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Abstract 

Firewalls and network address translators (NATs) 
cause significant connectivity problems together with 
their benefits. Many ideas to solve these problems have 
been explored both in academia and in industry. Yet, 
no single system solves the problem entirely. 
Considering diverse and even conflicting use cases and 
requirements from organizations, we propose an 
integrated approach that provides a suite of 
mechanisms and allows communicating peers to 
choose the best available mechanism. As an important 
step toward the final goal, we categorize previous 
efforts and briefly analyze each category in terms of 
use cases supported, security impacts, performance, 
and so forth. We then introduce a new firewall 
traversal system, called CODO, that solves the 
connectivity problem more securely than other systems 
in its category.   

1. Introduction 
A network address translator (NAT) [1] provides 

easy address planning as well as a solution to the IPv4 
address shortage problem. Firewalls play a vital role in 
protecting networks and are ready to play an even more 
important role as the security headquarters of 
integrated security systems that generally include anti-
virus checking, intrusion detection, logging, and 
content investigation. 

These devices come at a price, however, notably 
nonuniversal (and asymmetric) connectivity to the 
Internet. Because of impaired network connectivity, 
applications written with the assumption of universal 
connectivity may not work. In addition, the 
development of new software becomes harder, and  
design may be inefficient because of the new constraint 
of Internet connectivity. 

Grid [2], VoIP (Voice over IP), and P2P (Peer-to-
peer) applications may be the areas damaged most by 
the connectivity problem because they are generally 
bidirectional in communication, interorganizational, 
huge in scale, and geographically distributed. Grid 
applications may not be able to share resources with 
the world, VoIP applications may miss calls, and P2P 

applications may be unintentionally free riding [3] 
because nodes behind a firewall or NAT cannot 
contribute to the file sharing, while they can generally 
download files from the world. 

One possible solution to this problem is to redesign 
the Internet. However, making even a small change to 
the Internet is very hard. Blumenthal and Clark [4] 
discuss various factors that require reconsideration of 
the end-to-end argument [5], one of the most important 
design philosophies of the Internet [6]. In their paper, 
they state that firewalls and NATs are the major factors 
that require change, not only to the Internet edge, but 
also to its core. Their statement implies that to solve 
the problem, we may need to change the Internet in a 
fundamental way. Furthermore, a firewall s multilayer 
nature 1  will make an elegant solution difficult even 
with a new Internet architecture. Thus, we may have to 
concentrate on application layer approaches that 
require no change to the Internet. Furthermore, insights 
and experiences gained from those approaches may 
become a good basis for more fundamental approaches. 

Many systems and ideas have been proposed and 
studied to solve connectivity problems, but no single 
system solves the problem entirely. Each system 
supports different types of use cases and has different 
characteristics in terms of security, performance, and 
so forth, still leaving holes that no system supports. We 
claim that this situation is not because those systems 
were poorly designed but because organizations use 
firewalls and/or NATs for different purposes with 
different levels of security, performance, deployability, 
scalability requirements, and so on, such that no single 
system supports all of them. 

Considering the diverse and even conflicting 
requirements from different organizations, we need to 
have a suite of solutions such that all (major) 
functionality is supported by at least one component of 
the suite. Each solution ideally supports a partition of 
use cases with minimum overlap. We then need to 
have an integrated mechanism through which a 
solution is chosen for a communication channel 

                                                

 

1 Firewall functionality does not fit into any single layer of 
the OSI model because it needs to inspect packets from the IP 
header to the application payload. 



through a negotiation between communicating parties. 
This is one of our major research goals. 

As an important step toward this goal, this paper 
classifies existing and expected solutions based on use 
cases supported and analyzes each category in terms of 
security, deployability, and performance. Since we 
analyzes systems in a class as a whole, we do not 
provide any performance data or detailed security 
analysis of individual systems. We also introduce 
CODO (Cooperative On-Demand Opening), a new 
firewall/NAT traversal system that will become a 
major component of the integrated system. CODO 
enables communications over firewalls or NAT via on-
demand creation/deletion of pinholes at the device. 
CODO provides efficient data communication but 
requires administrative power to be able to deploy. 
CODO s mechanism is the most secure within its class. 
It also provides a less secure but more easily 
deployable and efficient method of traversal, called the 
promiscuous mode. 

Section 2 categorizes and analyzes firewall/NAT 
traversal approaches. Section 3 explains CODO in 
detail. Sections 4 and 5 analyze CODO s deployability 
and security, respectively. Section 6 presents 
performance data for CODO. Section 7 explains related 
research, and Section 8 briefly summarizes our work. 

Throughout, we use the term firewall

 

to refer 
both firewalls and NATs. The term NAT

 

is used to 
specifically denote NAT. 

2. Categorization of firewall traversal 
approaches 

This section classifies firewall traversal approaches 
based upon the use cases that each class supports. Use 
cases are mainly determined by the questions of (1) 
what changes must be made to what components in 
order to use the system, (2) what security implications 
the system has, and (3) how efficient and scalable it is. 
The first question in particular plays an important role 
because in some situations an individual may not be 
able to make required changes to the components for 
political or technical reasons. For example, an 
employee may not be permitted to use a mechanism 
that requires a rule change to the company s firewall 
because she does not have administrator privilege on 
the device. The other questions are rather obvious. 
Efficiency and scalability generally vary from system 
to system even within a class. Therefore we discuss 
properties that systems in a class have in common. 

2.1 Manual opening 
Many organizations manually open their firewalls 

for a range of addresses for a trusted or well-protected 

application. If the application dynamically 
creates/closes sockets, then simple changes are made 
so that it uses the predefined range of addresses. Since 
only a few changes to firewall rules and simple or no 
changes to the application are required, this mechanism 
is easy to deploy with the administrator s privilege of 
the firewall. This mechanism must have little impact 
on the performance, if any. 

Most applications, especially in Grid, VoIP, and 
P2P, dynamically creates/destroys sockets. The number 
of addresses being used by an application varies over 
time. The number of instances of the application may 
vary in some cases. Therefore, it is generally 
impossible, given an application, to know a priori what 
addresses are needed and how long they must be 
opened. Even if we know the exact range of addresses 
that must be opened for the application, that range 
gives us only the upper limit in most cases; and, for 
most of its lifecycle, the application may use fewer 
addresses. Therefore, manual opening almost always 
results in more addresses opened than the application 
actually uses. These extra openings can be exploited to 
attack the network. Therefore, no matter how well 
prepared for attacks the intended application is, this 
mechanism is vulnerable to attacks to the network. 
This should not be used unless no other mechanism is 
available. 

2.2 Anonymous approaches 
Systems that fall in the anonymous category exploit 

general practices of organizations and require no 
interaction with firewalls. Such systems use the fact 
that most networks allow, for example, outbound 
connections and Web traffic. We call this class of 
systems anonymous because firewalls and traversal 
systems do not (or need not) know each other. GCB 
(Generic Connection Brokering) [7], Gnutella [8], 
STUN (Simple Traversal of UDP through NATs) [9], 
TURN (Traversal Using Relay NAT) [10], and the 
mechanisms that use Web traffic to get through 
firewalls can be classified as anonymous. 

In order to use an anonymous approach, end 
applications must be changed, and sometimes third-
party agents that help the end applications to get 
through firewall must be installed outside or inside the 
network. Since end application and agents are not 
visible from firewalls, 2 this class can be easily 
deployed. These approaches are considered cheating,

  

however, and many administrators will try to prevent 
them. Firewall companies are also developing features 

                                                

 

2 Traversal systems in anonymous approaches generally need 
to know the fact that one or more firewalls exist in the 
communication path. 



to defeat anonymous approaches. Thus, these systems 
may become less deployable over time. This class also 
has the undesirable security property that attackers 
and/or dissident employees can deceive firewalls by 
using the tricks that systems in this class invented. 
Therefore, this class is analyzed as highly deployable 
at initial time but gradually less deployable over time.  

Nevertheless, systems in this class support unique 
use cases and are useful when communicating parties 
do not have a control on a firewall in the path. For 
example, many cable access providers use NAT in 
front of their entire access network. The end user will 
probably not have a control relationship with the NAT 
[9].  Any other class can support this kind of use case. 
It is unlikely that every firewall may become securely 
detectable and controllable in the near future. 
Therefore, we still need to invent systems of this class 
that invite as few attackers as possible. GCB is a good 
example that satisfies this property because it uses the 
fact that outbound connections are inherently more 
secure than incoming ones and because only (dissident) 
insiders (but not attackers outside the network) can use 
the idea to bypass their firewalls. 

2.3 Cooperative control 
Systems in the on-demand opening class and relay-

based systems each are classified as cooperative 
approaches because communications into and/or out of 
a network are controlled by the cooperation between 
the firewall of the network and one or more agents. An 
agent can be in the form of a part of the firewall, a 
daemon process running apart from applications and 
the device, a library linked with applications, or a 
combination of the above. 

2.3.1 On-demand opening 
The basic idea of the on-demand opening category 

is that a firewall and agents establish a trust 
relationship and the device opens pinholes at the 
agents

 

request. Figure 1 shows a typical topology of 
systems in this category. A firewall has one or more 
trusted agents. An agent dynamically controls the 
firewall on behalf of applications. Once a pinhole is 
created at the firewall, the designated applications 
communicate through it. Agents must understand the 
applications intentions to be able to know when 
pinholes must be created or closed. One common 
approach is to investigate the applications payload. 
Another approach is to have applications explicitly ask 
for the creation or deletion of pinholes to agents. Of 
course, an appropriate security mechanism must be 
used by the agent before it decides to open holes for 
applications.   

ALG (Application Level Gateway), DPF (Dynamic 
Port Forwarding) [7], MIDCOM (Middlebox 
Communication) [11], RSIP3 (Realm Specific IP) [12, 
13], UPnP (Universal Plug and Play) [14], and CODO 
may be classified as on-demand opening 
methodologies. 

Since agents effectively control the firewall, 
systems in this category must be deployed by the 
administrator rather than the application service 
providers or end users. This requirement may limit the 
deployability of the systems in this class. Another 
barrier to deployment is that the firewall must provide 
well-defined interfaces so that agents can ask for, by 
using those interfaces, the creation, deletion, list, and 
query of pinholes. 

The security of the systems in this class is 
determined mainly by how narrowly pinholes are 
opened. All previous systems create a pinhole with the 
address of either the client or the server. Pinholes 
created by those systems are wider than those created 
based on both the client s and the server s addresses. 
Full cone NATs [9] are considered less secure than 
symmetric NATs for the same reason. On the other 
hand, CODO allows agents to create pinholes for 
designated (client, server) pair so that other clients may 
not talk to the server through the hole. Another 
important factor is the security model being used by a 
firewall to trust agents and by the agent to 
authenticate/authorize application's request for opening. 
One common security problem of the class is that any 
client or server can exploit, with address spoofing, the 
pinholes made for an authentic client and/or server. If 
this is considered a security problem, then 
organizations must consider using relay-based 
mechanisms (explained in the next section). 

                                                

 

3 We assume that RSIP creates pinholes as a part of address 
leasing. 
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Figure 1: Topology of on-demand opening 
systems 



Once pinholes are created, data communication 
occurs through those holes. Since agents do not need to 
participate in the data communication, there may be no 
extra overhead for data communication, thus making 
mechanisms in this class efficient. 

2.3.2 Relay-based approaches 
In a relay-based system, a firewall trusts one or 

more routers or relaying agents and allows 
communications from and/or toward them. Data 
communication as well as connection setup is relayed 
by those agents. Since firewalls bypass (part of) 
security checking for packets to/from agents, they must 
filter packets on behalf of the devices, usually via 
authentication/authorization. Thus we may assume that 
firewalls delegate some or all of security checking to 
those agents. SOCKS [15], tunneling technologies, and 
overlay routing such as WS-Routing [16] can be 
classified in this category. Figure 2 shows a typical 
topology of systems in this category.    

We note that an approach is not classified as relay-
based simply because it uses relaying agents to traverse 
firewalls. GCB and TURN, for example, are not 
classified as relay-based mechanisms, although their 
agents do relay traffic. They exploit the fact that most 
organizations allow outbound connections, rather than 
cooperating with firewalls. The same argument can be 
applied to overlay routing mechanisms. If a WS-
routing system, for example, uses the fact that Web 
traffic is allowed by most firewalls, then it should be 
considered as an anonymous approach. 

Relay-based approaches can avoid the IP spoofing 
problems of the on-demand opening class. If a network 
is configured so that its firewall may not be deceived 
by IP spoofing with the addresses of the relaying 
agents of the network 4 and the agents use strong 

                                                

 

4 For example, if agents are attached to the firewall via a 
separate network interface, the network guarantees that no 

security mechanisms, only intended client, server, or 
next hop agents can communicate over the firewall. 
Attackers may be able to send packets (with IP 
spoofing) to an agent, but they will not be passed to 
internal nodes or next hop agents because they will fail 
security checking by the agent. 

Like the on-demand opening class, relay-based 
systems must be deployed by the firewall administrator. 
The deployment is easier than for the on-demand 
opening class, however, because the firewall does not 
have to provide well-defined interfaces for dynamic 
control of it. Using the ad hoc mechanism of the 
firewall at hand, administrators need only add a few 
rules so that communications to/from the agents may 
be allowed. 

With a system in this class, however, not only the 
connection setup but also all data communications 
must be relayed via agents. Hence, the performance of 
these approaches is expected to be slow. Also, there 
exists the possibility that many features such as 
reliability and flow control, which underlying network 
already provides, must be implemented again at higher 
layers. These duplicated functionalities may make 
those systems even slower, as well as requiring 
significant duplicated effort. 

2.4 Summary 
This section categorizes firewall traversal systems 

and analyzes each category. Manual opening should 
not be used, if possible, because the approach is 
insecure and hence nullifies the effect of having 
firewalls. Anonymous approaches also are insecure and 
degrade deployability; however, they support unique 
environments that no other systems can support. On-
demand opening can be implemented very securely and 
efficiently; however, it supports only a limited 
environment that allows dynamic control of firewalls. 
Relay-based opening supports more environments than 
does on-demand opening and can be implemented most 
securely; however, it tends to be heavyweight and slow. 

The most important message of this section is that 
no single system can satisfy everybody with diverse 
environments and different criteria. 

3. Cooperative On-Demand Opening 
CODO is a firewall traversal system in the on-

demand opening class. It is intended to be a major 
component of the integrated system that will allow 
peers to choose one mechanism, through a negotiation, 
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Figure 2: Topology of relay-based systems

 



from a list of mechanisms possibly in different 
categories. 

CODO can control outbound as well as inbound 
connections. In CODO, connections into or out of a 
network are enabled through the cooperation of a 
firewall, a FA (firewall agent), and a CL (client library) 
linked with applications. Figure 3 shows a typical 
CODO topology.  

The FA installed on the headnode of a network 
dynamically creates and closes pinholes at the firewall 
for CODO applications that want to communicate with 
the world. Through secure channels, the CL interacts 
with the FA by exchanging CODO commands on 
behalf of the application. The application uses CODO 
services by calling well-defined CODO functions that 
the CL provides. Since the CL provides well-defined 
APIs, applications can easily be made CODO-aware. 

When a server running behind a firewall creates a 
socket, the information about the server socket is 
registered to the FA of the network. If a client wants to 
connect to the server, its CL contacts the FA and asks 
for permission to come in the network. The FA then 
creates a pinhole so that a connection can be made 
from the client to the server. When the pinhole is not 
needed anymore, either the client s or the server s CL 
notifies the FA so that it may close the hole. If the 
client is also behind a CODO-enabled firewall that 
does not allow outbound connections, then its CL 
contacts the FA of the client network to get permission 
to go out, before it contacts the server s FA. 

CODO is one of the most secure systems in the on-
demand opening category because pinholes are made 
just for the (client, server) address pair and they are 
kept open just for as long as necessary. How CODO 
achieves this goal is explained in the following 
sections. 

3.1 Connection procedure 
We describe here how a connection is established 

by using CODO. 

3.1.1 Server binding 

In order to be able to accept connections from 
outside, server sockets behind a firewall must be 
locally bound, registered to the FA of its network, and 
officially bound.  

Local binding is nothing new. Just as with regular 
binding, a socket is bound to an address. Through the 
local binding, an (IP, port) pair, called the local address, 
is assigned to the socket. 

Since inbound connections are arranged by the FA 
of the network, enough information about a server 
socket must be kept in the FA. This is done by a 
process called registration. After a server socket is 
bound to a local address, the server s CL sends a 
registration request with the local address and the type 
of the socket. After authentication/authorization and 
the official bind (explained shortly), the FA records the 
information sent by the CL and other information that 
it collects from the official binding process. 

Official binding is the process of assigning the 
official address to a server socket. To explain what an 
official address is, we need to explain address leasing, 
first. This is a major idea of NATs. Because a private 
address is not routable in the public network and may 
be used by multiple endpoints, a NAT device rents a 
public address (or a set of public addresses) to a socket 
(a host) and dynamically translates between the 
socket s real address and the leased public address as 
packets flow. As a result, a socket behind a NAT has 
two addresses: one for intratraffic and the other for 
traffic outside the network. Note that we call the real 
address the local address in this paper. Since the 
Berkeley socket API allows only one address per 
socket, the local address is known to the owner 
application that creates and binds the socket, while the 
leased address is known to the peer. 

If a server binds a socket to a dynamic address, it 
has to pass the address of the socket to a client through 
an out-of-band mechanism. Therefore, what address is 
known to the owner is important for the connection 
setup. We define the address of a socket that is known 
to the owner application as the official address of the 
socket. 

When an FA receives a registration request with a 
private local address, it finds a public address and rents 
the address to the server socket. This leased address 
becomes the official address of the socket. Of course, if 
the local address is public, then the local address 
becomes the official address without address leasing. 
As a successful response to the registration request, the 
FA sends the official address to the CL of the server 
application. 

When an application asks the address that a CODO 
socket is bound to, the CL returns with the official 
address instead of the local (real) address. Thus, the 
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Figure 3: CODO topology 



local address of a CODO socket is hidden from the 
application. CODO requires that applications not call 
the binding function with a private IP address. If an 
application calls the function with a private IP address, 
then it already knows that the socket is bound to that IP. 
Therefore, the IP part of the official address is 
automatically decided by the application, and CODO 
does not have any freedom to assign a public address. 
In this case, CODO assumes that the application does 
not want to accept connections from clients outside the 
network. Yet, applications can call the binding function 
with a specific port number because CODO assigns an 
official address with the same port number, if 
requested by the application. 

3.1.2 Connection arrangement 
This section explains how CODO connections are 

actually made. As an example, we use a TCP 
connection from a client to a server. The client s 
network does not allow outbound connections and the 
server s network does not allow inbound connections 
from the client s network. The setting is shown in 
Figure 4. Note that this is the most complex and 
hardest situation. It is obvious which may be bypassed 
for simpler settings. (UDP connections will be 
explained in Section 3.1.3.)  

We assume that the FA of the server s network has 
the information about the server socket through the 
binding process described in Section 3.1.1. We also 
assume that the client knows the official address of the 
server socket via an out-of-band mechanism. For 
example, RTP (Real-time Transport Protocol) [17] 
addresses for media stream can be passed, using SDP 
(Session Description Protocol) [18] messages, as a part 
of a SIP (Session Initiation Protocol) [19] session 
establishment. A connection is established through the 
following steps: 
(1) The client s CL discovers the connection 

information such as whether a direct connection is 
possible to the server, what FA must be contacted 
if direct connection is impossible, and whether 
outbound connections are allowed. 

(2) If outbound is not allowed, the client s CL 
contacts its FA and asks for permission to contact 
the server's FA. 

(3) The FA of the client network creates a pinhole for 
the address pair (client, server's FA). 

(4) The client s CL contacts the server's FA and asks 
for inbound connection to the server. The CL 
sends client s address with the request. 

(5) The server s FA creates a pinhole for (client, 
server) address pair and replies with the address 
that the client can directly send packets to. One 
little complication occurs when the client is behind 
a NAT. In this case, the client s CL reserves a 
NAT binding and asks for an opening for the 
address pair (NAT binding, server). 

(6) The client s CL contacts its FA again and asks for 
outbound permission toward the address that the 
server's FA replied. 

(7) The client s FA creates a pinhole for the address 
pair in the request. 

(8) The client and the server communicate through 
pinholes created. 

How the CL discovers the connection information 
in Step 1 is an important issue. 5 In the current 
implementation of CODO, each node has a table that 
must be manually configured. Obviously this solution 
is not scalable, although the table should not be very 
big because we can have one entry per a network. A 
registry-based mechanism would be a better solution. 
However, the connection information must be 
determined based not only on the server s address but 
also on the client s address because, given a server, 
different FAs and policies may have to be used for 
different clients in different networks. Therefore, the 
registry may become very big and tend to change 
relatively often. Managing the registry to a reasonable 
size and distributing its entries among nodes is an open 
question and requires further research. 

Connection establishment within a private network 
also needs help from CODO agents. A client within the 
same private network as a server cannot make a direct 
connection with the official address of the server. In 
this case, the client s CL asks the FA of the network 
for the server s local address and then makes a direct 
connection to it. No pinholes are made for 
intraconnections. 

3.1.3 UDP connections 
Although there is no connection setup in UDP 

communications, we can loosely define a UDP session 

                                                

 

5 Actually this is not a CODO-specific issue. Any firewall 
traversal mechanism must answer this question. 
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as a set of UDP messages that are allowed or rejected 
as a whole by stateful firewalls. More precisely, it is a 
series of UDP messages from a client to a server such 
that each message passes a firewall before a predefined 
timeout from the previous one. 

In order to support UDP sessions over firewalls, a 
CL maintains a mapping table. Each entry in the table 
maps the official address, addr1, of a peer to a real 
address, addr2. An entry (addr1, addr2) means that 
UDP messages addressed to addr1 by the application 
must be sent to addr2. When the application wants to 
send a UDP message to an address, the CL searches the 
mapping table for the address. If an entry is found, then 
it refreshes the timeout value of the entry and sends the 
packet to the mapped address. Otherwise, a procedure 
similar to the TCP cases in Section 3.1.2 is performed. 
If the procedure succeeds, then the sender s CL sends 
the message to the address that the receiver s FA 
returned and then creates an entry with the official and 
the real addresses. Entries not referred to for a while 
are deleted.  

3.1.4 Promiscuous mode 
CODO opens pinholes in a very secure way such 

that packets only between a designated sender and 
receiver can get through firewalls. To do this, it 
requires a fair number of interactions between CLs and 
FAs. Another drawback of CODO is that it requires 
that both the client and the server be able to speak the 
CODO protocol. This requirement may result in 
server s being unable to communicate with legacy 
clients that cannot become CODO-aware.  

In order to address this issue, an FA can operate in 
a less secure promiscuous mode. In this mode, the FA 
creates a pinhole as part of the server binding process. 
Since the client s address is not available at the binding 
time, the pinhole is made solely based on the server s 
address, allowing any client to get. Therefore, clients 
need not use the CODO mechanism to connect to the 
server. Clients that do use CODO mechanisms still can 
connect to a server by contacting an FA in the 
promiscuous mode. CODO in the promiscuous mode is 
similar to DPF, RSIP, and UPnP. 

3.2 Fault tolerance 
Successful connection depends on the reliability of 

FAs. Nevertheless, applications should continue to 
work with a limited ability in the event of FA failure. 
During FA downtime, CLs operate as if those FAs do 
not exist. For example, if a server s CL cannot contact 
the local FA at binding time, it degrades the socket as a 
regular one and bypasses all CODO mechanisms. If a 
client s CL cannot contact the server s FA, it tries a 
direct connection to the server. 

If an FA recovers from its failure, applications that 
were affected by the failure should switch to full 
functional mode. To achieve this goal, we design FAs 
to maintain soft states so that they can recover their 
states by receiving socket information from server CLs. 
The CL periodically tries to contact the failed local 
agent. If successful, it sends the current state of sockets 
to recover the FA s state and upgrades the sockets to 
CODO sockets by doing whatever it would have done 
if the FA had not failed.  

Pinholes created by an FA survive at the firewall 
over the failure and recovery of the FA. Some pinholes 
may become unnecessary during the downtime of the 
FA because, for example, a socket for which a pinhole 
was created is closed while it is down. These leftover 
openings should be deleted for security. If firewalls 
supported timeout on pinholes, then the process would 
be easier because leftover pinholes would be deleted 
after timeout. Unfortunately, the firewalls we targeted 
do not support this feature. 

For garbage collection of leftover openings, each 
FA records a snapshot of holes that it is in charge of in 
a persistent place and, when it recovers from a failure, 
it deletes all pinholes recorded. Certainly this blind 
flush will delete necessary rules as well. The necessary 
rules are recreated as a part of state recovery when 
server CLs send socket information they own. 

3.3 Implementation 
CL is implemented as a library and as a layer 

between the application and the kernel, as depicted in 
Figure 5. Applications use CODO socket calls to create 
a CODO socket, bind it to an address, connect to a 
server, accept a connection from a client, and so forth. 
The CL provides some file system calls so that 
applications may duplicate socket descriptors, make a 
socket non-block, and multiplex multiple file 
descriptors, including CODO sockets. The CL also has 
a few functions for process control, such as 
CODO_fork and CODO_execve. These are mainly for 
inheriting open sockets to child processes. All CODO 
calls have the same APIs as their regular counterpart. 
This strategy is intended to facilitate application 
programming and enable dynamically linked 
applications to use CODO without rewriting. 

FA is implemented as a daemon running on a 
firewall machine. It uses Linux netfilter API to create, 
delete, and list pinholes. Although CODO currently 
supports only firewalls based on the Linux netfilter, it 
interacts with firewalls through an abstraction layer 
that defines necessary firewall functions to 
dynamically control it. Therefore, any firewall with 
those functions can be easily supported.  



 

For authentication and secure communication 
between CLs and FAs, we designed a variant of 
SSL/TLS [20]. One reason for our modification was so 
that bidirectional authentications can be done with 
fewer message exchanges than SSL/TLS. More 
important, we wanted to enable CODO to return to the 
application a secure channel. Hence, we needed a 
security system that can do authentication and 
integrity/encryption for UDP communications in the 
face of possible reordering and losing of messages. 

4. Deployment 
CODO is selfish deployable. Each organization can 

independently decide whether to use CODO 
mechanisms. Moreover, each organization can 
determine the security level to apply for authentication 
and authorization and can decide the level of control 
(e.g., whether outbound connections are controlled or 
allowed). No global or bilateral agreement among 
communicating organizations is required. 

CODO is also application-by-application 
deployable. Organizations can deploy it only to 
necessary and proven applications. The selfish and 
application-by-application deployable nature of CODO 
makes it easy to deploy gradually. 

5. Security considerations 
To analyze how CODO affects the security of 

organizations using firewalls, we need to consider for 
what purposes such organizations use firewalls and 
which of these are impacted by CODO. 

 

IPv4 address shortage and easy network 
management 

One of the most important reasons for using NAT is 
that IPv4 addresses are being sold out. Another reason 
may be easy address planning and network 
management. Obviously CODO has no adversary 
effect on this goal. In the light of this goal, connections 

being blocked are a side-effect. CODO removes this 
undesirable side-effect. 

 
Address concealment 

A private network is considered secure at some level 
because the addresses of hosts are hidden from outside. 
In CODO, private addresses are still hidden from the 
public network. 

 
Inbound connections 

Organizations block inbound connections for many 
reasons. We believe that the followings are major ones. 
1. Unprepared servers can be protected from attacks. 

Unlike clients, servers are generally wide open to 
any client. Many legacy servers are not well 
prepared for attacks. By blocking inbound 
connections, those servers are protected from attacks 
launched outside the network. 
CODO makes servers accessible from outside and 
may introduce security problems. However, two 
contending interests operate here. One is to protect 
nodes from attacks by closing the door, and the other 
is to collaborate with the world by opening the door. 
If an organization can totally sacrifice one for the 
other, the solution is easy. In most cases, however, 
one goal must be achieved with the other sacrificed 
as little as possible. 
CODO is a near-optimum solution to this problem. 
CODO opens a firewall only when there is an 
authenticated client and server pair. CODO also 
opens holes as narrow as possible. 

2. Management can keep employees from running 
undesirable services. 
By blocking inbound connections to arbitrary 
addresses, an organization can keep members from 
running undesirable or insecure services. Since 
CODO uses a strong security mechanism, only 
authorized services can register server sockets to 
their FAs and therefore accept connections from 
outside of their networks. 

 

Outbound connections 
Outbound connections are blocked, although not as 
often as inbound cases are, for similar reasons. Since 
CODO allows outbound connections only from 
authenticated clients, organizations can achieve the 
same level of control and security. 

 

Third-party security 
Firewalls provide chokepoints of traffic so that other 
protection systems such as anti-virus, logging, and IDS 
(Intrusion Detection System) can easily be placed. 
CODO does not change the flow of traffic and, thus, 
has no effect on this goal. 
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Figure 5: CL implementation 



6. Performance measurement 
We used two private networks behind Linux NAT 

boxes. One network has 24 nodes connected to the 
NAT and each other via 100M Ethernet. The other 
network has two nodes connected via 10M Ethernet. 
The two networks are connected via department 
network. Neither inbound nor outbound connections 
are allowed in the networks. 

Using a test suite that we wrote, we measured times 
for socket binding, private-private connection setup 
and data transfer, and intranetwork connection and data 
communication. For data transfer, we measured the 
total amount of time that 100 messages of 1,000 bytes 
long are sent by a client and then echoed back by a 
server. Table 1 shows the results for TCP and Table 2 
for UDP. In order to indicate the overhead of CODO, 
the table also has numbers for regular sockets with 
manual openings. For private-private measurements, 
we used a client in the smaller network and a server in 
the other. For intranetwork communication, we used a 
client and a server both in the bigger network. Each 
test was performed multiple times over several days to 
reduce the effect of network fluctuation. The numbers 
in the tables are all in units of microseconds and 
include times taken for authentication and 
encryption/integrity. We used X.509 (RSA) public key 
for authentication and session keys establishment. 
SHA-1 and 3DES were used for integrity and 
encryption, respectively. 

Table 1: TCP results 
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Table 2: UDP results 
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The tables show that CODO overhead is fairly large 
for both binding and connection setup. However, 
almost no overhead for data communication was 
observed. Considering the security mechanisms used 
and the number of interactions between CODO agents, 
the overhead for binding and connection is not 
surprising.  We profiled CODO operations by running 
instrumented CODO codes. The result showed that 
about 87% of the binding time was spent on security 
handshakes between the CL and FA, and 60% of the 
connection time was spent on security handshakes. 

The testing environment is very restrictive. In real 
settings, one might not use some of the CODO 
mechanisms. For example, most networks allow 
outbound connections. In such cases, private-private 
connections may become a little less efficient than 
intraconnections. If a network trusts insiders, then one 
can skip security mechanisms with the local agent.  

7. Related research 
Many firewall traversal systems have been 

developed. GCB, Gnutella, STUN, and TURN can be 
classified as anonymous systems. All of them basically 
use the fact that most firewalls allow outbound 
connections. GCB is considered the most versatile 
anonymous approach so far. Gnutella does not support 
firewall-to-firewall connections. STUN supports only 
UDP over full cone firewalls. TURN does not support 
the situation in which a server needs to accept 
connections from multiple clients. ALG, DPF, 
MIDCOM, RSIP, and UPnP are on-demand opening 
systems. These systems are as secure and efficient as 
CODO in the promiscuous mode. SOCKS, VPN, and 
overlay routing systems can be classified as relay-
based systems. 

More fundamental approaches to solve connectivity 
problems have been proposed, too. TRIAD [21] and 
IPNL (a NAT-extended Internet architecture) [22] 
propose a new layer between TCP/UDP and IP. They 
provide elegant solutions to NAT traversal, but they 
cannot be used for firewall traversal. 

IPv6 [23] is beginning to be widely deployed. It 
provides enough address space and enables easy 
network management. Thus, it solves most problems 
that NAT tries to solve. However, it is still 
questionable whether IPv6 can replace NAT 
completely. Furthermore, firewalls will certainly exist 
after the full deployment of IPv6. 

8. Conclusion 
This paper categorizes firewall traversal 

mechanisms into four classes and analyzes systems in 
each class based on essential features. The 
categorization may not be perfect, and new approaches 
in the future may require that new classes be added. 
However, the categorization does catch important 
characteristics of (at least) existing systems and 
analyzes important implications. Organizations may 
use the results to choose a traversal system and 
configure their network to use the system securely and 
efficiently. More important, the analysis underscores 
the need for integrated systems. 

This paper also introduces CODO, a firewall 
traversal system. CODO supports firewall traversal 



most securely than do other systems in the on-demand 
opening class. In the promiscuous mode, CODO also 
provides the same security and efficiency as the other 
systems in the on-demand opening class. 

The security implications are discussed in terms of 
the goals of using firewalls that may be broken by 
CODO. We believe that this methodology can be a 
good reference for the security analysis of any firewall 
traversal system. 
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