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Abstract: We propose a model for QoS-based composition of high-performance numerical 
components.  We define an architecture that relies on five key capabilities and services including 
component characterization, component proxy services, component replacement, a decision 
module, and archival run information processing.  We describe quality metrics that are important 
for high-performance numerical simulations,  including computational cost, accuracy, and rates of 
convergence and failure.  We discuss the use of the architecture and quality metrics in the context 
of a driven cavity flow simulation, which has been shown to benefit from adaptive solution 
techniques that could be derived from a QoS architecture. 
  
Introduction 
Recent years have seen much research and development in the area of component-based 
software engineering (CBSE). CBSE enables programmers to represent independent 
pieces of functionality as entities that can be composed, configured, and installed to 
create applications both rapidly and robustly. This approach is attractive because it 
shields the application development process from complexities such as platform and 
language heterogeneity and resource location. By defining clear interfaces, it promotes 
reusability and interoperability among different projects and thereby helps accelerate and 
generally improve the process of software development and sharing. Examples of 
component models include the CORBA Component Model (CCM) [1,2], COM [3], and 
more recently the Common Component Architecture (CCA) [4], which specifically 
targets high-performance scientific applications. 
The relative maturity of component-based software infrastructures encourages users to 
look beyond syntactically connecting components to using higher-level information about 
component properties to compose applications.  Such properties include accuracy of 
results, reliability with which results can be delivered, and the costs associated with 
providing them.  Ideally, a software infrastructure, or framework, should enable the 
developer to construct applications using components that satisfy a given set of properties 
without knowing the intrinsic merits and performance tradeoffs of the underlying 
algorithms and implementations.  To meet this requirement, the framework must allow 
component developers to both provide and use Quality-of-Service (QoS) component 
descriptions.  If such descriptions can be clearly specified, then one can automate the 
selection of the most appropriate component to solve a particular subproblem.  
Furthermore, such automation can take the form of adaptive algorithms that can deliver 
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improved performance by using QoS data collected during the course of the application's 
life-span and through multiple invocations of a given class of components. 
Previous work has examined the role of higher-level semantic information in component 
assembly [5—12].  Raje et al. [7] describe a QoS framework for distributed, 
heterogeneous components and provide a catalog of QoS metrics [8].  Furmento et al. 
discuss performance models and their use in overall component application assembly at 
run time [11,12].  In this paper, we present an approach that provides a QoS infrastructure 
suitable for high-performance numerical components. Section 2 describes a motivating 
scenario.  In Section 3, we propose an architecture and set of facilities for combining 
components while providing the desired QoS over an entire application.  In Section 4, we 
define component-level QoS metrics relevant to high-performance numerical 
applications.  In Section 5, we illustrate how our architecture addresses the needs of 
numerical applications. 
 
2 Scenarios and Infrastructure Requirements 
In this section we motivate our approach with an example from the solution of a 
nonlinear partial differential equation and describe the infrastructure requirements for 
solving this problem using a QoS approach. 
 
2.1  A Motivating Scenario 
For simulations in areas such as fusion, astrophysics, and computational fluid dynamics, 
application scientists typically compose multiple existing numerical components for 
different facets of the computation:  for example, mesh management, discretization, 
derivative computation, and the solution of linear and nonlinear systems of equations. 
Each component can have multiple implementations that represent different approaches 
to solving the same problem and that differ in qualities such as robustness, time to 
solution, and solution accuracy. Moreover, the optimal choice of a specific algorithm or 
implementation for a given task may change during the life of the simulation as the data 
changes.  Current practice typically involves manually selecting particular components 
and running experiments to determine which algorithms and implementations are most 
effective for a given scenario; changing algorithms typically involves stopping the 
simulation and replacing existing components with others. 
As a particular example, consider a driven cavity flow simulation.  This problem 
incorporates numerical features that are common in many large-scale scientific 
applications, and a detailed problem description, including the governing differential 
equations, boundary conditions, and discretization, is given in [13].   It has been found 
that some form of continuation is often required to solve these problems when certain 
parameters are even moderately nonlinear [14].   Commonly used pseudo-transient 
continuation methods introduce into the model a false time-stepping term and the need to 
solve a nonlinear system of equations at each time step using Newton’s method.  This 
time step transitions from small to large and thereby controls the conditioning of the 
linearized Newton systems [14].  The linear systems are initially well conditioned and 
relatively easy to solve when the pseudo time step is small, although they transition to 
being much more challenging as the pseudo time step grows and the nonlinear function 
approaches that of the true model.  Previous work has shown that this problem benefits 
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from the use of adaptive numerical strategies in the Newton solves [15], and it is 
therefore a natural candidate for motivating and evaluating QoS infrastructure.  
Newton’s method solves a nonlinear system of equations of the form f(u) = 0, where  
f: Rn Rn,  through the following two-phase iterative process:  

1. (Approximately) solve      f’(ui-1) ui = – f(ui-1) 
2. Update                              ui = ui-1 +  · ui, 

where  is determined by a line search such that 0 <    1, f(u) is the nonlinear function 
or residual, and  f’(u) is the corresponding Jacobian matrix of derivatives. 
The iterative nature of Newton’s method can be modeled using a directed graph as shown 
in Figure 1.  Vertices in the graph denote components that are invoked, and the edges 
denote the direction of information flow.  The graph is rooted at the application, with the 
first level containing a Newton component (denoted NS) that the application invokes, 
followed by a second level containing components that evaluate the nonlinear function 
(FE) and Jacobian (JE), solve the resulting linearized Newton system using a 
preconditioned Krylov method (PKS), and apply a line search method (LS).   
The edges of the directed graph may have annotations in the form of both static and 
dynamic QoS requirements, capabilities, and performance.  For example, the forward 
edge between the nonlinear and linear solver may require a nonsymmetric linear solver 
that returns a solution with a relative linear residual norm reduction of 10-4.  The 
corresponding backward edge may also be annotated to state the type of solver that was 
actually used, a detailed convergence history, and so forth. In addition, some graph layers 
may reflect transitions among particular component implementations during an ongoing 
simulation.  For example, a preconditioned Krylov component implementation that 
matches the original QoS metrics may be used initially; subsequently the dynamic QoS 
metrics may be adjusted, and this implementation may be replaced by another 
preconditioned Krylov solver as part of an adaptive algorithmic scheme.  We note that 
Furmento et al. [11] use directed graphs in a similar fashion. 

 
Figure 1: Directed graph for an application using a Newton-based nonlinear solver, showing the 
structure at the top level for several nonlinear iterations.  Vertices at each iteration denote the 
components invoked.  The nonlinear solver component exports both static and dynamic descriptions 
of QoS measures that it wants the simulation to satisfy. 
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2.2  Problem Definition and Infrastructure Requirements  
In an ideal scenario, the application scientist would be relieved of managing much of the 
complexity discussed above by a component framework that incorporates QoS 
information into the component composition and management process. This could be 
achieved by defining descriptions representing both the meta-requirements for numerical 
components and the potential of particular numerical component implementations, based 
on historical data, algorithmic convergence theory, and so forth. To produce such 
descriptions would require transcribing intuitive knowledge, based on which many 
scientists currently formulate their simulations, into more qualitative and quantitative 
terms and then managing those descriptions. Where such knowledge is not easily 
captured in terms of absolute quality measures, it would be accompanied by a “measure 
of confidence” attached to a particular component implementation.  In addition, a 
scientist would be able to specify the quality of simulation measures that could be 
adjusted at runtime.  
As discussed in the preceding section, we are faced with a problem where we have 
substitution sets of numerical components that implement the same functionality (as 
expressed by the component interface) but are characterized by different semantic 
qualities, such as accuracy, robustness, and speed of convergence. We want to use the 
information of those semantic qualities in two ways. First, we want to use it to obtain the 
most optimal composition of components. Second, as the need arises during application 
execution, we want to seamlessly replace certain components by others chosen from their 
substitution set. Such adaptivity is an important theme guiding the development of our 
QoS framework.  In broad terms, we use the word adaptivity to denote improved 
selection of methods (both algorithms and implementations), with the goal of decreasing 
execution time for the application while delivering the required quality of solution.  This 
“learning” could occur within the application’s life-span (i.e., using information acquired 
during a single simulation), but also could represent experience combined across multiple 
past simulations. We introduce the term dynamic component to describe a component that 
can adapt its behavior in these ways.  In addition, to the extent possible, we want the 
substitution to take place not only dynamically but also automatically, with suitable 
component selection and provisioning being performed by infrastructure services, rather 
than by the programmer. 
 
3 Architecture 
In the design of our QoS infrastructure we assume a component model as described by 
CORBA [1,2] and the CCA [4]. In the CCA model, a component exports two kinds of 
ports: provides ports, which describe what functionality a component implements, and 
uses ports, which describe what functionality a component requires. We further assume 
that the data descriptions used will allow a component to make its data available for 
interaction with other components. 
As shown in Figure 2, our architecture relies on five key capabilities: (1) component 
characterizations, which describe component behavior and monitoring at runtime; (2) 
component proxies, which enable dynamic substitution; (3) a component replacement 
service, which locates and deploys new components at runtime; (4) a decision module, 
which decides which components need to be replaced; and (5) services that process 
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archival and run information. To provide these capabilities, we extend the CCA model by 
annotating the uses and provides ports with metadata. In addition, we designed several 
services that deliver the required functionality for adaptive, dynamic component 
substitution. 
  

 
Figure 2: Interaction of an application with a dynamic component. User-provided components are 
marked in gray, while infrastructure services are in white. 
 
Figure 2 shows how a component-based application interacts with one of its composite 
components in this architecture. Direct interaction with this component is replaced by 
interactions with a component proxy, which represents to the application one of the 
component implementations from the substitution set. The initial choice of a particular 
component implementation is typically based on static metadata specified as application 
requirements and the offering of a concrete algorithm.  
Also based on information contained in the static metadata, the proxy chooses a 
monitoring component suitable for monitoring the run-time performance of that particular 
numerical component. This monitoring information may be logged at runtime to provide 
input on its performance as well as to enable further analysis later. In addition to 
monitoring the performance of the numerical component, the performance of the whole 
application is being monitored, also potentially logging its results. 
Moreover, the component proxy keeps track of how the runtime uses metadata of an 
application relates to provides metadata of the actual component implementation. 
Whenever a particular component is found to be underperforming, a replacement action 
can be triggered either by an application scientist monitoring the execution or by a 
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decision service. Replacement decisions are made at the end of each iteration and are 
executed before the next iteration begins. In the meantime, the replacement service 
performs actions leading to provisioning and deploying the new implementation 
component. We now discuss the five key components in detail.  
 
Metadata Component Characterizations.  We extended the CCM/CCA model by uses 
and provides metadata associated with a given port. The uses metadata describes the QoS 
that a given uses port requires, while the provides metadata describes the QoS that a 
given port can provide. We also distinguish static metadata and dynamic metadata. Static 
metadata represents the knowledge that we have about the method implemented by a 
given port before it starts executing. It may be based on historical data (for example, 
previous component runs) as well as analytical data about expected performance 
scalability. Its main purpose is to provide initial selection guidance to the numerical 
scientist. The static metadata also includes information on how to monitor dynamic 
metadata. The dynamic metadata is updated after each iteration and indicates how well 
the selected method is performing in terms of qualities observable only at runtime. The 
updates are based on information obtained from a monitoring component invoked by the 
component proxy and logged in databases. Section 4 gives examples of such metadata for 
numerical applications. In addition to metadata associated with ports, we also define 
static component metadata describing implementation-related information (for example, 
deployment information). 
 
Component Proxy.  The component proxy implements the notion of a dynamic 
component by substituting at runtime components with better performance promise. To 
have a basis for this substitution, the proxy monitors component execution, compares the 
uses metadata of the calling application and the provides metadata of the component, 
potentially raises exceptions, and works with the application scientist or uses a 
replacement module to determine the right replacement. Substitution itself is performed 
by using the Dynamic Invocation Interface (DII) [1,2] mechanism. In addition to 
providing substitution for optimization, a component proxy provides a level of indirection 
allowing it to provide reliability in a manner transparent to the client [15,16]. 
 
Replacement Service.  The dynamic replacement service arranges for the seamless 
between-iterations replacement of one module by another implementing the same 
functionality but exporting different metadata and potentially a different interface. It 
provisions and deploys the new component. The replacement service can be invoked by 
the proxy either on the programmer’s behest or triggered by the substitution decision 
service.  As part of provisioning decisions, this service also decides whether to keep the 
old component choice cached in memory and when to replace such components. 
 
Substitution Decision Service.  The substitution decision service automates decisions 
about component replacement by applying heuristics supplied by either an application 
scientist or a “learning module”.  These heuristics are very simple and have the form: “If 
the ratio of the residual norm reduction to the number of iterations is x, then substitute a 
more powerful method.” As shown in Figure 2 the replacement decision will typically be 
based on the component’s as well as overall application’s run monitoring data (run 
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management data as well as historical data). It could, for example, happen that after a 
particular iteration a decision to replace multiple components will be made.  
 
Data and Data Processing Modules.  In our implementation we rely on three databases: 
(1) the historical data database that archives data on history of multiple runs, (2) the run-
management database that contains information about a current run, and (3) the assertion 
database that contains substitution rules and heuristics. For reasons of efficiency, run-
management logging is optional on any given run.  The data in historical and run-
management databases may be used by a learning system to recommend heuristics on 
when and how to substitute component implementations, and develop meta-data for 
similar or related components. This service closes the loop between generating execution 
data and steering the execution; its objective is to identify techniques for processing data 
about a run to improve policies and to formalize knowledge about how to steer a run to 
obtain the best possible performance. 
 
4. Metrics for Numerical QoS 
Our framework must provide a set of numerical QoS metrics for specifying component 
requirements and capabilities.  These metrics can also be used to provide stopping criteria 
for iterative algorithms and to provide a measure of performance. For each metric, our 
framework must accommodate multiple sources of information (empirical, analytic) and 
varying levels of precision (qualitative, relative, quantitative).   Furthermore, some 
metrics are static properties of a component, whereas other metrics, are dynamic 
properties that cannot be determined until run time.  We propose computational cost, 
accuracy, failure rate, convergence rate, and preconditioner quality as metrics for 
numerical QoS.  The first three can be mapped to the turn-around time (also called “end-
to-end delay”), quality of result, and error rate metrics identified by Brahnmath et al. in 
their quality of service catalog [8]; we have chosen labels that more closely match the 
nomenclature of the computational science community. 
Computational cost can be measured in a variety of ways, including wall clock time, 
CPU time, number of floating-point operations, or number of major/minor iterations of 
the numerical algorithm.  On parallel platforms, computational cost is often a function of 
algorithmic scalability.  In some cases, the expected performance degradation with 
number of processors can be accurately captured by models such as BSP or LogP [17,18].  
Often, however, it is difficult to capture the impact of degradation in the numerical 
method; for example, additive Schwarz preconditioners typically become less effective as 
the local problem size decreases, and Newton-Krylov methods may require more 
iterations as the global problem size increases.  For these and other reasons, accurate 
forecasts of computational costs are often difficult to obtain.  Thus, this metric will often 
be used as a stopping criterion or measure of performance.  Nonetheless, our framework 
must accommodate whatever models are available (see, e.g., [19,20]), so that an accurate 
prediction can be created using information, such as problem size or number of 
processors, that cannot be determined until runtime. 
Accuracy can be measured in terms of residual norms or the asymptotic behavior of an 
approximation.  Residuals provide a measure of how close an approximate solution is to 
the true solution, which has a residual of zero.  For a linear system of the form J(u)h = f, 
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the residual is f −J(u)h.  For a nonlinear system, the residual is simply the nonlinear 
function, f(u).The residual may be reduced to a scalar value by computing its maximum 
value (infinity norm), the sum of its values (L1 norm), or the square root of the sum of 
squares (L2 norm).  Furthermore, the residual norm of the final approximation may be 
measured in absolute terms or relative to the residual norm of the initial guess.  Residual 
norms are often used as stopping criteria for iterative numerical algorithms. The 
asymptotic discretization error, expressed in big-O notation, provides a measure of the 
accuracy of a discretization by indicating how the error decreases as a function of the 
resolution.  For example, doubling the resolution (halving the mesh “spacing”) would 
double the accuracy (halve the error) of a discretization with O(h) accuracy but double 
the number of digits of accuracy (take the square root of the error) of a discretization with 
O(h2) accuracy.  The truncation error in a finite difference approximation to derivatives 
can also be described in terms of its asymptotic behavior. 
Failure rate is a measure of how frequently a component has failed to find a solution, 
either for previous iterations of the current problem or for a representative set of 
problems.  Because failure rate is very data dependent, it can be difficult to predict.  The 
asymptotic convergence rate measures the rate at which a given numerical algorithm 
approaches the solution; for example, near the solution Newton’s algorithm is 
quadratically convergent, meaning that the number of digits of accuracy doubles with 
each Newton iteration.  Other algorithms are linearly or superlinearly convergent.  
Several metrics for preconditioner quality are possible. For incomplete factorizations, 
one possible metric is the amount of fill relative to a complete factorization, given a 
particular ordering.  Other possible numerical QoS metrics include mesh quality, function 
smoothness, and stability. 
 
5 Example of Architecture and Metric Use 
We now show how the QoS architecture and metrics introduced in Sections 3 and 4 can 
be applied to manage the complexity of the Newton solves for the driven cavity 
simulation described in Section 2.   
We first describe how a computational scientist could employ static metadata in a QoS 
historical performance database to aid in selecting a particular linear solver. The metrics 
of most interest in this case are computational cost (measured by wall clock time and 
number of nonlinear/linear iterations) and accuracy (measured by relative residual norm 
reduction).  For example, the application driver specifies a nonlinear convergence 
criterion to the Newton solver (relative nonlinear residual reduction of  ||f||/||f0|| < =10–8), 
and the Newton solver specifies a fixed linear convergence criterion to the linear solver 
component proxy (relative linear residual reduction of  ||r||/||r0|| < =10–4 in a maximum of 
kmax Krylov iterations).    Then, the static metadata from simulations represented in the 
historical database captures the performance of a variety of base methods that used these 
metrics and indicates that a particular linear solver performs best for a set of relevant test 
problems.  The computational scientist then conjectures that this method would also be a 
good choice for the current simulation, which uses, for example, the same nonlinearity 
parameters as the initial simulations but a more refined mesh. 
We next demonstrate how a computational scientist could also employ dynamic metadata 
within the run monitoring database to adapt solution strategies during a given simulation.  
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Based on the analysis of static metadata discussed above, the scientist initiates a run on a 
driven cavity simulation using a particular method as the linear solver.  During this 
simulation, he increases the model’s nonlinearity parameters significantly and thus also 
incorporates pseudo-transient continuation to help handle this related but more difficult 
problem.  As the simulation progresses, the run monitoring database incorporates data 
both from an application-based monitor of the nonlinear residual norm and pseudo time 
step and from a component-based monitor of the linear solver’s performance. As the time 
step grows, the linear systems become less well conditioned and more difficult to solve, 
as evidenced by increases in the actual achieved metrics of wall clock time and Krylov 
iterations needed to reduce the linear residual norm by the specified amount.  The 
analysis and optimization service deduces that the current linear solver is not sufficiently 
powerful anymore and thus recommends its dynamic replacement in the midst of the 
nonlinear simulation by another method, which has been shown in the historical database 
to converge more rapidly. 
 
6 Conclusions 
In this paper we described an architecture for a QoS-based system for composition of 
numerical applications. We first described the application that motivate this design and 
their features, and from them derived the requirements underlying our design. We then 
presented the design of an infrastructure fulfilling these requirements: allowing for QoS-
based composition and monitoring of application components, and incorporating 
mechanisms necessary for their run-time replacement to improve QoS of any particular 
run. We also described mechanisms that could perform such substitution automatically, 
based on a combination of component and application monitoring data as well as 
mechanisms that could guide substitutions based on records of past runs. To make the 
operation of this infrastructure possible, we defined QoS measures specifically targeting 
the performance of numerical applications. Finally, we showed how our design could be 
used in the context of a real application. 
We believe that this architecture could simplify and dramatically improve the efficiency 
of multi-component numerical applications. Where previously ad hoc methods for 
composition were used, primarily based on knowledge and experience of individual 
scientists, we now propose a methodical and automated approach to such compositions. 
We further believe that our solution is generic enough to be applied to other application 
domains with similar benefits. 
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