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Abstract— We present a fixed time-step algorithm for the
simulation of multi-rigid-body dynamics with joints, contact, col-
lision, and friction. The method solves a linear complementarity
problem (LCP) at each step. We show that the algorithm can be
obtained as the stiff limit of fixed time-step schemes applied
to regularized contact models. We do not perform collision
detection. Instead, a noninterpenetration constraint is replaced
by its linearization, which, together with a judicious choice of the
active constraints, guarantees geometrical constraint stabilization
without the need to perform a reduction of the time step to
detect new collision or stick-slip transition events. Partially elastic
collisions are accommodated by a suitable modification of the free
term of the LCP.

I. INTRODUCTION

Simulating the dynamics of a system with several rigid bod-
ies and with joint, contact (noninterpenetration), and friction
constraints is an important part of virtual reality and robotics
simulations.

If the simulation has only joint constraints, then the problem
is a differential algebraic equation (DAE) [1], [2], which is a
widely studied and used computational paradigm. However,
the nonsmooth nature of the noninterpenetration and friction
constraints requires the use of specialized techniques. By and
large there are two ways to approach this nonsmoothness: reg-
ularization approaches and hard constraint (complementarity)
approaches.

The regularization approach [3], [4], [5] consists of smooth-
ing the nonsmoothness in the description of noninterpene-
tration and frictional constraints and creating a DAE, for
which substantial analytical and software tools exist, an im-
portant advantage. Sometimes the smoothing is based on
some physical interpretation, as is the case when using a
nonlinear spring and damper model as a replacement for the
noninterpetration constraint [5]. The immediate disadvantage
of the regularization approach is that the resulting DAE can
be quite stiff.

The hard constraint approach has been used in either an
acceleration-force setup [6], [7], [8] or a velocity-impulse
time-stepping approach [9], [10], [11], [12]. The latter has
the advantage that it always produces a solution that satisfies
the constraint simulations and avoids the Coulomb friction
model inconsistencies that are apparent in the acceleration-
force approach. We note that, when the value of the time step

is set to 0, the linear complementarity problem (LCP) of the
velocity-impulse approach is the same as the one used in the
compression phase of multiple collision resolution [13]. The
advantage of the hard constraint approach is that there are no
additional parameters to tune and there are no model stability
issues. This gain comes, however, at the cost of a more difficult
subproblem to solve, that is, a potentially nonconvex LCP.

All of the hard constraint approaches mentioned above are
based on collision detection. A decision, based on geometrical
computations, is made about which pairs of bodies are in
contact and which features are active at the current time. Then
the LCP is set up to compute the new acceleration or the
new velocity, and this information is used to compute the
future value of the position for the intended time step. If a
new collision occurs within the time step, the simulation is
backtracked to the first collision and is restarted after applying
a collision resolution technique [13], [11].

Although the hard constraint approach leads to a stable
simulation, the amount of computation needed per unit of
target time step is impossible to predict because there is no
conceptual upper bound on the number of collisions that can
occur per unit of time. An extreme example is a rigid ball
bouncing on a flat, rigid surface with a restitution coefficient
strictly between 0 and 1, which sustains an infinite number of
collisions in a finite amount of time. Of course, this situation
can be accommodated by turning the restitution coefficient to
0 if the normal velocity is below a certain threshold; but our
example shows that there is no upper bound on the number of
collisions and, therefore, on the number of backtracking steps.
Moreover, the LCP subproblems are expensive compared with
one step of an explicit method applied to a regularization
formulation. The fact that bouncing substantially worsens the
performance of hard constraint approaches has been noted
before in comparison with impulse-based simulation [14].

We note that regularization approaches are not immune to
increased computation in the case of locally high density of
events, even though the effect is not explicit. In this case,
proximity of an event such as collision is manifested by a
sudden increase in the penalty term that leads to terminal
instability unless the timestep is reduced dramatically or the
system is treated implicitly. In the latter case, the time step
may also be reduced because the existence of a solution



to the nonlinear equation defining the integration method is
guaranteed only for sufficiently small time steps [15].

The fact that the amount of computation per unit of time
step may be locally unpredictible creates an important obstacle
for applications that are intended to run, eventually, in an
interactive fashion. It is therefore useful to investigate whether
one can define an approach where, once the time step is
fixed, the amount of computation necessary to advance the
simulation for that one time-step is upper bounded, while
maintaining the stability of the system.

A stable, fixed time-step approach can be realized in two
ways, based on the approaches presented above. One can
integrate the equations that result from the penalty method
implicitly, or one can use a time-stepping approach. We show
that, in this context, the two approaches lead to essentially the
same subproblems to be solved at every step, and we therefore
concentrate on the hard constraints approach. We show how
partially elastic collisions as well as contact, friction, and joint
constraints can be accommodated by this approach. We have
found that, for this method, constraint stabilization can be
achieved at no additional cost, as in [16].

In the following we will restrict ourselves to first-order
integration methods. This restriction is justifiable since, if we
do not plan to perform collision detection, the method cannot
exceed order 1 anyway [15].

II. EXTREMAL ANALYSIS OF A PENALTY MODEL

Consider a multi-rigid-body system whose state is quantified
by the position vector g and the velocity vector v. The external
and inertial forces are denoted by k(t,q,v). We assume that
the system has a constant, positive-definite mass matrix M.
This assumption is not essential, but it simplifies our notation.
Such a mass matrix can be obtained in the Newton Euler body
coordinates.

A noninterpenetration constraint is represented by the
signed distance between two bodies functions, ®(q) [17].
The noninterpenetration constraint becomes ®(g) > 0. The
mapping ®(q) is generally not differentiable everywhere even
for simple shapes [16]. For smooth and strictly convex bodies,
the mapping ®(q) is differentiable in a neighborhood of the
feasible set {q|®(q) > 0}. To simplify the discussion, we
assume that ®(q) is differentiable at every point where it is
evaluated, and we defer to future work the case when ®(q)
is nonsmooth, which appears for both nonconvex smooth and
nonsmooth bodies.

We consider that the system is subject to m noninterpen-
etration constraints. The feasible set for the entire system is
represented by

oW (g) >0, j=1,2,...,m. .1

To enforce these constraints, we use a penalty method [5]
that allows the noninterpenetration constraints to be violated
but creates a reaction force that prevents more severe interpen-
etration. For one noninterpenetration constraint j, the modulus
of the reaction force is

609 (q) = AV ((P(_j)(q))b,

where b > 1 is some appropriate exponent and v > 0 is
the penalty parameter. Here the quantity 3 (q) represents the
negative part, that is, the constraint violation, of ®(/)(q). Its
algebraic expression is

2.2)

U () + |29 (g)|
. .

We can add to (2.2) a damping term whose effect is to
produce dissipation when a collision occurs. For the present
development we restrict our model to the elastic-type force
from (2.2). By using Hertzian contact theory, it is determined
that, in three dimensions, the appropriate exponent is b = %
[5]. Note that, when b > 1, the function 6% (¢) is continuously
differentiable.

For the total reaction force from the noninterpenetration
constraints to be of the potential type, its direction must be
V,(®9))(q). With these choices and the use of Newton’s law,
the dynamics of the system becomes

oV (g) = —

g _ o,
! ) m - , 2.3
ME — kg0 + T, 00,00 ). 3D

We now look for numerical schemes for the system (2.3).
The concern is that the stiffness that appears through the force
modulus 6)(g) could lead to numerical instability. To alle-
viate this concern, we consider two stiffness accommodating
approaches: (1) 1) (q) is treated implicitly and (2) 6\ (q) is
treated linearly implicitly. In the following, we consider h;,
t®, ¢, and v®, to be the current time step, time, position,
and velocity, respectively. We have that t(+1) —¢() = p;. For
generality of the setup we allow h; to vary, but our method
works just as well for a fixed time step.

A. Implicit Approach
We obtain the following time-stepping scheme:

) = g0 4 D),
M%;v(” kXD, q®, o®)
+ Z;nzl g(j)(q(lﬂ))qu)(j)(q(l+1)),
2.4)
Consider the optimization problem
min, Y(v,I') = %UTM’U —T (le + hlk(tl, ql,vl))
. i
S ) (q)(_ﬂ)(q(l) +hw)>b+ |
(2.5)
where T' = (v, 42 y(m),

One can immediately be see that any local solution v* of
the optimization problem (2.5) is a solution v(+t1) of (2.4).
In effect, the discretized version of Newton’s law in (2.4)
is precisely the optimality conditions for the optimization
problem (2.5). This property is related to the one of variational
integrators [18].

We are interested in the situation where v(7) is so large that
it results in stiffness that is much more severe than the intended



time step could acommodate. So we wish to determine what
happens if we let v9) — oo, j = 1,2,...,m. We denote
by v, the solution (and, in case of multiplicity, the global
solution) of (2.5) when T, = I' = (v, 4@ . ym)) =
(n,n,...,n). One solution must exist because the objective
function is bounded below as a result of the existence of the
quadratic term and to the nonnegativity of the penalty term.

We assume that the set defined by the constraints (2.1) is
feasible, that is, that there exists some ¢* such that <I>(j)(q*) >
0, for j = 1,2,...,m. This implies that ®(¢*) = 0, for
j=1,2,...,m. In this case it is immediate that, since v,, is
the optimal solution of (2.5),

1
51)3;Mvn — ol (le + hk(t, ¢, vl))

* _
< w(vmrn)<w<q hlqmn)

Therefore, the sequence v,, is upper bounded uniformly with
n. Since ¢* is feasible, the last term in the preceding sequence
of inequalities does not depend on I',,. Therefore v,, admits a
limit point v,.

Another consequence bisl that the term
Sy i (<I>(f)(q(l) + hwn)) ! is upper bounded
uniformly with respect to n. Taking the limit, we obtain that
<I>(_J)(q(l) + hjv*) = 0, that is, that the point ¢¥) 4 ho* is
feasible.

Finally, if the set of vectors {V,®(j)} is linearly inde-
pendent, then from (2.3) one can see that V) (¢! + hv,,) is
also uniformly bounded, and we can assume, after eventually
restricting to a subsequence, that 6U) (¢! + hyv,,) — cU) >0
as n — oo.

Since (a_)%a =
obtain that

—(a_)®*+D) for any real number a, we

09 (¢ + hyvy,)) @9 (q(l) + hlvn>

= 09 (¢ + hyy)) Y (q(l) + hl%) :

From our preceding results, this that
D pG) (q(l) 4 hzv*) =0.

After we replace all these limit relations in (2.3) and
we associate vt to v,, and )+ to () we obtain
the following nonlinear complementarity based time-stepping

scheme:

implies

)(l+<1)) = O+ hot+D,
D) (0
MT k(t(l)7q(l)7v(l)) v
+ Z T )y ) (g1 2.6
0 < W+
0 < ®W(gt+D
0 = W HDPL) (D),

which is precisely the time-stepping scheme from [9], for the
frictionless case.

B. Linearly Implicit Approach

In the linearly implicit case, the stiffness in §()(g(+1))
is accommodated by linearization. To obtain meaning-
ful results, we write 0 (q) in the form #U)(q) =

YD (@) (g)) |89 (q)[". where
e(x) = { 1 <0

0 x>0.
We approximate §0) (q(*+1)) by linearizing () (¢(+1)) at the
point ¢V, and we use that ¢+ = ¢ + hwHD | as well as
the approximation

q)(j)(q(lﬂ)) ~ &;(j),(l)(v(lﬂ))
= oW (W) + hlqu)(j)(q(l))TU(lJrl),
to obtain that

0D (D))~

— AP (@(j),a)(v(m))) ’@(j),a)(v(m))

6 (p 1)
b

The numerical scheme becomes
¢t = O L D),
1+1 l
M%ﬁ”“ k(t(l),q(lz,v(l))
+ Z;ﬁ:l 9(3‘)(U(l+1))vq<p(j)(q(l))_
2.7)
Note that the gradient of ® is evaluated at q(l), since its
linearization would result in an O(h;) term that disappears
in the limit.
If b > 1, we use that % |¢|* = sgn(t)[t|*~*, which is true
whenever a > 1 to obtain that

Vo g (@j),(z)(v(m))) ‘$(j>,<z>(v(l+1>)

‘b+1
~ ~ b
- e (q)u),(z)(v(ml))) ’@u),(z)(l,(m))‘ .
We therefore get that v(‘t1) is a solution of the following
optimization problem:
min, ¢ (v,T') = 20" Mv — o7 ((Mo! + hk(t, ¢, 0"))
N2 -~ b+1
+OXT L A De (Q(n,u)(v))) ‘q)(y),(l)(v))‘
(2.8)
By using the same techniques as in the fully implicit case,
we obtain the following LCP-based time-stepping scheme in
the stiff limit of v(9) — oo:

( )(l+(1)) — q(z) + Byt
141) _,, (@
eSS Sl R CR U
+ 3, DDy o0 (gD
0 < )+
0 < q)(j)(q(l)) + th@(q(l))Tv(l"‘l)
0 = U+ (q)(j)(q(l)) + hlvq)(q(l))Tv(l-H)) .

(2.9)
This is precisely the time-stepping scheme from [16] when
joint and frictional constraints are not present. It has been
shown not only that this scheme is stable if the ratio between
consecutive time-steps is bounded below (the velocity stays
bounded uniformly as the time step goes to 0), but also that



it achieves constraint stabilization without the need to solve
a problem where feasibility is enforced exactly at ¢("*1) in
a nonlinear fashion. A similar constraint stabilization result
is achieved if we replace the constraint 0 < ®W)(g()) +
V(g TyHD by 0 < 4®0) (¢V) 4+ VB (gD)Tp(HD),
where v is a parameter in (0, 1] [19].

C. Discussion

We have obtained that, in the very stiff limit of the penalty
method (when the parameters v) approach oo, in relation to
the size of the time step), we recover complementarity-based
time-stepping schemes. A similar result (that was submitted
for publication after this work) can be obtained for the case
when there is Coulomb friction acting at a contact [20].

We point out that, for many simulation schemes, if the
penalty parameter is appropriately chosen and the velocities
are not exceedingly large, then one can use an explicit
integration method that produces quite accurate results [5],
especially when there is only one contact. But if one desires
to create a general-purpose simulation environment that is
computationally efficient, then a stable scheme is required for
a large variety of examples. It is difficult to find the appropriate
penalty parameter, especially in a multicontact regime, where
it is conceivable that the penalty parameters should be chosen
differently for each contact.

If, in order to accommodate a wide range of applications
for a fixed target time-step, one goes to an implicit approach,
then choosing a large penalty parameter in order to prevent
interpenetration for a large class of examples results essentially
in an complementarity-based time-stepping scheme, as shown
in this section. For this reason, in the rest of the paper we
work with an LCP-based approach.

III. ACCOMMODATING THE CAVEATS OF A FIXED
TIME-STEP MODEL

As is to be expected, although a fixed time-step approach
has the obvious advantage of solving a predictable number of
subproblems per step, it also presents some unwanted side-
effects. In this section we describe them and discuss possible
ways to avoid them.

When describing some of the issues we will discuss colli-
sions. We say that a collision occurs if both ®(¢()) > 0 and
®(qW)+h VoD p+1) > 0 but -0+ > 0 (the multiplier
for the normal force at the next step).

A. Larger Number of Constraints

Either the nonlinear (2.6) or the linearized formulation (2.9)
has the problem that all constraints need to be considered. If
we do not intend to backtrack when a constraint is violated,
then all constraints that could become active need to be
included on the list of constraints to be enforced. A simple and
provably correct strategy, at least in the limit of sufficiently
small time step, is to define the active set as

A={jle0(g) < e},

where € > 0 is a fixed parameter. In our numerical exper-
iments, we used a parameter ¢ that was dependent on the
product between the norm of the velocity and the size of the
time step, and we did not encounter any difficulties.

B. Collisions that Occur during One Time Step are Simulta-
neous

Simultaneous collisions are best observed if the mappings
3 (q) are linear. If @ (¢(+1) > 0 but ¢ > 0 then,
from (2.9) @) (g(+1) = 0, but &) (gD +-¢(gH+D) —¢)) >
0 for any ¢ < 1. So the distance can switch from positive
to 0 only at the end of one interval. In some sense, this
is one feature that makes the method work: By forcing all
collisions occuring during one time-step to be simultaneous,
we avoid having to treat them sequentially, which could require
an uncontrollable amount of computational effort.

If collisions are isolated in time (which is not the case with
the bouncing ball example at the beginning of this paper),
then, as the time step goes to 0, they will eventually be
resolved individually, so this is not so much of an issue. But
for many bodies, it is unlikely that the user is willing to take a
sufficiently small time step that will isolate the collisions, since
this may lead to a large amount of computation, especially if
each step involves solving an LCP.

In light of the extremal analysis of the penalty model,
this situation is unavoidable for any method that attempts to
simulate with a fixed time step. In our (subjective) experience,
in animation applications this effect is invisible for time steps
of 0.05 and below.

C. Dissipation of Energy

If we use the scheme (2.9) to simulate a ball falling on a
table, we can show (as we later show in an example) that the
ball will stick to the table, even though we started with a non-
dissipative penalty model to justify (2.9). Therefore (2.9) can
accommodate only plastic collisions. This situation is to be
expected, because backward Euler type schemes are dissipa-
tive. The use a symplectic method like implicit midpoint on
the penalty approach followed by taking the parameters /) to
oo does not completely remedy this problem. We will address
this issue by using an explicit energy restitution model.

D. Dependency of the Impact Velocity on the Time Step

We will prove by an example that the dependence of the
impact velocity on the time step is, by far, the most subtle
effect of a fixed time-step approach. We assume that a ball
moves horizontally without friction, starting at x = 0 with
velocity 1, and it encounters a wall at z = 1. We assume
that there is no gravity so, in effect, this is one-dimensional
motion. We assume that the collision response mechanism is
of the Newton type [13]: A portion e of the normal velocity
is returned to the system. The exact velocity solution to this
problem is clearly

= {?jil>
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Fig. 1. Velocity after collision for the fixed time-step uncorrected method.

We now assume that we apply the linearized time-stepping
scheme (2.9) with constant time step h. We have only one
noninterpenetration constraint: ®(z) = 1 — 2 > 0. We define
L = [#] — 1, where [-] denotes the ceiling function: the
smallest integer larger than or equal to the argument of the
function. Clearly, the constraint is inactive and 2! = 1 and

L' = [h for | < L. Since z¥ + h > 1, we must have a
collision at time L. From (2.9) we get that (since a collision
must occur)

gt =1 WL gl — gttt =0,
The solution to this problem is af ! =1 —[11+1€(0,1]

and ¢M)-(1) = +[3+]€ [0 1). The velocity solution after
impact will be x(l) —e—ej +e[4] for | > L+ 2 instead
of its exact solution () = —e. As h — 0, the error is
anywhere in the range [0, ¢). For example the error can be §
for arbitrarily small values of h! This effect is seen in Figure
1 fore=1.

If the collision is inelastic (e=0), then the error after
collision is 0; but if the collision is partially elastic, then we
may introduce an O(1) error for arbitrarily small values of the
time step. The situation does not improve if we use a collision
model based on the Poisson hypothesis [13], [11]: That part of
the compression impulse is restituted (even if, at time L + 1,
we consider the collision instantaneous instead of embedding
it in a time-stepping scheme). Indeed, the Lagrange multiplier
(L) that enters an impulse restitution model suffers from
exactly the same effect.

IV. A VELOCITY RESTITUTION MODEL FOR FIXED
TIME-STEP SCHEMES

The simultaneous contact issue is unavoidable for fixed
time-step schemes. We will address the last two issues that
appear in a fixed time-step scheme by defining an appropriate
velocity restitution (Newton) model. Since we cannot use the
velocity at the time of the collision to compute the restituted
velocity, because of the lack of convergence effect, we will
use the normal velocity computed with the velocity vector
at the previous time (for our example, time L), before the
collision occurred. In doing so, we may incur an O(h) error

which is unavoidable anyway if we do not detect events such
as collisions with superior accuracy [15]. If the number of
collisions is finite, then these errors disappear in the limit. If
a collision occurs at contact (j), at time [ — 1, then we replace
the linearization of the contact constraint from (2.9) by

(I)(j)(q(l)) + hzv@(ﬂ')(q(l))TU(Hl) + mADD >

where, after computing the modified normal velocity v(j (0 -

V<I>(7) (¢M)v=1) | we define

G0 @)
G — () ) Un <-TOL
A J =€ J { )

4.10
0 ( O > _7oL. (410)

Here /) is the restitution coefficient at noninterpenetration
constraint (j). For ease of notation, if a collision does not
occur, we still use the parameter A)-() | though we will assign
it a 0 value. The parameter TOL is used as a truncation
parameter to remove exceedingly small bounces. If we apply
this approach to our one-body example, we get that the
velocity following the collision is —e, the exact solution. In the
general case (where the velocity before and after the collision
is not constant), we get an error of O(h).

The Newton approach has the advantage that, if it is used
as a collision resolution technique (where ®)(¢()) and hy
are removed from the linearization), it is guaranteed not
to increase the kinetic energy when the scheme is slightly
modified to include the dissipation terms from v® [21]. We
cannot guarantee a good energy behavior for our scheme (i.e.,
that the energy will decrease in an isolated system), though
we have never seen energy increases with this approach in our
examples.

A. The Time-Stepping LCP

Including frictional and joint constraints, and using the
same notations as in [11], [22], [16] and, by and large,
the same notation as in [9], [10], we obtain that q(l+1) =
qW + v+ and that v(+1 is the solution of the following
linear complementarity problem, where we use the notation:

QU = Mo + bk (10, q®, ,®)
M - —-a -D 0 WS
0 0 0 0 c
AT 0 0 0 0 ¢ +
pr 0o 0 0 E B
0 0 ﬁ *ET 0( : A J
. _
9 { 0
A+A | =P
0 o
0 < “4.11)
HIHERHENH
& g | =0, B | >0, g |>0.
A ¢ A
(4.12)
Here 7 = [v™M), () . . v(™)] are the gradients of the joint
constraints; ¢, = [c,(,l),c,(f),...,cl(,m)]T are the multipliers
of the joint constraints; 7 = [nU1) nU . nUs)] are



the gradients of the active noninterpenetration constraints;
Cn [cgl),c%j?), ...,cSZ”]T are the multipliers (normal
impulses) corresponding to the interpenetration constraints;
B =[BT gUuT - gUITIT s the aggregate of vectors
of tangential impulses, D = [DUY D2 DU, the
tangent vectors corresponding to a discretization of the friction
cone; A = [AUU AG2) AU|T are the multipliers of
the conical constraint; i = diag(uUv), pU2), ... pUNT is
a diagonal matrix whose diagonal is made of the Coulomb
friction coefficients, T = h% (eW, 0@, . .,@(m))T where
O is the value of the 7ioint constraint 7 at ¢, A =
(@60, 00, 96))"; A = (A<j1>,A<j2>7m,A<js>)T
is the vector of restitution factors from (4.10),

EU1) 0 0 --- 0
- 0 EG2) o ... 0
E= )
0 0 0 EU)

where EY) is a vector of ones of the same dimension as
the number of columns in DU) and number of elements
in 3U). Note that the joint constraints are also enforced
by linearization. Here A = {j1,j2,...,js} are the active
contact constraints. The vector inequalities in (4.12) are to be
understood componentwise. We use the ~ notation to indicate
that the quantity is obtained by properly adjoining blocks that
are relevant to the aggregate joint or contact constraints. The
problem is called mixed LCP because it contains both equality
and complementarity constraints.

We call our model fixed time-step, although h; is allowed
to vary, because the time step does not need to be reduced
to 0 in the event of a collision and the collision resolution
mechanism is integrated in the time-stepping scheme. In effect,
the time step should not be reduced to O because it may lead
to large velocities due to the fact that A and T contain an
h% factor. If all restitution coefficients are always 0 (A = 0),
then the scheme has been proven to be stable and to stabilize
constraints.

V. NUMERICAL RESULTS

We have applied this approach to a two-dimensional system
whose initial configuration is a cannonball arrangement of 66
disks of radius 3 on a horizontal plank bounded by two slanted
walls. The friction coefficient is 0.15, the restitution coefficient
is 0.4, and the time step is constant 0.05. The simulation was
run for 20 seconds.

From Figure 2 we see that the time needed to solve the LCP
(4.11-4.12) is correlated with the number of active contacts.
This result is to be expected, because the size of the LCP is
proportional to the number of active contacts. We also see that
most of the time, less than 0.5 seconds were needed to solve
the LCP on a 1.7 GHz Pentium IV running Windows 2000.
The largest increase in the number of contacts in one time
step was 7. This means that an event-driven method may have
taken seven times as many LCPs to solve for the same time
step, which would have substantially hurt the performance.
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Fig. 2. Number of active contacts and LCP computing time per timestep.
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Fig. 3. Depth of interpenetration (constraint violation) and total energy.

From Figure 3 we see that neither the constraint violation
nor the total energy increases uncontrollably. In effect, the total
energy decreases steadily, as should happen in the continuous
time limit. In addition we see that the schemes achieves con-
straint stabilization: constraint violations are rapidly corrected.
This effect is proved for O restitution coefficient in [16]. The
maximum constraint violation is about 8 centimeters, but it
should be kept in mind that the body radius is 3 meters. Four
frames of the simulation are presented in Figure 4.

For successful application of the fixed time-step method we
plan to address several issues in the near future. The method
should be extended to nonsmooth shapes, which are ubiquitous
in applications. Also, a better strategy is needed to predict the
future active set, which would result in even smaller constraint
violation.
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