
2/25/2003 1

A Quality-of-Service Architecture for High-Performance
Numerical Components†
P. Hovland, K. Keahey, L. C. McInnes, B. Norris
Math. & Computer Science Division, Argonne National Laboratory, Argonne, IL USA
L. Freitag
Software and Computing Systems, Sandia National Laboratories, Albuquerque, NM USA
P. Raghavan
Dept. of Computer Science & Engineering, Penn. State Univ., University Park, PA USA

Abstract: We propose a model for QoS-based composition of high-performance numerical
components. We define an architecture that relies on five key capabilities and services including
component characterization, component proxy services, component replacement, a decision
module, and archival run information processing. We describe quality metrics that are important
for high-performance numerical simulations, including computational cost, accuracy, and rates of
convergence and failure. We discuss the use of the architecture and quality metrics in the context
of a driven cavity flow simulation, which has been shown to benefit from adaptive solution
techniques that could be derived from a QoS architecture.

Introduction
Recent years have seen much research and development in the area of component-based
software engineering (CBSE). CBSE enables programmers to represent independent
pieces of functionality as entities that can be composed, configured, and installed to
create applications both rapidly and robustly. This approach is attractive because it
shields the application development process from complexities such as platform and
language heterogeneity and resource location. By defining clear interfaces, it promotes
reusability and interoperability among different projects and thereby helps accelerate and
generally improve the process of software development and sharing. Examples of
component models include the CORBA Component Model (CCM) [1,2], COM [3], and
more recently the Common Component Architecture (CCA) [4], which specifically
targets high-performance scientific applications.
The relative maturity of component-based software infrastructures encourages users to
look beyond syntactically connecting components to using higher-level information about
component properties to compose applications. Such properties include accuracy of
results, reliability with which results can be delivered, and the costs associated with
providing them. Ideally, a software infrastructure, or framework, should enable the
developer to construct applications using components that satisfy a given set of properties
without knowing the intrinsic merits and performance tradeoffs of the underlying
algorithms and implementations. To meet this requirement, the framework must allow
component developers to both provide and use Quality-of-Service (QoS) component
descriptions. If such descriptions can be clearly specified, then one can automate the
selection of the most appropriate component to solve a particular subproblem.
Furthermore, such automation can take the form of adaptive algorithms that can deliver

† This work was supported by the Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific Computing Research, U.S. Department of Energy.

2/25/2003 2

improved performance by using QoS data collected during the course of the application's
life-span and through multiple invocations of a given class of components.
Previous work has examined the role of higher-level semantic information in component
assembly [5—12]. Raje et al. [7] describe a QoS framework for distributed,
heterogeneous components and provide a catalog of QoS metrics [8]. Furmento et al.
discuss performance models and their use in overall component application assembly at
run time [11,12]. In this paper, we present an approach that provides a QoS infrastructure
suitable for high-performance numerical components. Section 2 describes a motivating
scenario. In Section 3, we propose an architecture and set of facilities for combining
components while providing the desired QoS over an entire application. In Section 4, we
define component-level QoS metrics relevant to high-performance numerical
applications. In Section 5, we illustrate how our architecture addresses the needs of
numerical applications.

2 Scenarios and Infrastructure Requirements
In this section we motivate our approach with an example from the solution of a
nonlinear partial differential equation and describe the infrastructure requirements for
solving this problem using a QoS approach.

2.1 A Motivating Scenario
For simulations in areas such as fusion, astrophysics, and computational fluid dynamics,
application scientists typically compose multiple existing numerical components for
different facets of the computation: for example, mesh management, discretization,
derivative computation, and the solution of linear and nonlinear systems of equations.
Each component can have multiple implementations that represent different approaches
to solving the same problem and that differ in qualities such as robustness, time to
solution, and solution accuracy. Moreover, the optimal choice of a specific algorithm or
implementation for a given task may change during the life of the simulation as the data
changes. Current practice typically involves manually selecting particular components
and running experiments to determine which algorithms and implementations are most
effective for a given scenario; changing algorithms typically involves stopping the
simulation and replacing existing components with others.
As a particular example, consider a driven cavity flow simulation. This problem
incorporates numerical features that are common in many large-scale scientific
applications, and a detailed problem description, including the governing differential
equations, boundary conditions, and discretization, is given in [13]. It has been found
that some form of continuation is often required to solve these problems when certain
parameters are even moderately nonlinear [14]. Commonly used pseudo-transient
continuation methods introduce into the model a false time-stepping term and the need to
solve a nonlinear system of equations at each time step using Newton’s method. This
time step transitions from small to large and thereby controls the conditioning of the
linearized Newton systems [14]. The linear systems are initially well conditioned and
relatively easy to solve when the pseudo time step is small, although they transition to
being much more challenging as the pseudo time step grows and the nonlinear function
approaches that of the true model. Previous work has shown that this problem benefits

2/25/2003 3

from the use of adaptive numerical strategies in the Newton solves [15], and it is
therefore a natural candidate for motivating and evaluating QoS infrastructure.
Newton’s method solves a nonlinear system of equations of the form f(u) = 0, where
f: Rn Rn, through the following two-phase iterative process:

1. (Approximately) solve f’(ui-1) ui = – f(ui-1)
2. Update ui = ui-1 + · ui,

where is determined by a line search such that 0 < 1, f(u) is the nonlinear function
or residual, and f’(u) is the corresponding Jacobian matrix of derivatives.
The iterative nature of Newton’s method can be modeled using a directed graph as shown
in Figure 1. Vertices in the graph denote components that are invoked, and the edges
denote the direction of information flow. The graph is rooted at the application, with the
first level containing a Newton component (denoted NS) that the application invokes,
followed by a second level containing components that evaluate the nonlinear function
(FE) and Jacobian (JE), solve the resulting linearized Newton system using a
preconditioned Krylov method (PKS), and apply a line search method (LS).
The edges of the directed graph may have annotations in the form of both static and
dynamic QoS requirements, capabilities, and performance. For example, the forward
edge between the nonlinear and linear solver may require a nonsymmetric linear solver
that returns a solution with a relative linear residual norm reduction of 10-4. The
corresponding backward edge may also be annotated to state the type of solver that was
actually used, a detailed convergence history, and so forth. In addition, some graph layers
may reflect transitions among particular component implementations during an ongoing
simulation. For example, a preconditioned Krylov component implementation that
matches the original QoS metrics may be used initially; subsequently the dynamic QoS
metrics may be adjusted, and this implementation may be replaced by another
preconditioned Krylov solver as part of an adaptive algorithmic scheme. We note that
Furmento et al. [11] use directed graphs in a similar fashion.

Figure 1: Directed graph for an application using a Newton-based nonlinear solver, showing the
structure at the top level for several nonlinear iterations. Vertices at each iteration denote the
components invoked. The nonlinear solver component exports both static and dynamic descriptions
of QoS measures that it wants the simulation to satisfy.

2/25/2003 4

2.2 Problem Definition and Infrastructure Requirements
In an ideal scenario, the application scientist would be relieved of managing much of the
complexity discussed above by a component framework that incorporates QoS
information into the component composition and management process. This could be
achieved by defining descriptions representing both the meta-requirements for numerical
components and the potential of particular numerical component implementations, based
on historical data, algorithmic convergence theory, and so forth. To produce such
descriptions would require transcribing intuitive knowledge, based on which many
scientists currently formulate their simulations, into more qualitative and quantitative
terms and then managing those descriptions. Where such knowledge is not easily
captured in terms of absolute quality measures, it would be accompanied by a “measure
of confidence” attached to a particular component implementation. In addition, a
scientist would be able to specify the quality of simulation measures that could be
adjusted at runtime.
As discussed in the preceding section, we are faced with a problem where we have
substitution sets of numerical components that implement the same functionality (as
expressed by the component interface) but are characterized by different semantic
qualities, such as accuracy, robustness, and speed of convergence. We want to use the
information of those semantic qualities in two ways. First, we want to use it to obtain the
most optimal composition of components. Second, as the need arises during application
execution, we want to seamlessly replace certain components by others chosen from their
substitution set. Such adaptivity is an important theme guiding the development of our
QoS framework. In broad terms, we use the word adaptivity to denote improved
selection of methods (both algorithms and implementations), with the goal of decreasing
execution time for the application while delivering the required quality of solution. This
“learning” could occur within the application’s life-span (i.e., using information acquired
during a single simulation), but also could represent experience combined across multiple
past simulations. We introduce the term dynamic component to describe a component that
can adapt its behavior in these ways. In addition, to the extent possible, we want the
substitution to take place not only dynamically but also automatically, with suitable
component selection and provisioning being performed by infrastructure services, rather
than by the programmer.

3 Architecture
In the design of our QoS infrastructure we assume a component model as described by
CORBA [1,2] and the CCA [4]. In the CCA model, a component exports two kinds of
ports: provides ports, which describe what functionality a component implements, and
uses ports, which describe what functionality a component requires. We further assume
that the data descriptions used will allow a component to make its data available for
interaction with other components.
As shown in Figure 2, our architecture relies on five key capabilities: (1) component
characterizations, which describe component behavior and monitoring at runtime; (2)
component proxies, which enable dynamic substitution; (3) a component replacement
service, which locates and deploys new components at runtime; (4) a decision module,
which decides which components need to be replaced; and (5) services that process

2/25/2003 5

archival and run information. To provide these capabilities, we extend the CCA model by
annotating the uses and provides ports with metadata. In addition, we designed several
services that deliver the required functionality for adaptive, dynamic component
substitution.

Figure 2: Interaction of an application with a dynamic component. User-provided components are
marked in gray, while infrastructure services are in white.

Figure 2 shows how a component-based application interacts with one of its composite
components in this architecture. Direct interaction with this component is replaced by
interactions with a component proxy, which represents to the application one of the
component implementations from the substitution set. The initial choice of a particular
component implementation is typically based on static metadata specified as application
requirements and the offering of a concrete algorithm.
Also based on information contained in the static metadata, the proxy chooses a
monitoring component suitable for monitoring the run-time performance of that particular
numerical component. This monitoring information may be logged at runtime to provide
input on its performance as well as to enable further analysis later. In addition to
monitoring the performance of the numerical component, the performance of the whole
application is being monitored, also potentially logging its results.
Moreover, the component proxy keeps track of how the runtime uses metadata of an
application relates to provides metadata of the actual component implementation.
Whenever a particular component is found to be underperforming, a replacement action
can be triggered either by an application scientist monitoring the execution or by a

2/25/2003 6

decision service. Replacement decisions are made at the end of each iteration and are
executed before the next iteration begins. In the meantime, the replacement service
performs actions leading to provisioning and deploying the new implementation
component. We now discuss the five key components in detail.

Metadata Component Characterizations. We extended the CCM/CCA model by uses
and provides metadata associated with a given port. The uses metadata describes the QoS
that a given uses port requires, while the provides metadata describes the QoS that a
given port can provide. We also distinguish static metadata and dynamic metadata. Static
metadata represents the knowledge that we have about the method implemented by a
given port before it starts executing. It may be based on historical data (for example,
previous component runs) as well as analytical data about expected performance
scalability. Its main purpose is to provide initial selection guidance to the numerical
scientist. The static metadata also includes information on how to monitor dynamic
metadata. The dynamic metadata is updated after each iteration and indicates how well
the selected method is performing in terms of qualities observable only at runtime. The
updates are based on information obtained from a monitoring component invoked by the
component proxy and logged in databases. Section 4 gives examples of such metadata for
numerical applications. In addition to metadata associated with ports, we also define
static component metadata describing implementation-related information (for example,
deployment information).

Component Proxy. The component proxy implements the notion of a dynamic
component by substituting at runtime components with better performance promise. To
have a basis for this substitution, the proxy monitors component execution, compares the
uses metadata of the calling application and the provides metadata of the component,
potentially raises exceptions, and works with the application scientist or uses a
replacement module to determine the right replacement. Substitution itself is performed
by using the Dynamic Invocation Interface (DII) [1,2] mechanism. In addition to
providing substitution for optimization, a component proxy provides a level of indirection
allowing it to provide reliability in a manner transparent to the client [15,16].

Replacement Service. The dynamic replacement service arranges for the seamless
between-iterations replacement of one module by another implementing the same
functionality but exporting different metadata and potentially a different interface. It
provisions and deploys the new component. The replacement service can be invoked by
the proxy either on the programmer’s behest or triggered by the substitution decision
service. As part of provisioning decisions, this service also decides whether to keep the
old component choice cached in memory and when to replace such components.

Substitution Decision Service. The substitution decision service automates decisions
about component replacement by applying heuristics supplied by either an application
scientist or a “learning module”. These heuristics are very simple and have the form: “If
the ratio of the residual norm reduction to the number of iterations is x, then substitute a
more powerful method.” As shown in Figure 2 the replacement decision will typically be
based on the component’s as well as overall application’s run monitoring data (run

2/25/2003 7

management data as well as historical data). It could, for example, happen that after a
particular iteration a decision to replace multiple components will be made.

Data and Data Processing Modules. In our implementation we rely on three databases:
(1) the historical data database that archives data on history of multiple runs, (2) the run-
management database that contains information about a current run, and (3) the assertion
database that contains substitution rules and heuristics. For reasons of efficiency, run-
management logging is optional on any given run. The data in historical and run-
management databases may be used by a learning system to recommend heuristics on
when and how to substitute component implementations, and develop meta-data for
similar or related components. This service closes the loop between generating execution
data and steering the execution; its objective is to identify techniques for processing data
about a run to improve policies and to formalize knowledge about how to steer a run to
obtain the best possible performance.

4. Metrics for Numerical QoS
Our framework must provide a set of numerical QoS metrics for specifying component
requirements and capabilities. These metrics can also be used to provide stopping criteria
for iterative algorithms and to provide a measure of performance. For each metric, our
framework must accommodate multiple sources of information (empirical, analytic) and
varying levels of precision (qualitative, relative, quantitative). Furthermore, some
metrics are static properties of a component, whereas other metrics, are dynamic
properties that cannot be determined until run time. We propose computational cost,
accuracy, failure rate, convergence rate, and preconditioner quality as metrics for
numerical QoS. The first three can be mapped to the turn-around time (also called “end-
to-end delay”), quality of result, and error rate metrics identified by Brahnmath et al. in
their quality of service catalog [8]; we have chosen labels that more closely match the
nomenclature of the computational science community.
Computational cost can be measured in a variety of ways, including wall clock time,
CPU time, number of floating-point operations, or number of major/minor iterations of
the numerical algorithm. On parallel platforms, computational cost is often a function of
algorithmic scalability. In some cases, the expected performance degradation with
number of processors can be accurately captured by models such as BSP or LogP [17,18].
Often, however, it is difficult to capture the impact of degradation in the numerical
method; for example, additive Schwarz preconditioners typically become less effective as
the local problem size decreases, and Newton-Krylov methods may require more
iterations as the global problem size increases. For these and other reasons, accurate
forecasts of computational costs are often difficult to obtain. Thus, this metric will often
be used as a stopping criterion or measure of performance. Nonetheless, our framework
must accommodate whatever models are available (see, e.g., [19,20]), so that an accurate
prediction can be created using information, such as problem size or number of
processors, that cannot be determined until runtime.
Accuracy can be measured in terms of residual norms or the asymptotic behavior of an
approximation. Residuals provide a measure of how close an approximate solution is to
the true solution, which has a residual of zero. For a linear system of the form J(u)h = f,

2/25/2003 8

the residual is f −J(u)h. For a nonlinear system, the residual is simply the nonlinear
function, f(u).The residual may be reduced to a scalar value by computing its maximum
value (infinity norm), the sum of its values (L1 norm), or the square root of the sum of
squares (L2 norm). Furthermore, the residual norm of the final approximation may be
measured in absolute terms or relative to the residual norm of the initial guess. Residual
norms are often used as stopping criteria for iterative numerical algorithms. The
asymptotic discretization error, expressed in big-O notation, provides a measure of the
accuracy of a discretization by indicating how the error decreases as a function of the
resolution. For example, doubling the resolution (halving the mesh “spacing”) would
double the accuracy (halve the error) of a discretization with O(h) accuracy but double
the number of digits of accuracy (take the square root of the error) of a discretization with
O(h2) accuracy. The truncation error in a finite difference approximation to derivatives
can also be described in terms of its asymptotic behavior.
Failure rate is a measure of how frequently a component has failed to find a solution,
either for previous iterations of the current problem or for a representative set of
problems. Because failure rate is very data dependent, it can be difficult to predict. The
asymptotic convergence rate measures the rate at which a given numerical algorithm
approaches the solution; for example, near the solution Newton’s algorithm is
quadratically convergent, meaning that the number of digits of accuracy doubles with
each Newton iteration. Other algorithms are linearly or superlinearly convergent.
Several metrics for preconditioner quality are possible. For incomplete factorizations,
one possible metric is the amount of fill relative to a complete factorization, given a
particular ordering. Other possible numerical QoS metrics include mesh quality, function
smoothness, and stability.

5 Example of Architecture and Metric Use
We now show how the QoS architecture and metrics introduced in Sections 3 and 4 can
be applied to manage the complexity of the Newton solves for the driven cavity
simulation described in Section 2.
We first describe how a computational scientist could employ static metadata in a QoS
historical performance database to aid in selecting a particular linear solver. The metrics
of most interest in this case are computational cost (measured by wall clock time and
number of nonlinear/linear iterations) and accuracy (measured by relative residual norm
reduction). For example, the application driver specifies a nonlinear convergence
criterion to the Newton solver (relative nonlinear residual reduction of ||f||/||f0|| < =10–8),
and the Newton solver specifies a fixed linear convergence criterion to the linear solver
component proxy (relative linear residual reduction of ||r||/||r0|| < =10–4 in a maximum of
kmax Krylov iterations). Then, the static metadata from simulations represented in the
historical database captures the performance of a variety of base methods that used these
metrics and indicates that a particular linear solver performs best for a set of relevant test
problems. The computational scientist then conjectures that this method would also be a
good choice for the current simulation, which uses, for example, the same nonlinearity
parameters as the initial simulations but a more refined mesh.
We next demonstrate how a computational scientist could also employ dynamic metadata
within the run monitoring database to adapt solution strategies during a given simulation.

2/25/2003 9

Based on the analysis of static metadata discussed above, the scientist initiates a run on a
driven cavity simulation using a particular method as the linear solver. During this
simulation, he increases the model’s nonlinearity parameters significantly and thus also
incorporates pseudo-transient continuation to help handle this related but more difficult
problem. As the simulation progresses, the run monitoring database incorporates data
both from an application-based monitor of the nonlinear residual norm and pseudo time
step and from a component-based monitor of the linear solver’s performance. As the time
step grows, the linear systems become less well conditioned and more difficult to solve,
as evidenced by increases in the actual achieved metrics of wall clock time and Krylov
iterations needed to reduce the linear residual norm by the specified amount. The
analysis and optimization service deduces that the current linear solver is not sufficiently
powerful anymore and thus recommends its dynamic replacement in the midst of the
nonlinear simulation by another method, which has been shown in the historical database
to converge more rapidly.

6 Conclusions
In this paper we described an architecture for a QoS-based system for composition of
numerical applications. We first described the application that motivate this design and
their features, and from them derived the requirements underlying our design. We then
presented the design of an infrastructure fulfilling these requirements: allowing for QoS-
based composition and monitoring of application components, and incorporating
mechanisms necessary for their run-time replacement to improve QoS of any particular
run. We also described mechanisms that could perform such substitution automatically,
based on a combination of component and application monitoring data as well as
mechanisms that could guide substitutions based on records of past runs. To make the
operation of this infrastructure possible, we defined QoS measures specifically targeting
the performance of numerical applications. Finally, we showed how our design could be
used in the context of a real application.
We believe that this architecture could simplify and dramatically improve the efficiency
of multi-component numerical applications. Where previously ad hoc methods for
composition were used, primarily based on knowledge and experience of individual
scientists, we now propose a methodical and automated approach to such compositions.
We further believe that our solution is generic enough to be applied to other application
domains with similar benefits.

References
[1] O. M. Group, The Common Object Request Broker: Architecture and Specification,
OMG Document, 1998. See http://www.omg.org/corba/.
[2] The CORBA Component Model, http://ditec.um.es/~dsevilla/ccm/.
[3] Microsoft COM Web page. See http://www.microsoft.com/com/about.asp.
[4] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. C. McInnes, S. Parker,
and B. Smolinski, Toward a common component architecture for high-performance
scientific computing, in Proceedings of HPDC 1999, pp. 115—124.

2/25/2003 10

[5] A.Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins, Making components
contract aware, IEEE Computer, (1999), pp. 38—45.
[6] K. Keahey, P. Beckman, and J. Ahrens, Ligature: A component architecture for high-
performance applications, International Journal of High-Performance Computing
Applications, 14 (2000).
[7] R. Raje, B. Bryant, A. Olson, M. Auguston, and C. Burt, A quality-of-service-based
framework for creating distributed heterogeneous software components, Concurrency
Comput: Pract. Exper., 14 (2002), pp. 1009—1034.
[8] G. J. Brahnmath, R. R. Raje, A. M. Olson, M. Auguston, B. R. Bryant, C.C. Burt. A
quality of service catalog for software components. Proceedings of the Southeastern
Software Engineering Conference. http://www.ndiatvc.org/SESEC2002/, 2002.
[9] J. P. Loyall, R. E. Schantz, J. A. Zinky, and D. E. Bakken, Specifying and measuring
quality of service in distributed object systems, in Proceedings of ISORC '98.
[10] X. Gu and K. Nahrstedt, A scalable qos-aware service aggregation model for peer-
to-peer computing grids, in Proceedings of HPDC 2002, 2002.
[12] N. Furmento, A. Mayer, S. McGough, S. Newhouse, T. Field, and J. Darlington,
Optimisation of component-based applications within a grid environment, in Proceedings
of SC2001, 2001.
[12] ICENI: Optimisation of component-based applications within a grid environment,
Journal of Parallel Computing, (2002).
[13] T. S. Coffey, C. T. Kelley, and D. E. Keyes, Pseudo-Transient Continuation and
Differential-Algebraic Equations, submitted to the open literature, 2002.
[14] C. T. Kelley and D. E. Keyes, Convergence analysis of pseudo-transient
continuation. SIAM Journal on Numerical Analysis 1998; 35:508—52.
 [15] L. McInnes, B. Norris, S. Bhowmick, and P. Raghavan, Adaptive Sparse Linear
Solvers for Implicit CFD Using Newton-Krylov Algorithms, To appear in the
Proceedings of the Second MIT Conference on Computational Fluid and Solid
Mechanics, Massachusetts Institute of Technology, Boston, USA, June 17-20, 2003.
[16] The Taming of the Grid: Virtual Application Services, K. Keahey and K. Motawi,
submitted to the 12th IEEE International Symposium on High Performance Distributed
Computing.
[17] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos, R.
Subramonian, and T. von Eicken. LogP: Towards a realistic model of parallel
computation. In Proceedings of 4th PPOPP, San Deigo, CA, May 1993.
[18] L. G. Valiant. A bridging model for parallel computation. CACM, 33(8):103—111,
1990.
[19] A. Snavely, L. Carrington and N. Wolter, “A Framework for Performance Modeling
and Prediction,” Proceedings of SC2002, Baltimore, MD, Nov. 2002.
[20] R. Vuduc, J. W. Demmel, K. A. Yelick, S. Kamil, R. Nishtala and B. Lee, 2002,
Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply, Proceedings
of SC2002, Baltimore, MD, Nov. 2002.

2/25/2003 11

The submitted manuscript has been created by the University of Chicago
as Operator of Argonne National Laboratory (“Argonne”) under Contract
No. W-31-109-ENG-38 with the U.S Department of Energy. The U.S.
Government retains for itself, and others acting on its behalf, a paid-
up, nonexclusive, irrevocable worldwide license in said article to
reproduce, prepare derivative works, distribute copies to the public,
and perform publicly and display publicly, by or on behalf of the
government.

