Infrastructure-as-a-Service (IaaS) cloud computing is gaining significant interest in industry and academia
as an alternative platform for running HPC applications. Given the need to provide fault tolerance,
support for suspend–resume and offline migration, an efficient Checkpoint-Restart mechanism becomes
paramount in this context. We propose BlobCR, a dedicated checkpoint repository that is able to take live
incremental snapshots of the whole disk attached to the virtual machine (VM) instances. BlobCR aims to
minimize the performance overhead of checkpointing by persisting VM disk snapshots asynchronously
in the background using a low overhead technique we call selective copy-on-write. It includes support for
both application-level and process-level checkpointing, as well as support to roll back filesystem changes.
Experiments at large scale demonstrate the benefits of our proposal both in synthetic settings and for a
real-life HPC application.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Infrastructure-as-a-Service (IaaS) clouds have gained signifi-
cant attention over the last couple of years due to the proposed
pay-as-you-go model that enables clients to lease computational
resources in formof virtualmachines from large datacenters rather
than buy andmaintain dedicated hardware. With increasing inter-
est in High Performance Computing (HPC) applications (both in in-
dustry and academia) such clouds have the potential to provide a
competitive replacement for leasing time on leadership-class fa-
cilities where HPC applications are typically run. This potential re-
sults from the fact that leadership-class facilities rely on expensive
supercomputers, which are not readily available for the masses.

Despite efforts to define a HPC cloud market paradigm [41] and
adopt it in practice (such as AmazonWeb Services’ HPC offering [3]
or science cloud initiatives [29,42]), the HPC community has been
reluctant to embrace cloud computing. To date, the mainstream
cloud application patterns have typically been ‘‘embarrassingly
parallel’’.

∗ Corresponding author.
E-mail addresses: bogdan.nicolae@gmail.com, bogdan.nicolae@ie.ibm.com

(B. Nicolae), cappello@illinois.edu (F. Cappello).

0743-7315/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2013.01.013
This is not without good reason: porting HPC applications to
clouds is a challenging task. Although there is evidence of increas-
ing improvement in the scalability andperformance of cloud-based
HPC systems [23,21], many obstacles are still problematic, because
of architectural differences specific to IaaS clouds: multi-tenancy,
overhead due to the virtualization layer, poor networking perfor-
mance [26], lack of a standardized storage stack, etc. These differ-
ences lead to a situation where well established HPC approaches
cannot be easily adapted to IaaS clouds and need to be redesigned.

One critical challenge in this context is fault tolerance. With
increasing demand in scale and the emergence of exa-scale, the
number of components that can fail at any given moment in
time is rapidly growing. This effect is even more noticeable in
IaaS clouds [47], since they are mostly build out of commodity
hardware [3]. Thus, an assumption about complete reliability is
highly unrealistic: at such large scale, hardware component failure
is the norm rather than the exception.

Fault tolerance is a well studied aspect of cloud computing.
However, due to the embarrassingly parallel nature of mainstream
cloud applications,most approaches are designed to dealwith fault
tolerance of individual processes and virtual machines. This either
involves restarting failed tasks from scratch (e.g., MapReduce) or
using live migration approaches to replicate the state of virtual
machines on-the-fly in order be able to switch to a backup VM
in case the primary instance has failed [12]. HPC applications on

http://dx.doi.org/10.1016/j.jpdc.2013.01.013
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jpdc.2013.01.013&domain=pdf
mailto:bogdan.nicolae@gmail.com
mailto:bogdan.nicolae@ie.ibm.com
mailto:cappello@illinois.edu
http://dx.doi.org/10.1016/j.jpdc.2013.01.013


B. Nicolae, F. Cappello / J. Parallel Distrib. Comput. 73 (2013) 698–711 699
the other hand are tightly coupled: processes depend on each other
to exchange information during the computation and the failure
of one process destroys the coherence of the other processes,
ultimately leading to a situation where the whole application
needs to be restarted. This is known as the domino effect.

To address this issues, Checkpoint-Restart (CR) [15] was
proposed to provide fault-tolerance for HPC applications. Fault tol-
erance is achievedby saving recovery informationperiodically dur-
ing failure-free execution and restarting from that information in
case of failures, in order to minimize the wasted computational
time and resources. Although replication of processes has been
considered before [16] in the context of supercomputing architec-
tures (and a similar approach could be imagined using virtual ma-
chine replication), this involves a high performance overhead to
synchronize the process replicas, not to mention an explosion in
resource usage (at least double the amount of resources needed to
run the application using CR). Thus, replication is of little practical
interest in the cloud context, as an important target besides per-
formance is to minimize operational costs.

Furthermore, the potential benefits of CR in the context of
IaaS clouds go well beyond its original scope, enabling a variety
of features that bring substantial reduction in operational costs
under the right circumstances: suspend–resume (i.e. suspending
the computation when the price of resources fluctuates and they
become expensive or the budget is tight), migration (i.e. moving
a computation to a new cloud provider without losing progress
already made and paid for), debugging (i.e. reducing application
development and testing costs by capturing and replaying subtle
bugs at large scale close to the moment when they happen).

In this paper we propose BlobCR (BlobSeer-based Checkpoint-
Restart), a checkpoint-restart framework specifically optimized
for HPC applications that need to be ported to IaaS clouds. Our
solution introduces a dedicated checkpoint repository that is able
to take incremental snapshots of whole disks attached to the
virtual machine (VM) instances where the HPC application is
writing its checkpointing data. This mechanism can be leveraged
either at application-level by directly requesting virtual disk
snapshots, or at system-level by using modified transparent
checkpointing protocols normally implemented in themiddleware
that is employed by the application (e.g. message passing libraries
such as MPI [19]).

We summarize our contributions below:
• We present a series of design principles that facilitate

checkpoint-restart on IaaS clouds and show how they can
be applied in IaaS cloud architectures. Unlike conventional
approaches, our proposal introduces support for an important
feature: the ability to roll back I/O operations performed by the
application.
• We complement our previous work [34] with support for

live snapshotting. In this context, we contribute with a
scheme specifically optimized for asynchronous transfers of
checkpointing data.
• We introduce an algorithmic description and show how to

implement and integrate it in practice on top of BlobSeer,
BlobSeer, a versioning storage service specifically designed for
high throughput under concurrency [30,32].
• We demonstrate the benefits of our proposal in a series

experiments, conducted on hundreds of nodes provisioned on
the Grid’5000 testbed, using both synthetic benchmarks and
real-life applications.

2. Checkpoint-restart on IaaS clouds

In short, CR is a mechanism that periodically saves the state
of an application to persistent storage (referred to as checkpoints)
and offers the possibility to resume the application from such
intermediate states.
2.1. Application model

CR treats an application as a collection of distributed processes
that communicate through a network in order to solve a common
problem. Communication is performed by exchanging messages
between the processes using a message passing system.

In addition to message passing, the processes have access to a
persistent storage service (typically a parallel filesystem, such as
Lustre, GPFS, PVFS, etc.) that is guaranteed to survive failures and
is used by the application to read input data, write output data and
possibly save logging information or other intermediate data.

The CRmechanism also relies on the storage service to save the
state of the application in a persistent fashion. Upon restart, it is
assumed that themachineswhere the application is launched have
access to the intermediate state previously saved on the storage
service in order to initialize the application from it.

2.2. Desired features of CR

Several important properties need to be considered when
designing CR mechanisms. We detail these properties below:
Performance. CR does not come for free: saving the application state
periodically to persistent storage inevitably introduces a runtime-
overhead and consumes storage space. Therefore, it is crucial to
design a CR mechanism that aims to minimize the interruption
time of the application during normal execution, as well as the
amount of information necessary to capture the application state.
Moreover, a restart needs to be able to quickly initialize the
application from a previously saved checkpoint with minimal
overhead.
Scalability. An important property of CR approaches is scalability:
the ability to control and keep the performance overhead of
the checkpointing process at acceptable levels, even when the
application grows in size and complexity. Note that this property
is independent of the scalability of the application itself: a
poorly designed CR system can easily turn an otherwise scalable
application into a non-scalable application.
Transparency. There are two basic approaches to CR: application-
level and system-level. In the case of application-level checkpoint-
ing, it is the responsibility of the user to explicitly decide what
variables need to be saved for each process and when the right
moment has come to do so. In this case, a careful design can
minimize the application state that needs to be saved for each
checkpoint and thus overall overhead of both checkpointing and
restart. However, with great power comes great responsibility:
writing efficient CR code is a laborious and error-prone task that
is becoming increasingly difficult as the application gains in com-
plexity. At the opposite end is system-level checkpointing: this
approach is completely transparent and requires no modification
at application-level. However, since no information is available
about the application, all variables and data structures need to be
saved for each process. This can lead to suboptimal checkpoint
sizes and increased runtime overhead, but greatly simplifies ap-
plication design. Overall, advocating for one approach or another
is not trivial and is highly application-dependent. For this reason,
it is important to provide support for both approaches.
Portability. Using CR for migration raises portability issues: the
checkpoints should be easy to move from one platform to another.
This does not simply imply being able to run the CR mechanism
on a different platform: what is really needed is the ability
to checkpoint the application on one platform, transport the
checkpoints to a different platform and then restart the application
there. In the context of IaaS clouds, this problem is not trivial:
there are differences in hardware and virtualization technologies
employedby cloudproviders. This can introduces incompatibilities
(e.g. incompatible virtual machine image formats due to different
hypervisors) that must be dealt with.



700 B. Nicolae, F. Cappello / J. Parallel Distrib. Comput. 73 (2013) 698–711
Manageability. In order to optimize the checkpointing process,
many approaches introduce optimizations that decompose the
checkpoints into smaller, inter-dependent pieces [48,39]. This is
done in order to speed up the checkpointing performance, at the
expense of having to reconstruct the checkpoint at restart time.
Since restarts are considered to occur much more seldom than
checkpointing, it is an acceptable trade-off. However, many small
pieces and their dependencies are difficult tomanage. For example,
if a piece is accidentally lost, all checkpoints that depend on that
piece become corrupted and cannot be used to successfully restart
the application. This can become a complex issue, especially when
storage space needs to be reclaimed by deleting old checkpoints.
Thus, in order to ease the management of checkpoints it is
desirable to work with checkpoints as first-class objects, i.e. single
independent entities.
Rollback of changes to persistent storage. Applications often interact
during the computationwith the persistent storage to save logging
information or other intermediate data. On restart, all these
interactions with the ‘‘outside world’’ become undesired side-
effects of the computation that followed after the checkpoint. In
some cases, these side-effects are harmless (e.g. the application
will overwrite files with the same contents). However, this is not
always the case: for example, a common pattern is to append data
to files as the computation progresses (such as status updates in
log-files), which can lead to inconsistencies that affect the final
results. Thus, a CR mechanism should be able to support rollback
of changes to the underlying storage.

3. Challenges of CR on IaaS clouds

IaaS clouds are typically built on top of clusters made out of
loosely-coupled commodity hardware [3]. Each node is equipped
with local disk storage in the order of several hundred GB, while
interconnect is provided by main-stream networking technology,
such as Ethernet. Users leverage these resources in form of virtual
machine instances (VMs) that are hosted on the nodes of the
cluster. Each node typically has hardware virtualization support
and runs a hypervisor that takes advantage of it for VM hosting.

Given this configuration, there are two challenges that play an
important role in the design of CR mechanisms.

3.1. How to provide persistency

In order to provide persistent storage, clouds typically employ
a dedicated repository that is hosted separately, either in a
centralized or distributed fashion. At a first glance, it may seem as
if the cloud repository could play the role of a parallel filesystem
and provide persistency for the application.

However, repositories on clouds mostly offer a different access
model for user data (e.g. key-value stores using a REST-ful access
API [4], database management systems [24], message queues [10]
etc.). Such differences in access model can pose a serious problem:
they may require significant changes to the application, which
are not always feasible, either because of technical issues (e.g. no
support for Fortran, which is widely used for HPC applications) or
prohibitive development costs. This problem is also accentuated
by the lack of standardization: different cloud providers offer
different data access models that limit portability. Furthermore,
cloud repositories do not offer out-of-the-box support to roll
back changes, which (as explained in Section 2.2) is an important
feature.

Thus, there is a need for a persistency option that overcomes
these obstacles.

3.2. How to capture the state of the application

In themost general case, the state of the computation is defined
at each moment in time by two main components: (1) the state
of application process; and (2) the state of the communication
channels between them (opened sockets, in-transit network
packets, virtual topology, etc.).

Since the applications we consider rely on message passing,
there are complex inter-process dependencies that make it
difficult and expensive to capture the state of the communication
channels into the global state. For this reason, (2) is typically
avoided in favor of alternative schemes. In the case of application-
level CR, a synchronization point is typically used right before
checkpointing in order to guarantee that all messages have
been consumed. A similar technique is also widely leveraged in
practice for system level checkpointing that uses a coordinated
protocol [11], both for the blocking and non-blocking case.
More recently, uncoordinated checkpointing protocols, which
previously received little attention in practice due the cost
and complexity introduced by message logging [1] have been
increasingly considered for certain classes of HPC applications [20].

In this paper we do not focus on the techniques used to deal
with (2), as they are widely covered in the literature and can be
used to complement our work. Thus, for the purpose of our work
we focus only on (1): we assume the global application state is
reduced to the sum of the states of all its processes. There are
two approaches to capture the state of a process in a transparent
fashion:
Take a snapshot of its virtualmachine instance. Severalmethods have
been established in the virtualization community to capture the
state of a running VM instance (RAM, CPU state, state of devices,
etc.). An advantage of this option is the fact that it captures not
only the state of the process itself, but the context of the operating
system as well, which ultimately means that a reinitialization of
the environment is avoided on restart (boot VM instance, configure
application, etc.). However, at the same time it has an important
disadvantage: the VM instance snapshots can explode to huge sizes
(e.g. saving 2 GB of RAM for 1000 VMs consumes 2 TB of space),
which can lead to undesired consequences: (1) unacceptably high
storage space utilization for a single one-point-in-time checkpoint;
(2) performance degradation because of large data transfers to and
respectively from persistent storage.
Use a process-level checkpointer. In this case, only the process state
(process context, allocated memory regions, etc.) is saved, while
the context of the virtual machine instance is discarded. Several
approaches have been proposed to achieve this (e.g. BLCR [14]):
essentially they dump the whole process state into a regular
file (called process image) and are able to restore the process
from that file. Since the state of the virtual machine instance
is discarded, there is an additional overhead on restart, as the
virtual machine instance needs to be re-deployed. However, a
much smaller checkpoint size is generated, which has a three-
fold benefit: (1) it lowers overall storage and bandwidth costs;
(2) during checkpointing it reduces the performance overhead
because of smaller data transfers to persistent storage; (3) during
restart it compensates for the overhead of rebooting the VM
instances by having to read less data from persistent storage.

Our previous work [34] shows that using a process-level
checkpointer can save storage space in the order of hundreds of
MB per VM instance, with a checkpointing overhead of up to 8×
smaller. Furthermore, it can reach an overall restart speed-up of up
to 6×, despite the need to reboot VM instances. Starting from these
findings, we advocate for the use of process-level checkpointers for
system-level CR.

4. Our approach

This section details our approach: Section 4.1 insists on the key
ideas of our approach; Section 4.2 illustrates how our approach
integrates in an IaaS infrastructure; Section 4.3 provides an
algorithmic description for the proposed design principles; finally,
Section 4.4 insists on some implementation details.



B. Nicolae, F. Cappello / J. Parallel Distrib. Comput. 73 (2013) 698–711 701
4.1. Design principles

Our approach relies on a series of key design principles, detailed
below.

4.1.1. Rely on virtual machine disk-image snapshots
The key idea of our proposal is to save both the output data

and state of the application to the virtual disks attached to the
VM instances and then take persistent snapshots of the images
corresponding to those disks. This approach solves both challenges
presented in Section 3 simultaneously, as discussed below.

First, it provides a persistency solution (as discussed in
Section 3.1) by enabling each process to rely on the filesystem
of their virtual machine instance for all I/O. This option is not
completely equivalent to using a parallel filesystem: in addition
to message passing, processes running on different nodes could
theoretically also synchronize by sharing files, a feature that is
not available in our case. However, in practice this feature is
not needed: for scalability reasons (in particular to avoid I/O
bottlenecks), each process typicallymanipulates its own set of files
independently of the other processes.

Starting from this assumption, the requirements identified in
Section 3.1 are satisfied: (1) transparency is guaranteed because
the filesystem of each VM instance is implicitly POSIX-compliant
and thus there need to change the application; (2) portability
is guaranteed because the filesystem is under the direct control
of the guest operating system, which is independent of the
physical host where the VM is running (e.g. the virtual disk can
be safely migrated to a different cloud provider without raising
incompatibility issues); and (3) reverting to a virtual disk snapshot
implicitly rolls back all filesystem changesmade after the snapshot
was taken.

Second, it provides an efficient means to capture the applica-
tion state, both in the case of application-level checkpointing and
system-level checkpointing. This is achieved in a two-stage pro-
cedure: first the process state is saved as files into the filesystem
of the VM instance, then a snapshot of the virtual disk is taken
immediately after. In the case of system-level CR, we rely on a
process-level checkpointer to capture the process state into a file.
As discussed in Section 3.2, this choice saves considerable amount
of storage space and bandwidth, while bringing important perfor-
mance improvement when compared to full VM instance snap-
shots.
Synchronizing the VM instance with its host: the CHECKPOINT
primitive. Note that the virtual disk must be snapshotted outside
of the VM instance, while the application is running inside the
VM instance. These two environments run concurrently and are
isolated one from another. Thus, it is impossible to determine from
the outside when it is safe to take a snapshot (i.e. when the first
stage of the checkpointing procedure has completed). To solve
this issue, a synchronization mechanism is necessary that enables
each VM instance to request a snapshot of its disk to the outside
and then wait for an acknowledgment to know when it is safe to
continue. To fill this role, we introduce the CHECKPOINT primitive,
whichmust be integrated into the checkpoint protocol andmust be
called either directly at application-level (for application-level CR)
or inside the message passing system (for system-level CR).

4.1.2. Leverage local disk storage available on compute nodes
In most cloud deployments [3,37,38], the disks locally attached

to the compute nodes are not exploited to their full potential.
These disks have a capacity of hundreds of GB that normally
serves as scratch space for the VM instances, yet only a fraction
of it is actually used. Starting from this observation, we propose
to aggregate parts of the storage space from all compute nodes
in order to build a distributed checkpoint repository specifically
designed to store VM disk-image snapshots persistently. Each
snapshot is stored in a striped fashion: it is split into small, equal-
sized chunks that are evenly distributed among the local disks
of the checkpoint repository. Using this load-balancing strategy
effectively distributes the I/O workload among the local disks,
guaranteeing that no local disk becomes a bottleneck due to
heavier load compared to others.

Furthermore, each snapshot is locally mirrored: it is presented
to the hypervisor as a regular file accessible from the local disk.
Read and write accesses to the file, however, are trapped and
treated in a special fashion. A read that is issued on a fully or
partially empty region in the file that has not been accessed before
(by either a previous read or write) results in fetching the missing
content remotely from the VM repository, mirroring it on the local
disk and redirecting the read to the local copy. If thewhole region is
available locally, no remote read is performed.Writes, on the other
hand, are always performed locally.

Using this scheme, our approach achieves the high scalability
requirement presented in Section 2.2. First, one can observe that a
growing number of compute nodes automatically leads to a larger
checkpoint repository, which is not the case when using dedicated
storage resources. Furthermore, there is no limit on the total I/O
bandwidth except the limit of the interconnect between compute
nodes itself. Second, data striping greatly enhances the scalability
of read and write accesses under concurrency, as the global I/O
workload is evenly distributed among the local disks. Finally, local
mirroring conserves overall I/O bandwidth because data is stored
on the local disk andwritten remotely onlywhen theCHECKPOINT
primitive is invoked.

Since virtual disk snapshots need to be stored in a persistent
fashion, fault tolerance becomes a critical concern. Considering
that we use unreliable local disks to store the chunks, there is a
need to introduce a resilience mechanism. One simple solution is
to rely on replication, i.e. store the same chunk more than once on
different local disks. Besides addressing fault tolerance, replication
also increases chunk availability, because concurrent reads can be
served by different local disks independently. However, one major
drawback of replication is the extra storage space and network
bandwidth necessary to store andmaintainmultiple chunk copies,
which implicitly also leads to higher checkpointing overhead. In
the context of CR, this drawback is particularly important, because
checkpoints are frequently written but only seldom read back (i.e.
only during restart). Furthermore, there is no need to read the
same checkpoint concurrently, because each VM needs to access
its own checkpoint. For this reason, replication can lead to an
inefficient use of available resources without bringing significant
benefits for CR through high availability. To address this issue,
we explored in our previous work [5] the use of erasure codes to
provide resilience. Compared to replication, such an approach can
reach up to 50% higher checkpointing throughput and 2× lower
bandwidth/storage space consumption for the same reliability
level.

4.1.3. Live incremental snapshotting using selective copy-on-write
Not all parts of the VM disk are touched between consecutive

checkpoints. Therefore, saving the full disk for each VM instance
unnecessarily generates duplicated data, leading to an explosion
of storage space utilization, as well as an unacceptably high
snapshotting time and I/O bandwidth consumption. To avoid this
issue, awell knownoptimization is incremental snapshotting, i.e. to
store persistently only the chunks that have changed since the
previous snapshot.

Even when relying on such an optimization, the modified
chunks have to be replicated and stored remotely, which can
become a lengthily process. If the VM instance is permitted to



702 B. Nicolae, F. Cappello / J. Parallel Distrib. Comput. 73 (2013) 698–711
run at the same time while this is happening, some chunks may
be modified before they are persisted, which in turn may lead to
inconsistencies. Therefore, an important property that needs to be
obeyed by snapshotting is atomicity. A simple solution to provide
atomicity is offline snapshotting, i.e. to stop the VM instance for
the duration of the snapshotting. However, this approach can
lead to high downtime, which negatively impacts application
performance. Therefore, it is important to be able to take snapshots
atomically without interrupting the execution of the VM instance.
We refer to this ability as live snapshotting.

Live snapshotting is still an open issue. One potential solution
to address it is copy-on-write: whenever a chunk needs to be
modified, it is copied to an alternate location and all modifications
are performed on the copy. The advantage of this approach is a
minimal impact on application performance: the application is
never interrupted, only writes are delayed by the time required to
copy the chunks. However, there is also a disadvantage: copying
the chunks to alternate locations increases fragmentation, which
in turn decreases the performance of subsequent I/O, as there is
need to jump from one location to another in order to access the
required chunks. This may not even possible in some scenarios
if the chunks are expected to be in a contiguous region, which
can further complicate the adoption of copy-on-write (e.g. it may
require some additional copies to create contiguous regions, which
again has a negative impact on performance of I/O).

In order to deal with this disadvantage, we propose a principle
that we call selective copy-on-write. Our goal is to eliminate
fragmentation but still take advantage of the benefits provided by
copy-on-write. To achieve this goal, we leverage the fact that the
snapshotting process does not access all chunks simultaneously.
Therefore, when a write conflicts with a chunk that has not
been persisted yet, two cases are possible: either the chunk is
actively accessed by the snapshotting process or it is scheduled
for access in the future. In the first case, it is necessary to wait
for the snapshotting process in order to avoid an inconsistency.
However, in the second case this can be avoided: it is still necessary
to copy the chunk to an alternate location, but this time the
snapshotting process can be redirected to the copy while the write
can modify the original chunk. Thus, fragmentation is avoided at
the expense of dealing with the first case. Since the first case is a
rare occurrence, this can reduce the space overhead and provide
better optimization opportunities compared to traditional copy-
on-write. We detail an algorithmic description of how this works
in Section 4.3.

4.1.4. Shadowing and cloning
Copy-on-write is typically implemented in traditional ap-

proaches through custom VM image file formats [18]: the incre-
mental differences are stored as a separate file, while leaving the
original file corresponding to the base disk image untouched and
using it as a read-only backing file. Such copy-on-write images can
depend themselves on other copy-on-write images, thus repre-
senting successive snapshots as a long chain of ‘‘patches’’.

This approach has the advantage of being easy to implement
on top of conventional filesystems, however, at the same time it
presents two important disadvantages. First, it generates a chain of
files that depend on each other, which, as discussed in Section 2.2,
raises a lot of issues related to manageability. For example,
accidental removal of one file in the chain essentially corrupts
the whole set of incremental snapshots, rendering the checkpoints
unusable. Second, a custom image file format is not portable and
limits the migration capabilities: if the destination host where the
VM needs to be migrated runs a different hypervisor that does
not understand the custom image file format, migration is not
possible.
Thus, an approach is needed that addresses both the manage-
ability and portability requirements. To this end, we leverage two
features used by versioning systems: shadowing and cloning [30].

Shadowing means to offer the illusion of creating a new
standalone snapshot of the object for each update to it, but to
physically store only the differences and manipulate metadata in
such way that the illusion is upheld. This effectively means that
from the user’s point of view, if a small part of a large file needs
to be updated, shadowing enables the user to see the effect of the
update as a second file that is identical to the original except for
the updated part.

Cloning means to duplicate an object in such way that it looks
like a stand-alone copy that can evolve in a different direction
from the original but physically shares all initial content with the
original. It is similar in concept to the fork system call.

With this approach, snapshotting can be performed in the
following fashion. The first time a snapshot is built, for each VM
instance a new checkpoint image is cloned from the initial backing
image. Subsequent local modifications are written as incremental
differences to the checkpoint image and shadowed as a new
snapshot. For the rest of this paper, we denote this process using
two primitives: CLONE and, respectively, COMMIT. In this way all
snapshots of all VM instances share unmodified content among
one another and still appear to the outside as independent, first-
class disk-images. Thus, they hide all dependencies introduced by
incremental snapshotting from the user, which makes themmuch
easier to manage. Furthermore, when using a simple raw image
file as the initial backing image, all snapshots will themselves
represent raw images, which are understood by most hypervisors
and thus make our approach highly portable.

4.1.5. Lazy transfers and adaptive prefetching
Since our approach avoids saving the whole state of the VM

instances, a restart implies that the instances are re-deployed and
rebooted using the disk snapshots of the last checkpoint, after
which the state of the processes is restored from the files. To
optimize the performance of this process, both in termsof run-time
and I/O bandwidth consumption, we introduce two optimizations.

First, as VM instances typically access only a small fraction of the
VM image throughout their run-time, fetching only the necessary
parts on-demand can reduce this overhead considerably [33].
Therefore, we propose the use of a ‘‘lazy’’ transfer scheme that
fetches only the hot content of the disk image (i.e. the checkpoint
files and any other files directly accessed at runtime by the guest
operating system and the application).

Second, since the disk snapshots store only incremental
differences, large parts of the images are shared and potentially
need to be read concurrently by the VM instances during the boot
process. In order to limit the negative impact of this issue, we
exploit small delays between the times when the VM instances
access the same chunk from the checkpoint repository (due to jitter
in execution time) in order to prefetch the chunk for the slower
instances based on the experience of the faster ones [36].

4.2. Architecture

The simplified architecture of an IaaS cloud that integrates
our approach is depicted in Fig. 1. The typical elements found
in the cloud are illustrated with a light background, while the
elements that are part of our proposal are highlighted by a darker
background.

A checkpoint repository that survives failures and supports
cloning and shadowing is deployed on the compute nodes.
The checkpoint repository aggregates part of the storage space
provided by the local disks of the compute nodes and is responsible
to persistently store both the base and the disk images snapshots.



B. Nicolae, F. Cappello / J. Parallel Distrib. Comput. 73 (2013) 698–711 703
Fig. 1. Our approach (dark background) integrated in an IaaS cloud.
The cloud client has direct access to the checkpoint repository
and is allowed to upload and download the disk images. Typically
the user downloads and uploads base disk images only, however,
thanks to shadowing and cloning, our approach enables the user
to see and download checkpoint images as standalone entities as
well. This feature that can become useful in a scenario where the
checkpoints need to be inspected and even manually modified.
Moreover, the cloud client interacts with the cloudmiddleware (the
frontend of the user to the cloud) through a control API that enables
deployments of a large number of VM instances starting from an
underlying set of disk images.

Each compute node runs a hypervisor that is responsible for
launching and executing the VM instances. The VM instances run
in a modified guest environment that implements an extended CR
protocol, which is able to ask the hosting environment to take a
snapshot of its virtual disk. This is done through the checkpointing
proxy, a special service that runs on the compute nodes and accepts
checkpoint requests. Both for security and scalability reasons,
the checkpointing proxy is not globally accessible: it accepts
checkpoint requests only from the VM instances that are hosted
on the same compute node.

All reads and writes issued by the hypervisor are trapped by
the mirroring module, responsible to fetch the hot contents of the
base disk image remotely from the repository and cache it locally.
Local modifications to the base disk image triggered by writes are
stored on the local disk as incremental differences. Whenever a
checkpoint request is issued for the first time, the checkpointing
proxy asks themirroringmodule to create a checkpoint image that
is derived from the base image (CLONE). This initial checkpoint
image shares all contents with the base image. Then, the
local modifications are committed to the checkpoint image as
an incremental snapshot (COMMIT). Any subsequent checkpoint
request will commit the local modifications recorded since the
last checkpoint request as a new incremental snapshot into the
checkpoint disk image.

Thanks to shadowing, it is possible to garbage-collect old local
modifications that were overwritten by newer ones, despite the
chain of dependencies introduced by the incremental snapshots.
To this end, the CR protocol implementation can mark old
snapshots as obsolete, which in turn enables the garbage collector
to delete all changes that no subsequent snapshots depend upon.

Amapping between each successful checkpoint request and the
resulting incremental snapshot together with its corresponding
checkpoint image is maintained by the cloud middleware. In case
of a failure or when the whole application needs to be terminated
and resumed at a later point, all VM instances are re-deployed
using a recent snapshot from their corresponding checkpoint
image as the underlying virtual disk. It is the responsibility of
the CR protocol implementation to pick a set of snapshots for the
VM instances such that the application can roll back to a globally
consistent state.
4.3. Algorithms

This section materializes the design principles presented in
Section 4.1 into a series of algorithms that describe the interactions
between the various building blocks presented in the previous
section.

As a convention, we consider each disk-image snapshot as a set
of chunks, each of which covers a well defined region of the virtual
disk, delimited by offset and size. The initial image, configured
by the user and used to deploy the virtual cluster is denoted
BaseImage. This initial image is mirrored locally on the host of the
virtual machine instance by the mirroring module.

The set of chunks that were either read or written during the
lifetime of the VM instance is denoted LocalMirror . Each chunk
of the LocalMirror is in a state that describes its relationship to
the snapshotting process: it is either Idle (i.e. it is not part of any
snapshotting request in progress), Scheduled (i.e. a snapshotting
request runs in the background and the chunk is part of it, but
the chunk was not accessed by the snapshotting process so far),
or Pending (i.e. a snapshotting request runs in the background and
actively accesses the chunk). All chunks are initially in the Idle state.

The CHECKPOINT primitive, exported by the checkpointing
proxy is presented in Algorithm 1. Essentially it invokes remotely
on the mirroring module the COMMIT primitive, responsible to
commit all modified chunks since the last checkpoint request as
a new snapshot of CheckpointImage, which in turn is cloned from
BaseImage if the checkpoint request was issued for the first time.

Algorithm 1 Request a disk-image snapshot the VM instance
1: function CHECKPOINT
2: if first checkpoint request then
3: CheckpointImage← CLONE(BaseImage)
4: end if
5: M ← ∅
6: for all c ∈ LocalMirror such that c was modified since last

checkpoint request do
7: M ← M ∪ {c}
8: end for
9: return COMMIT(M)

10: end function

BothCLONE andCOMMIT are exported by themirroringmodule.
The CLONE primitive involves only a minimal metadata overhead
that essentially gives the base image another name and enables it
to evolve in a different direction. We do not detail this primitive
here. The COMMIT primitive is detailed in Algorithm 2. It adds all
chunks that were modified since the last checkpoint request to the
ScheduledSet set, changing their state to Scheduled. After this step
completed, it creates a new snapshot of CheckpointImage that is
uniquely identified in the system by snapshot id. Then it starts the



704 B. Nicolae, F. Cappello / J. Parallel Distrib. Comput. 73 (2013) 698–711
snapshotting process (represented by theBACKGROUND_PERSIST
primitive) in the background. Finally, it informs the checkpointing
proxy of the snapshot corresponding to its checkpoint request
through the return value snapshot id. Having obtained this value,
the checkpoint proxy acknowledges the checkpoint request back
to the VM instance, signaling it that it is safe to continue.

Algorithm 2 Commit local modifications into a new VM disk-
image snapshot
1: function COMMIT(M)
2: ScheduledSet ← M
3: for all c ∈ ScheduledSet do
4: state[c] ← Scheduled
5: end for
6: snapshotid ← generate new id
7: start BACKGROUND_PERSIST(snapshotid)
8: return snapshotid
9: end function

At this point, the snapshotting process run concurrently with
the VM instance inside the mirroring module. Its role is to store
all chunks in the ScheduledSet set persistently to the checkpoint
repository. This is presented in Algorithm 3 as an iterative
process: a chunk is extracted from the set, put into the Pending
state, transferred and replicated to the checkpoint repository
and finally put into the Idle state. After all chunks have been
successfully persisted, they are consolidated as a new snapshot of
CheckpointImage using shadowing, after which the checkpoint is
marked as stable and can be used for a restart from that point on.

Algorithm 3 Persist committed modifications to the checkpoint
repository
1: procedure BACKGROUND_PERSIST(snapshotid)
2: while ScheduledSet ≠ ∅ do
3: c ← extract chunk from ScheduledSet
4: state[c] ← Pending
5: write c persistently to repository
6: ScheduledSet ← ScheduledSet\{c}
7: state[c] ← Idle
8: end while
9: consolidate chunks using shadowing

10: mark snapshotid as stable
11: end procedure

A graphical illustration of the calls issued in parallel by the
entities during a checkpoint request, from the initial checkpoint
request of the VM instance to the moment when the checkpoint
becomes stable, is depicted in Fig. 2. Each call is represented as
an arrow. Solid arrows are used to represent interactions between
different entities, while a dotted pattern is used to represent
interactions between components that runwithin the same entity.

To enable live snapshotting, write requests use selective copy-
on-write, as explained in Section 4.1. More precisely, before
modifying any chunk c that is involved in the write request, first
a verification is made to check whether c needs to be persisted by
the snapshotting process. If this is the case and c is in the Pending
state, then the write request waits for the snapshotting process to
finish persisting c. Otherwise, c is copied to an alternative location
c ′, which replaces c in ScheduledSet , while the write continues
normally on c itself. This process is illustrated in Algorithm 4.

For the rest of this section, we briefly analyze the proposed
algorithms with respect to the performance overhead they incur
on the application.

Let us denote the total checkpointing overhead Tt . In our
context, Tt = Tp + Tc + Tw + Tj, where Tp is the ‘‘preprocessing’’
Algorithm 4 Write using selective copy-on-write
1: function WRITE(buffer, offset, size)
2: for all c ∈ LocalMirror such that c ∩ (offset, size) ≠ ∅ do
3: if c ∈ ScheduledSet then
4: if state[c] = Pending then
5: wait until state[c] = Idle
6: else if state[c] = Scheduled then
7: c ′ ← copy of c
8: ScheduledSet ← ScheduledSet\{c}
9: ScheduledSet ← ScheduledSet ∪ {c ′}

10: end if
11: end if
12: write from buffer to c ∩ (offset, size)
13: end for
14: return success
15: end function

overhead (i.e. the overhead of writing checkpointing data to
the virtual disks), Tc is the downtime caused by calling the
CHECKPOINT primitive, Tw is the downtime of write requests
due to selective copy-on-write and Tj is the jitter caused by the
background snapshotting. Fig. 2 illustrates these variables in the
context of our algorithms to make the model more intuitive. Note
that Tw and Tj, although spread throughout the whole duration
of the snapshotting, contribute only partially to Tt because of the
overlapping with the application runtime: this is depicted as a
dotted line that has a smaller corresponding solid section in Tt .

Tc can be traced down to cloning a base image if necessary
and putting all locally modified chunks into the Scheduled state.
Since these operations incur only a minimal metadata overhead
compared to the rest of the snapshotting process (tens to hundreds
of ms), we consider Tc negligible. Therefore, Tt ≈ Tp + Tw + Tj.
Based on this result, we conclude that threemain factors dominate
the checkpointing overhead perceived by the application: (1) how
long it takes to dump the checkpointing data to the virtual disk (Tp);
(2) the amount of snapshotted data overwritten by the application
in the time window between the moment when a snapshot is
requested and the moment when it has been persistently stored –
in otherwordswrites that cover chunks still in the ScheduledSet set
(proportional to Tw); and finally (3) the amount of data written to
the virtual disk since the last checkpoint (which determines how
long it takes to persist the chunks in the background and thus is
proportional to Tj).

4.4. Implementation

We implemented our approach into the preliminary BlobCR
prototype introduced in [34]. In this section, we briefly describe
its building blocks (presented in Section 4.2).

The distributed checkpoint repository was implemented on
top of BlobSeer [30,32], a distributed storage service specifically
designed to efficiently support incremental updates by means of
cloning and shadowing. More specifically, each VM snapshot is
stored as a large sequence of bytes (BLOB) that is automatically
striped into chunks and stored in a distributed and resilient fashion
(either replicated or erasure coded) among the participating nodes.
All metadata that describes the composition of BLOBs is itself
striped and stored in a distributed fashion.

The mirroring module was implemented on top of FUSE
(FileSystem in UserspacE) [17], and relies on our previous work
presented in [33]. It exposes each checkpoint image as a directory
and the associated snapshots as files in that directory, accessible
from the outside using the regular POSIX access interface. Any
reads and writes issued by the hypervisor are trapped by FUSE and
treated in a special fashion.



B. Nicolae, F. Cappello / J. Parallel Distrib. Comput. 73 (2013) 698–711 705
Fig. 2. Overview of the checkpointing process.
Reads implement the lazy transfer and adaptive prefetching
mechanism introduced in Section 4.1.5: the BLOB is accessed on-
demand only and all needed content is cached on the local disk for
faster future reads of the same regions. Furthermore, prefetching
hints piggybacked on each read are used to pre-read and cache
contents that is expected to be accessed in the near future. Writes
implement the selective copy-on-write strategy introduced in
Section 4.1.3. Since the VM image is accessible from the outside
through a POSIX-compliant access interface, we had to implement
the CLONE and COMMIT primitives as ioctl system calls that are
trapped and treated by the FUSE module in a special fashion.

COMMIT relies directly on the shadowing support exposed by
BlobSeer in order to write all local modifications into a new BLOB
snapshot. Fig. 3 shows how this is possible through distributed
segment trees that are enriched with versioning information [32].
More precisely, each tree node covers a region of the BLOB, with
leaves covering chunks directly and non-leaf nodes covering the
combined range of their left and right children. Non-leaf nodesmay
have children that belong to other snapshots, thus enabling sharing
not only of unmodified chunks among snapshots of the same BLOB
but also of unmodified metadata. In this way, consecutive COMMIT
calls to the same VM image generate a totally ordered set of
snapshots of the same BLOB, each of which can be directly mapped
to a fully independent VM image snapshot-in-time. CLONE is a
trivial operation in this context: it is enough to add a new tree root
corresponding to a different BLOB that has the same children as the
segment tree of the original BLOB snapshot (Fig. 3(b)). In this way,
the implementation of the CLONE primitive generates a minimal
overhead, both in space and in time.

Note that although the mirroring module is subject to failures,
all VM disk snapshots and their associated metadata are stored
in a resilient fashion into BlobSeer. Thus, if a failure occurs while
the VM disk snapshotting is in progress, it is easy to identify the
VM disk snapshots of the latest checkpoint confirmed to be fully
committed to BlobSeer and restart from there.

The checkpointing proxy was implemented as a service that lis-
tens on a specified port for incoming TCP/IP connections originat-
ing from VM instances that resides on the same compute node
where the proxy is deployed. If application-level checkpointing is
desired, the checkpointing proxy can be directly contacted from
within the application code. In order to enable process-level check-
pointing, the user must install a modified MPI [19] library imple-
mentation based onmpich2. The checkpointing protocol itself is an
extension of the original implementation available in mpich2. It
uses the scheme presented in Section 3.2, relying on blcr [14] to
dump the checkpoint of the MPI processes into files. We added ex-
tra code to this checkpointing protocol that flushes all guest caches
to the virtual disk and then invokes the CHECKPOINT primitive
right after BLCR has finished saving the process image.

5. Evaluation

This section evaluates the benefits of our proposal both in
synthetic settings and for real-life applications.

5.1. Experimental setup

The experiments were performed on Grid’5000 [8], an experi-
mental testbed for distributed computing that federates nine sites
in France. We used 90 nodes of the graphene cluster from the
Nancy site, each of which is equipped with a quadcore Intel Xeon
X3440 x86_64 CPU with hardware support for virtualization, local
disk storage of 278 GB (access speed≃55 MB/s using SATA II ahci
driver) and 16 GB of RAM. The nodes are interconnected with Gi-
gabit Ethernet (measured 117.5 MB/s for TCP sockets with MTU=
1500 B with a latency of≃0.1 ms).

The hypervisor running on all compute nodes is Qemu/KVM
1.0, while the operating system is a recent Debian Sid Linux
distribution. For all experiments, a 4 GB raw disk image file
based on the same Debian Sid distribution was used as the guest
operating system. Inside this guest OS, we installed a modified
mpich2 library (based on the 1.3.×development branch) that
integrates our approach.

5.1.1. Methodology
The experimentswe perform involve a set of VM instances, each

of which is running on a different compute node. Inside the VM
instances, we run either a synthetic benchmark or a real applica-
tion that is checkpointed at regular intervals. The checkpointing



706 B. Nicolae, F. Cappello / J. Parallel Distrib. Comput. 73 (2013) 698–711
(a) Segment tree and chunk composition of
the initial VM image A.

(b) Segment trees and chunk
composition after VM image A was
cloned into VM image B using CLONE.

(c) Segment trees and chunk composition after
VM image B was snapshotted two times
consecutively using COMMIT.

Fig. 3. Cloning and shadowing by means of segment trees.
process has an application-specific part (detailed for each exper-
iment) that writes checkpointing data to the virtual disks, after
which it calls theCHECKPOINTprimitive for eachVMto initiate the
snapshotting process. We compare five snapshotting approaches,
listed below:
Live incremental disk snapshotting using our approach. In this setting
we rely on BlobCR to store base disk image and on the FUSE-based
mirroring module to expose a locally modifiable view of the disk
image to the hypervisor. BlobSeer is deployed on all compute nodes
and stores the initial base disk image (4GB) in a distributed fashion,
using a stripe size of 256 kB (which fromour previous experience is
large enough to avoid excessive fragmentation overhead, yet small
enough to avoid contention under concurrent read accesses). All
chunks are replicated three times in order to guarantee resilience.
Any CHECKPOINT request is handled using selective copy-on-
write, as presented in Section 4.3. For the rest of this paper, we
refer to this setting as our-approach.
Live incremental disk snapshotting using traditional copy-on-write.
This setting is very similar to the previous setting, except for the
way the CHECKPOINT primitive is handled: rather than using
selective copy-on-write, we use traditional copy-on-write. More
specifically, writes that occur during the snapshotting process
create a copy of the involved chunks and perform the writes
there. After the snapshotting process has completed, all newly
generated chunks replace the old chunks. We refer to this setting
as live-cow.
Live incremental disk snapshotting using local pre-copy. The same
configuration is used for this setting as well, however this time
we avoid copy-on-write altogether in favor of a full local pre-copy
strategy: all modified chunks are first copied to the local disk and
then persisted to the checkpoint repository in the background. This
way, writes never conflict with the snapshotting process and can
be treated normally. We refer to this setting as live-precopy.
Offline incremental disk snapshotting. This setting differs from the
previous configuration only in that chunks are directly persisted to
the checkpoint repository rather than copied locally and persisted
in the background. It essentially avoids any jitter caused by
background transfers at the expense of higher downtime.We refer
to this setting as offline-disk.
Offline incremental full VM snapshotting. Finally our last setting
takes a complete incremental snapshot of the VM, including
memory and CPU state besides the disk. In order to store these VM
snapshots,we deploy PVFS, a highly popular parallel filesystem.We
fix the chunk size to 256 kB, the same size used for BlobSeer. To
achieve incremental snapshotting, we build a derived qcow2 image
for each VM instance and then use the savevm QEMU monitor
command when the CHECKPOINT primitive is called. We refer to
this setting as offline-full.

These approaches are compared based on the following
metrics:
• Average snapshotting downtime: Is the average time per VM

instance required to execute the CHECKPOINT primitive (i.e.
Tc). This metric is important because it shows the degree by
which the application execution can be overlapped with the
VM disk snapshotting process. Such an insight is helpful in
understanding what the maximal theoretical benefit of live
approaches is when compared to offline approaches in an ideal
situation where there is no interference because of background
transfers (i.e. Tj = Tw = 0).
• Impact on application performance: Represents the increase

in application execution time compared to the baseline (i.e.
when no checkpointing happens). This metric shows the real
benefits of each approach when taking all overhead sources
into consideration. More specifically, it offers an insight into
the degree by which Tj (zero for offline, non-zero for live) and
Tw (potentially non-zero for our-approach and live-cow,
zero for the rest) influence the application execution (Tj+Tw =

Impact− Tc).
• Average snapshotting completion time: Represents the average

time per VM instance required to transfer and store the chunks
in a persistent fashion. This metric shows how much it takes
until the snapshot is successfully committed and can be safely
used for restart. It also indicates the period of time over
which the effects of Tj and Tw are spread making it easier to
understand the implications of overlapping application runtime
with snapshotting.

5.2. Synthetic benchmarks

The first series of experiments evaluates the scalability of our
proposal in controlled synthetic settings.

To this end, we implemented a simple benchmarking applica-
tion that consists of a configurable number of processes, each of
which runs in a dedicated VM instance. Each process indepen-
dently allocates a fixed amount of memory as a data buffer and
fills it with random data. The checkpointing process itself consists
in saving the memory buffer to the virtual disk, after which the
CHECKPOINT primitive is called. In order to create a non-trivial
context that generates conflicts between the snapshotting process
and subsequent writes, we start a second iteration immediately af-
ter returning from the CHECKPOINT primitive.

The experiment itself consist in deploying an increasing num-
ber of VM instances and then concurrently launching a benchmark-
ing application process in each of the instances.



B. Nicolae, F. Cappello / J. Parallel Distrib. Comput. 73 (2013) 698–711 707
(a) Average VM downtime due to checkpointing requests (lower is
better).

(b) Time to complete benchmark (lower is better).

Fig. 4. Benchmarking results using a 1 GB data buffer per VM instance. Memory size is 4 GB/instance.
Results are shown in Fig. 4. As expected, the downtime
(Fig. 4(a)) caused by CHECKPOINT is almost negligible for
our-approach andlive-cow: it remains close to constant in the
order of hundreds of milliseconds. In the case of live-precopy,
we observe a close to constant downtime too, however it stabilizes
at almost two orders of magnitudes higher (around 10s) due to the
initial local copy of modifications. Finally, for offline-disk and
offline-full an explosion of downtime is clearly visible, with
an increasing trend due to growing I/O pressure under concurrency
on the checkpointing repository and PVFS respectively.

Comparing the increase in application execution time to
complete the benchmark reveals that all live snapshotting
approaches have a large advantage over the offline approaches,
thanks to the fact that the background transfers are overlapping
with the benchmark execution. At the extreme, our-approach
is almost 4× faster than offline-full and 80% faster than
offline-disk. Fig. 5(a) reveals why in greater detail: the
overhead of copy-on-write is very small for all three asynchronous
approaches compared to offline-disk and thus enables a
high degree of overlapping between the computation and the
application runtime. Furthermore, compared to live-cow, we
achieve a smaller overhead due to the fact that we avoid
fragmentation: in this case, our approach is almost 20% faster.
To better understand this effect, Fig. 5(b) depicts the aggregated
size of all chunks from all VMs that triggered a copy-on-write in
the case of live-cow, leading to fragmentation. As expected, we
can see an increasing fragmentation in the system, which has a
negative impact on the performance of the benchmark. Thanks to
selective copy-on-write, our approach avoids this fragmentation
altogether, which explains the lower increase in execution time
when compared to live-cow.

Finally, we measured the storage space and bandwidth
consumed by the checkpointing process. All BlobCR approaches
generate VM disk snapshots of little more than 1 GB, which is
more than 3× less than offline-full. Since these have to be
stored remotely, the consumed bandwidth is proportional to the
checkpoint size.

5.3. Real life application case study: CM1

Our next series of experiments illustrates the behavior of our
proposal in real life. For this purpose we have chosen CM1, a
three-dimensional, non-hydrostatic, non-linear, time-dependent
numerical model suitable for idealized studies of atmospheric
phenomena. This application is used to study small-scale processes
that occur in the atmosphere of the Earth, such as hurricanes.
CM1 is representative of a large class of scientific applications
that model a phenomenon in time which can be described by
a spatial domain that holds the value of fixed parameters in
each point (temperature, pressure, etc.). Starting from such an
initial spatial domain, the application calculates the evolution of
the values of the parameters in each point according to a set
of governing equations that involves the previous values of the
parameters in that point and eventually its neighborhood. The
problem is solved iteratively in a distributed fashion by splitting
the spatial domain into subdomains, each of which is managed
by a dedicated MPI process. At each iteration, the MPI processes
calculate the values for all points of their subdomain, and then
exchange the values at the border of their subdomains with each
other.

CM1 is able to take application-level checkpoints by synchro-
nizing the MPI processes to dump the contents of the subdomains
into files. Each MPI process independently writes its own check-
point file. Furthermore, at each fixed number of iterations, all MPI
processeswrite intermediate summary information about the sub-
domains, again into independent files. For the purpose of thiswork,
we have chosen a 3D hurricane that is a version of the Bryan and
Rotunno simulations [9].

We study the weak scalability of our approach by solving the
same problem using a different precision, in such way that the
size of the subdomain solved by each process remains constant at
200×200, which roughly corresponds to 1 GB of new application-
level checkpointing data per VM. The experiment consists in
deploying an increasing number of quad-core VM instances, each
of which hosts 4 MPI processes, one per core. We take three global
checkpoints evenly spaced throughout the execution time and
compute the average downtime and increase in execution time.

Results are shown in Fig. 6. Again, the average downtime
(Fig. 6(a)) due to checkpointing is negligible in the case of
our-approach and live-cow, growing to two orders of
magnitude higher in the case of live-precopy. In all live
approaches, a stable trend is noticeable, which hints at excellent
scalability. On the other hand,offline-disk experiences a sharp
increase in downtimedue to remote I/Opressure on the checkpoint
repository, which is hidden in the case of live snapshotting by the
background transfers. Since CM1 is a memory-hungry application,
the VM snapshot size obtain by offline-full was almost 5×
larger than the rest, which in turned caused unacceptably high
downtime that led to communication errors inside CM1. For this
reason, the curve for offline-full was omitted.

Fig. 6(b) depicts the performance overhead of all three live
approaches compared to offline-disk. As can be observed,



708 B. Nicolae, F. Cappello / J. Parallel Distrib. Comput. 73 (2013) 698–711
(a) Average COMMIT completion time for the asynchronous
approaches compared to offline-disk (lower is better).

(b) Aggregated live-cow fragmentation size due to chunks that
triggered copy-on-write (chunk size is 256 kB).

Fig. 5. Under-the-hood benchmarking measurements using a 1 GB data buffer per VM instance. Memory size is 4 GB/instance.
(a) Average downtime per MPI process due to checkpointing requests
(lower is better).

(b) Total increase in execution time (lower is better).

Fig. 6. Checkpointing results using a real life HPC application: CM1. Each VM instance runs 4MPI processes. Subdomain size per process is 200×200.Memory size is 4 GB/VM
instance.
the reduction in downtime compared to offline-disk cannot
be fully leveraged to reduce the performance overhead, because
the asynchronous background transfers negatively impact the
performance of the application: not only do they cause jitter
and/or trigger copy-on-writes, but they also steal bandwidth away
from the MPI processes themselves. Since CM1 is a bandwidth-
hungry application, the three live approaches perform closer
than in the synthetic setting. Nevertheless, at less than 66% of
the overhead of offline-disk, our approach leverages the
downtime up to 20% better than live-cow which is very closely
followed by live-precopy. With respect to scalability we note
a downward trend in all three approaches, which hints at better
opportunities to leverage the downtime as the I/O pressure on
the checkpoint repository increases. We also note an increasing
difference between our-approach and live-cow. This happens
because of longer background snapshotting, which increases
fragmentation overhead.

Finally, we run a series of experiments that evaluate the
restart performance of our approach, in particular the lazy
transfer and adaptive prefetching techniques introduced in
Section 4.1.5. To this end, we use the VM disk snapshots of
the last checkpoint from the previous experiment in order re-
deploy all VM instances (i.e. boot the OS) and subsequently
restart CM1. We compare three approaches: (1) lazy, which
implements our on-demand read strategy complemented with
local caching; (2) lazy-prefetch, which extends lazy with
additional prefetching hints piggybacked on each read in order to
pre-read and cache contents that is expected to be accessed in the
near future; and (2) pre-copy, the traditional approach that pre-
copies the whole VM disk content on the local disk before booting
and running the VM instance.

Results are shown in Fig. 7. The total size for reads that
caused waiting for I/O is depicted in Fig. 7(a). For lazy, this
includes all reads intercepted by the FUSE interface for all VM
instances. For lazy-prefetch, it includes all reads that were not
already prefetched based on the hints. For pre-copy the total size
represents the sumof the sizes of the individual VMdisk snapshots.
As can be observed, pre-copy needs to transfer 3 times more
data than the other two approaches, thus confirming that only
a fraction of the VM disk snapshot is actually needed on restart.
Thanks to prefetching, it can be observed that lazy-prefetch
causes less blocking reads compared to lazy. This results is
also reflected in the total time to boot and restart CM1, which
is depicted in Fig. 7(b). As can be observed, both lazy and
lazy-prefetch maintain good scalability, with slightly less
overhead for lazy-prefetch. As expected, pre-copy needs to
transfer large amounts of data corresponding to the full VM disk
snapshots before restarting CM1,which generates a large overhead
compared to the other two approaches: the completion time is
almost 2× larger.

6. Related work

An alternative mechanism to CR is provided Remus [12]: it
enables asynchronous replication of state very similar to live
migration for individual VM instances. Although this could be



B. Nicolae, F. Cappello / J. Parallel Distrib. Comput. 73 (2013) 698–711 709
(a) Total size of reads that caused waiting for I/O, excluding
prefetched data (lower is better).

(b) Total time to boot VM instances and restart CM1 from latest
checkpoint to completion (lower is better).

Fig. 7. Restart performance using a real life HPC application: CM1. Each VM instance runs 4MPI processes. Subdomain size per process is 200×200. Memory size is 4 GB/VM
instance.
extended in a manner similar to [16], such an approach is not
feasible in our context as it would lead to high performance
overhead and an explosion of resource usage and thus operational
costs.

There are previous efforts to build a dedicated checkpoint
repository specifically designed to optimize for the CR access
patterns, such as PLFS [7], proposed byBent et al., which is a layer of
indirection that remaps an application’s preferred data layout into
one which is optimized for the underlying parallel filesystem. A
similar effort closer to our own approach, CRFS [40], relies on FUSE
to intercept the checkpoint file write system calls and aggregate
them into fewer bigger chunks which are then asynchronously
written to the underlying filesystem. Unlike our approach (which
naturally integrateswith a dedicated storage layer), both proposals
are heavily dependent on the performance characteristics of the
underlying generic filesystem and its limitations.

Optimizations such a incremental checkpointing are commonly
used both at application level and system level. However, unlike
our approach, differences to previous checkpoints are stored
as separate files, which raises manageability issues. Approaches
such as [48], attempt to compensate for this effect using a
hybrid CR mechanism that relies on incremental checkpoints
to complement full checkpoints, with the purpose of avoiding
indefinite accumulation of differences. Our approach avoids this
problem altogether, thanks to shadowing.

The idea of departing from synchronous checkpointing in
order to overlap the application execution with the checkpointing
process has been exploited in several contexts. Quasi-synchronous
checkpointing algorithms such as Manivannan et al. [25] limit
contention to stable storage by staggering checkpoint requests
in order to diminish the degree of concurrent I/O transfers.
Another widely used approach is multi-level checkpointing [6,28,
13], i.e. dump the checkpointing data on fast local storage and then
asynchronously flush this data to globally persistent storage.

In the context of virtualization, several CR approaches based
on full VM snapshots have been proposed [46,45,49]. This
choice however comes at a high price: in addition to a large
performance overhead, it generates an explosion of storage space
and bandwidth utilization. To our best knowledge, we are the
first to propose a CR framework for HPC applications based on
incremental disk snapshots, which has the potential to drastically
reduce the storage space utilization at the cost of minimal
intervention inside the guest environment.

Many hypervisors provide native copy-on-write support using
custom VM image file formats, such as qcow2 [18] andMirage [43].
This enables base images to be used as read-only templates for
multiple VM disk snapshots that store per-instance modifications.
However, unlike our approach, support for live incremental
snapshotting is currently not available. Furthermore, lots of files
representing incremental differences need to be generated and
shared through a parallel filesystem, which raises manageability
and performance issues at large scales.

Several other approaches have been proposed in order to
snapshot virtual disks, however we are not aware of any work
that specifically targets CR. Lithium [22] is one such approach that
supports fork-consistent, instant volume creation with lazy space
allocation, instant creation of writable snapshots, and tunable
replication. While this can prove a valuable building block that
offers a viable alternative to cloning and shadowing, it is based
on log-structuring [44], which can potentially incur a high read
overhead the more incremental snapshots are taken. Parallax [27]
enables compute nodes to share access to a single, globally
visible block device, which is collaboratively managed to present
individual virtual disk images to the VMs. While this enables
efficient frequent snapshotting, unlike our approach, sharing
of images is intentionally not supported in order to eliminate
the need for a distributed lock manager, which is claimed to
dramatically simplify the design. Amazon EBS [2] provides block
level storage volumes that can be attached to Amazon EC2 [3]
instances. Such volumes outlive the VM instances that mount and
use them,whichmakes them a potential target to store the process
state and all other intermediate files. Snapshotting is supported,
however it is implemented over Amazon S3 [4], a key-value store
not specifically optimized for this purpose.

7. Conclusions

With increasing interest in HPC applications among the main-
stream community, cost-effective solutions that are affordable to
the masses are highly desirable. In this context, IaaS clouds are a
promising alternative to leadership-class supercomputers. How-
ever, due to differences in architecture and consumer needs, port-
ing HPC applications to IaaS clouds is a challenging task that
requires rethinking of several well established HPC approaches.
One challenge in this context is the need to provide a high-
performance, resource-friendly and scalable Checkpoint-Restart
mechanism.

We proposed BlobCR, a dedicated checkpoint repository that is
able to take live incremental snapshots of the whole disk attached
to the virtualmachine (VM) instances. Our approach supports both
application-level and process-level checkpointing and includes the
unique ability to implicitly roll back filesystem changes.

Compared to approaches that capture the whole VM state,
our approach shows large performance gains and much lower



710 B. Nicolae, F. Cappello / J. Parallel Distrib. Comput. 73 (2013) 698–711
bandwidth/storage space utilization. Based on our results with real
life HPC applications,we incline to believe that full incremental VM
snapshots at large scale are unfeasible in practice. Furthermore, by
persisting VM disk snapshots asynchronously in the background,
we show large reductions in checkpointing downtime (up to
two orders of magnitude) compared to offline disk snapshotting.
Finally, we show how to efficiently leverage this reduction in
downtime to improve performance by means of selective copy-
on-write: it significantly reduces the negative impact on the
application due to background transfers compared to conventional
copy-on-write. All these benefits are demonstrated not only using
synthetic benchmarks but also through a real-life HPC application
case study.

In future work we plan to explore the use of adaptive compres-
sion schemes [31] and/or deduplication bring further reductions in
overhead and resource utilization of CR. Furthermore,we are inter-
ested in the possibility of complementing checkpoint-restart with
pro-active live migration: if failures can be predicted with a rela-
tively high confidence level, then we could reduce the checkpoint-
ing frequency in favor of migrating unstable VMs to more safer
nodes.We already explored the possibility of livemigration of local
storage [35] with encouraging results.

Acknowledgments

This work was supported in part by the Joint Laboratory for
Petascale Computing, an initiative of INRIA, UIUC and NCSA. The
experiments presented in this paper were carried out using the
Grid’5000/ALADDIN-G5K experimental testbed, an initiative of the
FrenchMinistry of Research through the ACI GRID incentive action,
INRIA, CNRS and RENATER and other contributing partners (see
http://www.grid5000.fr/).

References

[1] Lorenzo Alvisi, Keith Marzullo, Message logging: pessimistic, optimistic,
causal, and optimal, IEEE Trans. Softw. Eng. 24 (2) (1998) 149–159.

[2] Amazon Elastic Block Storage (EBS). http://aws.amazon.com/ebs/.
[3] Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2/.
[4] Amazon Simple Storage Service (S3). http://aws.amazon.com/s3/.
[5] Leonardo Bautista Gomez, BogdanNicolae, NaoyaMaruyama, Franck Cappello,

Satoshi Matsuoka, Scalable Reed–Solomon-based reliable local storage for
HPC applications on IaaS clouds, in: Euro-Par’12: 18th International Euro-Par
Conference on Parallel Processing, Rhodes, Greece, 2012.

[6] Leonardo Bautista-Gomez, Seiji Tsuboi, Dimitri Komatitsch, Franck Cappello,
Naoya Maruyama, Satoshi Matsuoka, FTI: high performance fault tolerance
interface for hybrid systems, in: SC’11: Proceedings of 24th International
Conference for High Performance Computing, Networking, Storage and
Analysis, ACM, Seattle, USA, 2011, pp. 32:1–32:32.

[7] John Bent, Garth Gibson, Gary Grider, Ben McClelland, Paul Nowoczynski,
James Nunez, Milo Polte, Meghan Wingate, PLFS: a checkpoint filesystem for
parallel applications, in: SC’09: Proceedings of the 22nd Conference on High
Performance Computing Networking, Storage and Analysis, Portland, USA,
2009, pp. 1–12.

[8] Raphaël Bolze, Franck Cappello, Eddy Caron, Michel Daydé,
Frédéric Desprez, Emmanuel Jeannot, Yvon Jégou, Stephane Lanteri,
Julien Leduc, Noredine Melab, Guillaume Mornet, Raymond Namyst,
Pascale Primet, Benjamin Quetier, Olivier Richard, El-Ghazali Talbi,
Iréa Touche, Grid’5000: a large scale and highly reconfigurable experimental
grid testbed, Int. J. High Perform. Comput. Appl. 20 (2006) 481–494.

[9] George H. Bryan, Richard Rotunno, The maximum intensity of tropical
cyclones in axisymmetric numerical model simulations, J. Am. Meteorol. Soc.
137 (2009) 1770–1789.

[10] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold,
Sam McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu,
Huseyin Simitci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal Khatri,
AndrewEdwards, Vaman Bedekar, ShaneMainali, Rafay Abbasi, Arpit Agarwal,
Mian Fahim ul Haq, Muhammad Ikram ul Haq, Deepali Bhardwaj, Sowmya
Dayanand, Anitha Adusumilli, Marvin McNett, Sriram Sankaran, Kavitha
Manivannan, Leonidas Rigas, Windows azure storage: a highly available cloud
storage service with strong consistency, in: SOSP’11: Proceedings of the 23rd
ACM Symposium on Operating Systems Principles, ACM, Cascais, Portugal,
2011, pp. 143–157.
[11] Camille Coti, Thomas Herault, Pierre Lemarinier, Laurence Pilard,
Ala Rezmerita, Eric Rodriguez, Franck Cappello, Blocking vs. non-blocking
coordinated checkpointing for large-scale fault tolerant MPI, in: SC’06:
Proceedings of the 19th International Conference for High Performance
Computing, Networking, Storage and Analysis, ACM, Tampa, Florida, 2006.

[12] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchin-
son, Andrew Warfield, Remus: high availability via asynchronous virtual ma-
chine replication, in: NSDI’08: Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation, San Francisco, USA, 2008,
pp. 161–174.

[13] Xiangyu Dong, Yuan Xie, Naveen Muralimanohar, Norman P. Jouppi, Hybrid
checkpointing using emerging nonvolatile memories for future exascale
systems, ACM Trans. Archit. Code Optim. 8 (2) (2011) 6:1–6:29.

[14] J. Duell, P. Hargrove, E. Roman, The design and implementation of Berkeley
lab’s linux checkpoint/restart, Technical Report LBNL-54941, Future Technolo-
gies Group, 2002.

[15] E.N.Mootaz Elnozahy, Lorenzo Alvisi, Yi-MinWang, David B. Johnson, A survey
of rollback-recovery protocols in message-passing systems, ACM Comput.
Surv. 34 (2002) 375–408.

[16] Kurt Ferreira, Jon Stearley, James H. Laros III, Ron Oldfield, Kevin Pedretti, Ron
Brightwell, Rolf Riesen, Patrick G. Bridges, Dorian Arnold, Evaluating the vi-
ability of process replication reliability for exascale systems, in: SC’11: Pro-
ceedings of 24th International Conference for High Performance Computing,
Networking, Storage and Analysis, Seattle, USA, 2011, pp. 44:1–44:12.

[17] FileSystem in UserspacE (FUSE). http://fuse.sourceforge.net.
[18] Marcel Gagné, Cooking with linux—still searching for the ultimate linux

distro? Linux J. 2007 (161) (2007) 9.
[19] William Gropp, Ewing Lusk, Anthony Skjellum, Using MPI (2nd Ed.):

Portable Parallel Programming with theMessage-Passing Interface, MIT Press,
Cambridge, MA, USA, 1999.

[20] Amina Guermouche, Thomas Ropars, Elisabeth Brunet, Marc Snir,
Franck Cappello, Uncoordinated checkpointing without domino effect
for send-deterministic MPI applications, in: IPDPS’11: 25th IEEE International
Parallel and Distributed Processing Symposium, 2011, pp. 989–1000.

[21] Abhishek Gupta, Laxmikant V. Kalé, Dejan S. Milojicic, Paolo Faraboschi,
Richard Kaufmann, Verdi March, Filippo Gioachin, Chun Hui Suen,
Bu-Sung Lee, Exploring the performance and mapping of HPC applications to
platforms in the cloud, in: Dick H.J. Epema, Thilo Kielmann, Matei Ripeanu
(Eds.), HPDC’12: 21th International ACM Symposium on High-Performance
Parallel and Distributed Computing, ACM, Delft, The Netherlands, 2012,
pp. 121–122.

[22] Jacob G. Hansen, Eric Jul, Scalable virtual machine storage using local disks,
SIGOPS Oper. Syst. Rev. 44 (2010) 71–79.

[23] Qiming He, Shujia Zhou, Ben Kobler, Dan Duffy, Tom McGlynn, Case study for
running hpc applications in public clouds, in: HPDC’10: Proceedings of the
19th International Symposium on High Performance Parallel and Distributed
Computing, Chicago, USA, 2010, pp. 395–401.

[24] Avinash Lakshman, Prashant Malik, Cassandra: a decentralized structured
storage system, SIGOPS Oper. Syst. Rev. 44 (2010) 35–40.

[25] D. Manivannan, Q. Jiang, Jianchang Yang, M. Singhal, A quasi-synchronous
checkpointing algorithm that prevents contention for stable storage, Inform.
Sci. 178 (15) (2008) 3109–3116.

[26] Piyush Mehrotra, Jahed Djomehri, Steve Heistand, Robert Hood,
Haoqiang Jin, Arthur Lazanoff, Subhash Saini, Rupak Biswas, Performance
evaluation of Amazon EC2 for NASA HPC applications, in: ScienceCloud’12:
Proceedings of the 3rd workshop on Scientific Cloud Computing Date, ACM,
Delft, The Netherlands, 2012, pp. 41–50.

[27] Dutch T. Meyer, Gitika Aggarwal, Brendan Cully, Geoffrey Lefebvre,
Michael J. Feeley, Norman C. Hutchinson, Andrew Warfield, Parallax: virtual
disks for virtual machines, SIGOPS Oper. Syst. Rev. 42 (4) (2008) 41–54.

[28] Adam Moody, Greg Bronevetsky, Kathryn Mohror, Bronis R. de Supinski,
Design, modeling, and evaluation of a scalable multi-level checkpointing
system, in: SC’10: Proceedings of the 23rd International Conference for High
Performance Computing, Networking, Storage and Analysis, IEEE Computer
Society, New Orleans, USA, 2010, pp. 1–11.

[29] Nasa nebula. http://nebula.nasa.gov.
[30] Bogdan Nicolae, BlobSeer: towards efficient data storage management

for large-scale, distributed systems. Ph.D. Thesis, University of Rennes 1,
November 2010.

[31] Bogdan Nicolae, On the benefits of transparent compression for cost-effective
cloud data storage, in: Transactions on Large-Scale Data- and Knowledge-
Centered Systems, vol. 3, 2011, pp. 167–184.

[32] Bogdan Nicolae, Gabriel Antoniu, Luc Bougé, Diana Moise,
Alexandra Carpen-Amarie, BlobSeer: next-generation data management
for large scale infrastructures, J. Parallel Distrib. Comput. 71 (2011) 169–184.

[33] Bogdan Nicolae, John Bresnahan, Kate Keahey, Gabriel Antoniu, Going back
and forth: efficient multi-deployment and multi-snapshotting on clouds,
in: HPDC’11: The 20th International ACM Symposium on High-Performance
Parallel and Distributed Computing, San Jose, USA, 2011, pp. 147–158.

[34] Bogdan Nicolae, Franck Cappello, Blobcr: efficient checkpoint-restart for hpc
applications on iaas clouds using virtual disk image snapshots, in: SC’11:
24th International Conference for High Performance Computing, Networking,
Storage and Analysis, Seattle, USA, 2011, pp. 34:1–34:12.

[35] Bogdan Nicolae, Franck Cappello, A hybrid local storage transfer scheme for
livemigration of I/O intensiveworkloads, in:HPDC’12: 21th International ACM
Symposium on High-Performance Parallel and Distributed Computing, Delft,
The Netherlands, 2012, pp. 85–96.

http://www.grid5000.fr/
http://aws.amazon.com/ebs/
http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/
http://fuse.sourceforge.net
http://nebula.nasa.gov


B. Nicolae, F. Cappello / J. Parallel Distrib. Comput. 73 (2013) 698–711 711
[36] Bogdan Nicolae, Franck Cappello, Gabriel Antoniu, Optimizing multi-
deployment on clouds by means of self-adaptive prefetching, in: Euro-Par’11:
17th International Euro-Par Conference on Parallel Processing, 2011, pp.
503–513, http://hal.inria.fr/inria-00594406/en.

[37] Nimbus. http://www.nimbusproject.org/.
[38] Opennebula. http://www.opennebula.org/.
[39] Xiangyong Ouyang, Karthik Gopalakrishnan, Tejus Gangadharappa,

Dhabaleswar K. Panda, Fast checkpointing by write aggregation with dynamic
buffer and interleaving on multicore architecture, in: HiPC’09: Proceedings
of the 16th International Conference on High Performance Computing, Kochi,
India, 2009, pp. 99–108.

[40] Xiangyong Ouyang, Raghunath Rajachandrasekar, Xavier Besseron,
Hao Wang, Jian Huang, Dhabaleswar K. Panda, CRFS: a lightweight user-
level filesystem for generic checkpoint/restart, in: ICPP’11: Proceedings of the
40th International Conference on Parallel Processing, IEEE Computer Society,
Washington, DC, USA, 2011, pp. 375–384.

[41] TranVuPham,Hani Jamjoom,Kirk Jordan, Zon-Yin Shae, A service composition
framework for market-oriented high performance computing cloud, in:
HPDC’10: Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing, Chicago, USA, 2010, pp. 284–287.

[42] Lavanya Ramakrishnan, Piotr T. Zbiegel, Scott Campbell, Rick Bradshaw,
Richard Shane Canon, Susan Coghlan, Iwona Sakrejda, Narayan Desai,
Tina Declerck, Anping Liu, Magellan: experiences from a science cloud,
in: Proceedings of the 2nd International Workshop on Scientific Cloud
Computing, San Jose, USA, 2011, pp. 49–58.

[43] Darrell Reimer, Arun Thomas, Glenn Ammons, Todd Mummert,
Bowen Alpern, Vasanth Bala, Opening black boxes: using semantic infor-
mation to combat virtual machine image sprawl, in: VEE’08: Proceedings of
the 4th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, Seattle, USA, 2008, pp. 111–120.

[44] Mendel Rosenblum, John K. Ousterhout, The design and implementation of a
log-structured filesystem, ACM Trans. Comput. Syst. 10 (1) (1992) 26–52.

[45] G. Vallée, T. Naughton, H. Ong, S.L. Scott, Checkpoint/restart of virtual
machines based on Xen. in: HAPCW’06: Proceedings of the High Availability
and Performance Workshop, Santa Fe, USA, 2006.

[46] Oreste Villa, Sriram Krishnamoorthy, Jarek Nieplocha, David M. Brown Jr.,
Scalable transparent checkpoint-restart of global address space applications
on virtual machines over Infiniband, in: CF’09: Proceedings of the 6th ACM
Conference on Computing Frontiers, Ischia, Italy, 2009, pp. 197–206.

[47] Kashi Venkatesh Vishwanath, Nachiappan Nagappan, Characterizing cloud
computing hardware reliability, in: SoCC’10: Proceedings of the 1st ACM
symposium on Cloud computing, Indianapolis, USA, 2010, pp. 193–204.
[48] Chao Wang, Frank Mueller, Christian Engelmann, Stephen L. Scott, Hybrid
checkpointing for MPI jobs in HPC environments, in: ICPADS ’10: Proc. of
the 16th International Conference on Parallel and Distributed Systems, IEEE
Computer Society, Shanghai, China, 2010, pp. 524–533.

[49] Minjia Zhang, Hai Jin, Xuanhua Shi, Song Wu, VirtCFT: a transparent vm-
level fault-tolerant system for virtual clusters, in: ICPADS’10: Proceedings of
the 16th International Conference on Parallel and Distributed Systems, IEEE
Computer Society, Shanghai, China, 2010, pp. 147–154.

Bogdan Nicolae is a Research Scientist at IBM Ire-
land, part of the Exascale Systems group. He special-
izes in scalable storage techniques and fault tolerance for
cloud computing and exascale architectures. Before join-
ing, he was a postdoc within the Joint Laboratory for
Petascale Computing (INRIA/University of Illinois Urbana-
Champaign/NCSA). He holds a Ph.D. from University of
Rennes 1, France (2010) and a Dipl. Eng. degree from Po-
litehnica University Bucharest, Romania (2007). He initi-
ated the BlobSeer and BlobCR projects. He is interested by
and authored several papers in the areas of data distribu-

tion, data access models, data availability and resilience, how to achieve high I/O
throughput under concurrency, metadata decentralization, deployment/snapshot-
ting and live migration of virtual machines, checkpoint-restart.

Franck Cappello holds a Chief Senior Research Scien-
tist position (DR1) at Inria and is visiting research pro-
fessor in Computer Science at University of Illinois at
Urbana Champaign. He is co-director with Marc Snir
of the Inria-Illinois Joint-Laboratory on PetaScale Com-
puting (http://jointlab.ncsa.illinois.edu/) where he is also
leading the Resilience/Fault Tolerance effort. He is lead-
ing the roadmaping effort on Resilience-Fault Toler-
ance for IESP (International Exascale Software Project:
http://www.exascale.org) and EESI (European Exascale
Software Initiative). Before 2009, he initiated and directed

the Grid5000 project (https://www.grid5000.fr/), a nationwide computer science
platform for research in large-scale parallel and distributed systems used by more
than a thousand of researchers. He will be program co-chair for ACM HPDC’2014
andwas Technical paper co-chair of IEEE/ACM SC2011, Program chair of HiPC 2010,
Program co-Chair of IEEE CCGRID’2009 and General Chair of IEEE HPDC’2006.

http://hal.inria.fr/inria-00594406/en
http://www.nimbusproject.org/
http://www.opennebula.org/
http://jointlab.ncsa.illinois.edu/
http://www.exascale.org
https://www.grid5000.fr/

	BlobCR: Virtual disk based checkpoint-restart for HPC applications on IaaS clouds
	Introduction
	Checkpoint-restart on IaaS clouds
	Application model
	Desired features of CR

	Challenges of CR on IaaS clouds
	How to provide persistency
	How to capture the state of the application

	Our approach
	Design principles
	Rely on virtual machine disk-image snapshots
	Leverage local disk storage available on compute nodes
	Live incremental snapshotting using selective copy-on-write
	Shadowing and cloning
	Lazy transfers and adaptive prefetching

	Architecture
	Algorithms
	Implementation

	Evaluation
	Experimental setup
	Methodology

	Synthetic benchmarks
	Real life application case study: CM1

	Related work
	Conclusions
	Acknowledgments
	References


