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Abstract

In the beginning (the early 1960s), the long-term goal of automated deduction
was the design and implementation of a program whose use would lead to “real”
and significant contributions to mathematics by offering sufficient power for the
discovery of proofs. The realization of that goal appeared to be at least six decades
in the future. However, with amazement and satisfaction, we can report that less
than four decades were required. In this article, we present evidence for this claim,
thanks to W. McCune’s program OTTER. Our focus is on various landmarks, or
milestones, of two types. One type concerns the formulation of new strategies
and methodologies whose use greatly enhances the power of a reasoning program.
A second type focuses on actual contributions to mathematics and (although not
initially envisioned) to logic. We give examples of each type of milestone, and,
perhaps of equal importance, demonstrate that advances are far more likely to occur
if the two classes are indeed intertwined. We draw heavily on material presented
in great detail in the new book Automated Reasoning and the Discovery of Missing
and FElegant Proofs, published by Rinton Press.

1 An Effective Template for Research

In this article, we focus on the pursuit of a single goal: the design and implementation
of a general-purpose program whose power is sufficient to prove deep theorems. One
obvious template for pursuing such a goal is to consider what might be done in the
abstract, with no specific theorem or class of theorems in mind, to increase the power
of a reasoning program. Our approach, on the other hand, is to attempt to prove a
specific theorem—one never before proved with any reasoning program—by devising a
general strategy or methodology that can be applied to various domains. Indeed, we
consider the most effective template for research to be an experimental template, where
the wellspring for the particular study is a single, apparently-out-of-reach theorem and
where the objective is the discovery of a proof of that theorem by means of a new
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strategy or methodology that can be added to the arsenal offered by an automated
reasoning program.

Even at our entrance into the field in the early 1960s, we applied this approach. For
example, our attempt to solve a simple classroom exercise—prove that groups in which
the square of every z is the identity e are commutative—led to the formulation of the
powerful, and general, set of support strategy.

In this article we feature numerous other examples of such successes with W. Mc-
Cune’s automated reasoning program OTTER [McCune2003]. We discuss three strate-
gies and various methodologies whose use greatly enhances the power of a reasoning
program. And we relate our experiences with practical applications in mathematics and
in logic. Some of the successes featured here have answered questions that had been
open and had resisted the minds of the masters for decades.

2 The Resonance Strategy

We begin in medias res in the early 1990s when, after a visit to Argonne, Dana Scott
sent us 68 theorems to prove. The theorems are numbered by Lukasiewicz theses 04
through 71. Theses 1, 2, and 3 form Lukasiewicz’s axiom system for two-valued (classical
propositional) calculus, studied in terms of the functions for implication and negation
and expressed in the following OTTER notation.

P(i(i(x,y),i(i(y,=),i(x,2)))).
P(1(i(n(x),x),x)).
P(i(x,i(n(x),y))).

Scott challenged us to prove with OTTER these 68 theses, using as inference rule con-
densed detachment, expressed in OTTER notation, with “ | 7 denoting logical or and “
- ” denoting logical not.

-P(i(x,y)) | -P(x) | P(y).

Despite our years of experience with OTTER, we were able to obtain only thirty-
three proofs; thirty-five theses remained unproven. Even with ROO, a parallel version of
OTTER, we could prove only forty-eight of the theorems, leaving twenty unconquered.
Clearly, to meet Scott’s challenge—and consistent with our recommended experimental
template—we needed to formulate a new technique. The resonance strategy was born
[Wos1995].

For the problem in hand, we placed correspondents (resonators) of all sixty-eight the-
ses in a pick_and_purge weight_list, assigning to each the same small value. A formula or
equation placed in that list is assigned a priority, or weight, based on the assigned value,
rather than assigning a priority or weight based on symbol count. By placing a formula
or equation in that list and assigning it a value strictly greater than that assigned the
max_weight, the user of OTTER enables the program to discard any deduced conclusion
that matches said formula, where the variables are treated as indistinguishable. On the
other hand, by assigning a value is less than or equal to that assigned the max_weight,
the user provides guidance for directing the program’s reasoning. The smaller the value,
the more preferred is a matching retained conclusion, ignoring the individual variables.



A resonator is used to direct a program’s reasoning; it does not have a true or false
value. The pattern of the resonator is the key, where all variables are considered as
indistinguishable, alike. Any retained conclusion that matches a resonator, ignoring
specific variables, is assigned the value that is assigned to the corresponding resonator.
With resonators, the user can, by assigning different values, express preference for one
class of conclusions over another.

Our intention was to have OTTER prefer over all others any deduced conclusion that
matched at the functional level; that is, the preferred conclusion(s) would be used before
all others for inference rule initiation. Phrased more generally, we were informing the
program that the pattern of any of the sixty-eight formulas was most attractive, that,
if one treats all variables as indistinguishable, a deduced conclusion with such a pattern
is attractive. The functional shape, ignoring the specific names of the variables, is what
counts.

And it worked. Within less than 16 CPU-minutes on a computer of the 1991 type,
all 68 theorems of interest were proved.

One could, of course, argue that the set of sixty-eight actually form the outline of a
so-called master proof and, therefore, the effort was more in the spirit of proofchecking
than of proof finding. Indeed, since the sixty-eight theorems had essentially been proved
by Lukasiewicz, one could argue that no new proof of any type had been found. But as
the following shows, the resonance strategy does have both the desired generality and
the desired power. Not only has it found proofs that resisted full automation for years,
but, more important, it has found proofs previously absent from the literature.

3 The Methodology of Lemma Adjunction

We present here a vivid example of a principle that has dominated much of our research
since the early 1960s. The principle asserts that advances are likely to occur if one
chooses a theorem whose proof is fully detailed and attempt to find a means for a
reasoning program to complete a proof of that theorem without guidance. If successful,
almost certainly the unaided proof will be sharply different from that in hand before
the study was undertaken.

The specific theorem to be proved asserts the deducibility of the three-axiom system
of Lukasiewicz for classical propositional calculus from the Meredith single axiom, the
following.

P(1(i(i(i(i(x,y),i(n(z),n(w))),z),v),i(i(v,x),i(u,x)))).

We again used condensed detachment; we also used hyperresolution.

Meredith’s proof is (in effect) of length 41. Attempts at discovering a fully auto-
mated proof with OTTER. were spread over eight years, each, obviously, unsuccessful.
Many diverse attacks were tried. Eventually we did formulate a methodology, called
lemma adjunction, for finally enabling (in 1999) a reasoning program to prove Mered-
ith’s theorem without relying on his proof.

Briefly, lemma adjunction has the researcher choose some set of lemmas to be proved,
with no certainty that any or all are relevant to the target theorem. Correspondents
of those lemmas are placed as resonators in weight_list(pick_and_purge), each with the



same small value assigned to it. (A layered-resonator approach has also proved quite
useful, where the set of resonators is partitioned into subsets with members of a given
subset assigned a common value.) The denials of the lemmas are placed in list(passive).
Members of that list are used mainly to detect the completion of a proof by noting that
a unit conflict has been reached, and they are also used for forward subsumption; they
do not participate in the reasoning process for drawing conclusions.

The lemma-adjunction methodology is iterative, each experiment (after the first)
building on the results of its predecessor. In run n + 1, one adjoins to list(sos) the
lemmas proved in run n. (A powerful variation has one adjoin all of the proof steps of
the proved lemmas; a proof step is a line of an OTTER proof, for example, deduced with
condensed detachment or with paramodulation.) We note that resonators themselves
do not have a true or a false value; they are merely included to direct a program’s
reasoning. In other words, resonators are not themselves lemmas. Also, we note that
the lemmas that are adjoined in a succeeding run may have no value to completing a
proof of the target theorem.

The use of lemma adjunction did succeed in four runs, discovering a 160-step proof
of level 74; Meredith’s 41-step proof has level 30 [Wos2001]. For the experiments, we
used Lukasiewicz theses 4 through 71 as resonators.

Our next step was to test the effectiveness and generality of the new lemma-adjunction
methodology. The goal was to find a proof where the literature offered none. We turned
to a 23-letter formula (the following), presented in the mid-1930s by Lukasiewicz as the
first single axiom for classical propositional calculus.

P(i(i(i(x,y),i(i(i(n(2),n(w)),v),z)),il(w,i(i(z,x),i(u,x))))).

Lukasiewicz offered no guidance regarding the nature of his proof, just noting that three
years of study had been required to obtain a proof. We conjectured that we might
complete a proof (perhaps his) by deducing a known axiom system. We chose as target
various axiom systems, including the Lukasiewicz three-axiom system and a six-axiom
system of Hilbert. We again used theses 4 through 71 as resonators and as so-called
intermediate lemmas. Four runs sufficed, requiring 4.5 CPU-hours, discovering a 200-
step proof of level 68, completing with the deduction of the Lukasiewicz three-axiom
system, among others. Hilbert’s axiom system was deduced with a proof of length 194
and level 68, before the Lukasiewicz proof was completed. We view our successes as
evidence of the generality of the resonance strategy.

4 The Hot List Strategy

Another application domain we have addressed with great success is algebra. In algebra,
the proof being examined often requires repeated visits to the special hypothesis. For
example, when proving commutativity for rings in which the cube of z is z (for all z),
many crucial steps have as a parent the special hypothesis, namely, xzx = x. The hot
list strategy was formulated in response to this observation [Wos1999].

With OTTER, a hot list is provided, in which the researcher places clauses that the
program can visit, revisit, and the like. Let us say that heat is assigned the value 1; then,
when a new clause is retained, immediately it is considered with each of the members



of the initial hot list for drawing additional conclusions for possible retention. If heat is
assigned the value 2, then the clauses with heat = 1 (just described) are immediately
considered with members of the initial hot list.

McCune generalized the hot list strategy, which was originally formulated in the
context of paramodulation only, to apply to all inference rules. He also generalized it
to the dynamic hot list strategy, whose use permits the program to adjoin during a run
new clauses to the hot list.

Our first experiment with McCune’s generalization to other inference rules, testing
the OTTER version for the first time with hyperresolution employed for condensed
detachment, yielded a new result. The field was classical propositional calculus. The
theorem to prove asked for a derivation, from the Lukasiewicz three-axiom system, of
a different three-axiom system of Lukasiewicz, sometimes referred to as a system of
Church. OTTER, using the hot list strategy, found a 21-step proof, whereas the best
in hand before the experiment was a 22-step proof. More recently, the hot list strategy
was put to most profitable use by Z. Ernst, B. Fitelson, and K. Harris in the study
of various areas of logic [Ernst2002]. They succeeded in finding six new single axioms
for C'5, the implicational fragment of the modal logic S5. Even more impressive was
their success with C4, the implicational fragment of the modal logic S4. Indeed, where
(apparently) Meredith had sought and failed to find a single axiom for this field, the
trio did find one.

5 The Strategy of Cramming

The formulation of the cramming strategy [Wos2003a] was motivated by a query from
one of our colleagues, B. Fitelson. Impressed with many successes with OTTER, he
asked about the existence of a proof shorter than Meredith and Prior’s 33-step proof for
the sufficiency of the Lukasiewicz shortest single axiom for the implicational fragment of
propositional calculus. None of the approaches we had devised in the preceding years for
proof refinement yielded the prize. However, one of the experiments yielded a 30-step
proof of the most complicated Tarski-Bernays axiom, the target three-axiom system,
whose denial is the following.

-P(i(p,i(q,p))) | -PGE(1GE(p,,p)sp)) | -P(i(i(p,q),i(i(q,r),i(p,r)))) |
$ANS (TARSKI_BERNAYS) .

The ANSWER literal can be used to (so to speak) capture a construction found by
OTTER but is also useful for identifying what has been proved, especially in the case
where the program is instructed to prove a number of theorems.

We therefore hypothesized that, if we could formulate a technique that would enable
OTTER to extend the 30-step proof with exactly two additional steps, one deriving each
of the two remaining formulas to be proved, we would win: we would surpass Meredith
and Prior’s marvelous contribution. Put a bit differently, if we could find a way to
“cram” the 30-step proof into a 32-step proof of the Tarski-Bernays system, we would
succeed in the goal set by Fitelson. And the cramming strategy was born.

One begins with extending the set of support by placing the thirty formulas in it.
One next includes as resonators the two formulas to be proved, each assigned a very



small value, and one then assigns that value to max_weight. Then one has OTTER rely
on level saturation. The basic idea is to see whether the two formulas can be derived
and little or nothing else. The desired 32-step proof was discovered.

Cramming has played an important role in proof refinement with respect to length,
a topic we now address.

6 Hilbert’s New Problem

For many mathematicians and logicians, the knowledge that some implication holds—is
a theorem—suffices; the proof itself offers little interest. Others are satisfied with seeing
some proof; its “elegance” is not a concern. Hilbert was a member of neither group.

Indeed, as his recently discovered twenty-fourth problem reveals, Hilbert was greatly
interested in actual proofs and in proof simplification. A proof can be simplified by
shortening it, by finding a proof with fewer deduced steps than that in hand. Simpli-
fication can instead focus on the complexity of the deduced steps, on the avoidance of
thought-to-be indispensable lemmas, on the avoidance of some type of term, and more.
As it turns out, an automated reasoning program can play a vital role in the discovery
of more elegant proofs, of proofs simpler than those offered by the literature. (For a
piquant aside, we note that the discovery by R. Thiele in 2000 of Hilbert’s twenty-fourth
problem delighted us [Thiele2000]; we have been studying proof refinements of various
types since perhaps 1992.)

In our pursuit of such proofs, we have formulated various methodologies. For exam-
ple, we often use demodulation in a nonstandard way, use it to block the retention of one
or more unwanted steps of a proof under study. Sometimes we use cramming. We choose
a type of term, for example so-called double-negation terms, and use demodulation to
avoid retaining any deduced clause that contains such a term. A double-negation term
is of the form n(n(t)) for some term ¢. We seek proofs that avoid lemmas the literature
suggests are key to finding any proof.

Among our successes, we have—actually, OTTER has—discovered a 38-step proof
for the Meredith single axiom, a proof three steps shorter than that of the cited master
who himself was clearly interested in finding shorter proofs. Although we cannot make
an appropriate comparison because of what is absent from the literature, we have used
(OTTER and) cramming to complete a 50-step proof for the Lukasiewicz 23-letter for-
mula. Also in part with that strategy, we now have in hand a 5-variable proof for a
19-letter single axiom of Meredith for propositional calculus in which false is part of
the language. Meredith’s proof includes a deduced formula that relies on eight distinct
variables.

We have found double-negation-free proofs showing that one of the Lukasiewicz five
axioms for his many-valued sentential calculus is in fact dependent. Meredith was the
first to prove the corresponding theorem, but his proof does rely on double negation. Our
find coupled with many others of its type led to M. Beeson (with colleagues) proving that
the Lukasiewicz three-axiom system for classical propositional calculus has the following
charming property. If the target is a theorem free of double negation, then there must
exist a double-negation-free proof of the theorem with the Lukasiewicz three-axiom
system as hypothesis. Beeson’s success answered a question posed by the logician D.



Ulrich. We thus have yet one more example of how automated reasoning is now affecting
the research of those whose primary interest is indeed outside of our field.

7 A Bright Future

The applications of OTTER are truly wide ranging. Powerful single axioms have been
found for Boolean algebra [McCune2000]. McCune’s monograph with R. Padmanabhan
provides a most visible and exceedingly satisfying milestone, with its proof after proof
and its answers to open questions [McCunel996]. And just two years ago, the last
possible shortest single axiom, XCB, was found for equivalential calculus [Wos2002].
the corresponding question had remained open for seven decades. Without automated
reasoning, almost certainly the question would still be open.

If this material has inspired some researcher to consider additional challenges and
open questions that have been identified, the book Automated Reasoning and the Dis-
covery of Missing and Elegant Proofs provides a beginning [Wos2003b]. That book
discusses in far more detail than we are able to include here the various strategies,
methodologies, and contributions to mathematics and logic that have been witnessed in
the past few years. For a question not offered by the cited book, the following might
prove of interest. Does there exist the analogue to the double-negation-free theorem for,
say, group theory, where negation is replaced by inverse?

In summary, we have mined some treasure—but by no means all of it. Much remains,
and we now have some of the means for mining far more.
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