
CODO: Firewall Traversal by Cooperative On-Demand Opening

Sechang Son,1 Bill Allcock,2 and Miron Livny1

1Computer Science Department, University of Wisconsin
2Mathematics and Computer Science Division, Argonne National Laboratory

sschang@cs.wisc.edu, allcock@mcs.anl.gov, miron@cs.wisc.edu

Abstract

Firewalls and network address translators (NATs)
cause significant connectivity problems together with
their benefits. Many ideas to solve these problems have
been explored both in academia and in industry. Yet,
no single system solves the problem entirely.
Considering diverse and even conflicting use cases and
requirements from organizations, we propose an
integrated approach that provides a suite of
mechanisms and allows communicating peers to
choose the best available mechanism. As an important
step toward the final goal, we categorize previous
efforts and briefly analyze each category in terms of
use cases supported, security impacts, performance,
and so forth. We then introduce a new firewall
traversal system, called CODO, that solves the
connectivity problem more securely than other systems
in its category.

1. Introduction
A network address translator (NAT) [1] provides

easy address planning as well as a solution to the IPv4
address shortage problem. Firewalls play a vital role in
protecting networks and are ready to play an even more
important role as the security headquarters of
integrated security systems that generally include anti-
virus checking, intrusion detection, logging, and
content investigation.

These devices come at a price, however, notably
nonuniversal (and asymmetric) connectivity to the
Internet. Because of impaired network connectivity,
applications written with the assumption of universal
connectivity may not work. In addition, the
development of new software becomes harder, and
design may be inefficient because of the new constraint
of Internet connectivity.

Grid [2], VoIP (Voice over IP), and P2P (Peer-to-
peer) applications may be the areas damaged most by
the connectivity problem because they are generally
bidirectional in communication, interorganizational,
huge in scale, and geographically distributed. Grid
applications may not be able to share resources with
the world, VoIP applications may miss calls, and P2P

applications may be unintentionally free riding [3]
because nodes behind a firewall or NAT cannot
contribute to the file sharing, while they can generally
download files from the world.

One possible solution to this problem is to redesign
the Internet. However, making even a small change to
the Internet is very hard. Blumenthal and Clark [4]
discuss various factors that require reconsideration of
the end-to-end argument [5], one of the most important
design philosophies of the Internet [6]. In their paper,
they state that firewalls and NATs are the major factors
that require change, not only to the Internet edge, but
also to its core. Their statement implies that to solve
the problem, we may need to change the Internet in a
fundamental way. Furthermore, a firewall s multilayer
nature 1 will make an elegant solution difficult even
with a new Internet architecture. Thus, we may have to
concentrate on application layer approaches that
require no change to the Internet. Furthermore, insights
and experiences gained from those approaches may
become a good basis for more fundamental approaches.

Many systems and ideas have been proposed and
studied to solve connectivity problems, but no single
system solves the problem entirely. Each system
supports different types of use cases and has different
characteristics in terms of security, performance, and
so forth, still leaving holes that no system supports. We
claim that this situation is not because those systems
were poorly designed but because organizations use
firewalls and/or NATs for different purposes with
different levels of security, performance, deployability,
scalability requirements, and so on, such that no single
system supports all of them.

Considering the diverse and even conflicting
requirements from different organizations, we need to
have a suite of solutions such that all (major)
functionality is supported by at least one component of
the suite. Each solution ideally supports a partition of
use cases with minimum overlap. We then need to
have an integrated mechanism through which a
solution is chosen for a communication channel

1 Firewall functionality does not fit into any single layer of
the OSI model because it needs to inspect packets from the IP
header to the application payload.

through a negotiation between communicating parties.
This is one of our major research goals.

As an important step toward this goal, this paper
classifies existing and expected solutions based on use
cases supported and analyzes each category in terms of
security, deployability, and performance. Since we
analyzes systems in a class as a whole, we do not
provide any performance data or detailed security
analysis of individual systems. We also introduce
CODO (Cooperative On-Demand Opening), a new
firewall/NAT traversal system that will become a
major component of the integrated system. CODO
enables communications over firewalls or NAT via on-
demand creation/deletion of pinholes at the device.
CODO provides efficient data communication but
requires administrative power to be able to deploy.
CODO s mechanism is the most secure within its class.
It also provides a less secure but more easily
deployable and efficient method of traversal, called the
promiscuous mode.

Section 2 categorizes and analyzes firewall/NAT
traversal approaches. Section 3 explains CODO in
detail. Sections 4 and 5 analyze CODO s deployability
and security, respectively. Section 6 presents
performance data for CODO. Section 7 explains related
research, and Section 8 briefly summarizes our work.

Throughout, we use the term firewall

to refer
both firewalls and NATs. The term NAT

is used to
specifically denote NAT.

2. Categorization of firewall traversal
approaches

This section classifies firewall traversal approaches
based upon the use cases that each class supports. Use
cases are mainly determined by the questions of (1)
what changes must be made to what components in
order to use the system, (2) what security implications
the system has, and (3) how efficient and scalable it is.
The first question in particular plays an important role
because in some situations an individual may not be
able to make required changes to the components for
political or technical reasons. For example, an
employee may not be permitted to use a mechanism
that requires a rule change to the company s firewall
because she does not have administrator privilege on
the device. The other questions are rather obvious.
Efficiency and scalability generally vary from system
to system even within a class. Therefore we discuss
properties that systems in a class have in common.

2.1 Manual opening
Many organizations manually open their firewalls

for a range of addresses for a trusted or well-protected

application. If the application dynamically
creates/closes sockets, then simple changes are made
so that it uses the predefined range of addresses. Since
only a few changes to firewall rules and simple or no
changes to the application are required, this mechanism
is easy to deploy with the administrator s privilege of
the firewall. This mechanism must have little impact
on the performance, if any.

Most applications, especially in Grid, VoIP, and
P2P, dynamically creates/destroys sockets. The number
of addresses being used by an application varies over
time. The number of instances of the application may
vary in some cases. Therefore, it is generally
impossible, given an application, to know a priori what
addresses are needed and how long they must be
opened. Even if we know the exact range of addresses
that must be opened for the application, that range
gives us only the upper limit in most cases; and, for
most of its lifecycle, the application may use fewer
addresses. Therefore, manual opening almost always
results in more addresses opened than the application
actually uses. These extra openings can be exploited to
attack the network. Therefore, no matter how well
prepared for attacks the intended application is, this
mechanism is vulnerable to attacks to the network.
This should not be used unless no other mechanism is
available.

2.2 Anonymous approaches
Systems that fall in the anonymous category exploit

general practices of organizations and require no
interaction with firewalls. Such systems use the fact
that most networks allow, for example, outbound
connections and Web traffic. We call this class of
systems anonymous because firewalls and traversal
systems do not (or need not) know each other. GCB
(Generic Connection Brokering) [7], Gnutella [8],
STUN (Simple Traversal of UDP through NATs) [9],
TURN (Traversal Using Relay NAT) [10], and the
mechanisms that use Web traffic to get through
firewalls can be classified as anonymous.

In order to use an anonymous approach, end
applications must be changed, and sometimes third-
party agents that help the end applications to get
through firewall must be installed outside or inside the
network. Since end application and agents are not
visible from firewalls, 2 this class can be easily
deployed. These approaches are considered cheating,

however, and many administrators will try to prevent
them. Firewall companies are also developing features

2 Traversal systems in anonymous approaches generally need
to know the fact that one or more firewalls exist in the
communication path.

to defeat anonymous approaches. Thus, these systems
may become less deployable over time. This class also
has the undesirable security property that attackers
and/or dissident employees can deceive firewalls by
using the tricks that systems in this class invented.
Therefore, this class is analyzed as highly deployable
at initial time but gradually less deployable over time.

Nevertheless, systems in this class support unique
use cases and are useful when communicating parties
do not have a control on a firewall in the path. For
example, many cable access providers use NAT in
front of their entire access network. The end user will
probably not have a control relationship with the NAT
[9]. Any other class can support this kind of use case.
It is unlikely that every firewall may become securely
detectable and controllable in the near future.
Therefore, we still need to invent systems of this class
that invite as few attackers as possible. GCB is a good
example that satisfies this property because it uses the
fact that outbound connections are inherently more
secure than incoming ones and because only (dissident)
insiders (but not attackers outside the network) can use
the idea to bypass their firewalls.

2.3 Cooperative control
Systems in the on-demand opening class and relay-

based systems each are classified as cooperative
approaches because communications into and/or out of
a network are controlled by the cooperation between
the firewall of the network and one or more agents. An
agent can be in the form of a part of the firewall, a
daemon process running apart from applications and
the device, a library linked with applications, or a
combination of the above.

2.3.1 On-demand opening
The basic idea of the on-demand opening category

is that a firewall and agents establish a trust
relationship and the device opens pinholes at the
agents

request. Figure 1 shows a typical topology of
systems in this category. A firewall has one or more
trusted agents. An agent dynamically controls the
firewall on behalf of applications. Once a pinhole is
created at the firewall, the designated applications
communicate through it. Agents must understand the
applications intentions to be able to know when
pinholes must be created or closed. One common
approach is to investigate the applications payload.
Another approach is to have applications explicitly ask
for the creation or deletion of pinholes to agents. Of
course, an appropriate security mechanism must be
used by the agent before it decides to open holes for
applications.

ALG (Application Level Gateway), DPF (Dynamic
Port Forwarding) [7], MIDCOM (Middlebox
Communication) [11], RSIP3 (Realm Specific IP) [12,
13], UPnP (Universal Plug and Play) [14], and CODO
may be classified as on-demand opening
methodologies.

Since agents effectively control the firewall,
systems in this category must be deployed by the
administrator rather than the application service
providers or end users. This requirement may limit the
deployability of the systems in this class. Another
barrier to deployment is that the firewall must provide
well-defined interfaces so that agents can ask for, by
using those interfaces, the creation, deletion, list, and
query of pinholes.

The security of the systems in this class is
determined mainly by how narrowly pinholes are
opened. All previous systems create a pinhole with the
address of either the client or the server. Pinholes
created by those systems are wider than those created
based on both the client s and the server s addresses.
Full cone NATs [9] are considered less secure than
symmetric NATs for the same reason. On the other
hand, CODO allows agents to create pinholes for
designated (client, server) pair so that other clients may
not talk to the server through the hole. Another
important factor is the security model being used by a
firewall to trust agents and by the agent to
authenticate/authorize application's request for opening.
One common security problem of the class is that any
client or server can exploit, with address spoofing, the
pinholes made for an authentic client and/or server. If
this is considered a security problem, then
organizations must consider using relay-based
mechanisms (explained in the next section).

3 We assume that RSIP creates pinholes as a part of address
leasing.

Firewall

Agent

App

App

App

App

open, close, query
intention intention

Firewall

Agent

AppApp

AppApp

AppApp

AppApp

open, close, query
intention intention

Figure 1: Topology of on-demand opening
systems

Once pinholes are created, data communication
occurs through those holes. Since agents do not need to
participate in the data communication, there may be no
extra overhead for data communication, thus making
mechanisms in this class efficient.

2.3.2 Relay-based approaches
In a relay-based system, a firewall trusts one or

more routers or relaying agents and allows
communications from and/or toward them. Data
communication as well as connection setup is relayed
by those agents. Since firewalls bypass (part of)
security checking for packets to/from agents, they must
filter packets on behalf of the devices, usually via
authentication/authorization. Thus we may assume that
firewalls delegate some or all of security checking to
those agents. SOCKS [15], tunneling technologies, and
overlay routing such as WS-Routing [16] can be
classified in this category. Figure 2 shows a typical
topology of systems in this category.

We note that an approach is not classified as relay-
based simply because it uses relaying agents to traverse
firewalls. GCB and TURN, for example, are not
classified as relay-based mechanisms, although their
agents do relay traffic. They exploit the fact that most
organizations allow outbound connections, rather than
cooperating with firewalls. The same argument can be
applied to overlay routing mechanisms. If a WS-
routing system, for example, uses the fact that Web
traffic is allowed by most firewalls, then it should be
considered as an anonymous approach.

Relay-based approaches can avoid the IP spoofing
problems of the on-demand opening class. If a network
is configured so that its firewall may not be deceived
by IP spoofing with the addresses of the relaying
agents of the network 4 and the agents use strong

4 For example, if agents are attached to the firewall via a
separate network interface, the network guarantees that no

security mechanisms, only intended client, server, or
next hop agents can communicate over the firewall.
Attackers may be able to send packets (with IP
spoofing) to an agent, but they will not be passed to
internal nodes or next hop agents because they will fail
security checking by the agent.

Like the on-demand opening class, relay-based
systems must be deployed by the firewall administrator.
The deployment is easier than for the on-demand
opening class, however, because the firewall does not
have to provide well-defined interfaces for dynamic
control of it. Using the ad hoc mechanism of the
firewall at hand, administrators need only add a few
rules so that communications to/from the agents may
be allowed.

With a system in this class, however, not only the
connection setup but also all data communications
must be relayed via agents. Hence, the performance of
these approaches is expected to be slow. Also, there
exists the possibility that many features such as
reliability and flow control, which underlying network
already provides, must be implemented again at higher
layers. These duplicated functionalities may make
those systems even slower, as well as requiring
significant duplicated effort.

2.4 Summary
This section categorizes firewall traversal systems

and analyzes each category. Manual opening should
not be used, if possible, because the approach is
insecure and hence nullifies the effect of having
firewalls. Anonymous approaches also are insecure and
degrade deployability; however, they support unique
environments that no other systems can support. On-
demand opening can be implemented very securely and
efficiently; however, it supports only a limited
environment that allows dynamic control of firewalls.
Relay-based opening supports more environments than
does on-demand opening and can be implemented most
securely; however, it tends to be heavyweight and slow.

The most important message of this section is that
no single system can satisfy everybody with diverse
environments and different criteria.

3. Cooperative On-Demand Opening
CODO is a firewall traversal system in the on-

demand opening class. It is intended to be a major
component of the integrated system that will allow
peers to choose one mechanism, through a negotiation,

node either inside or outside the network can send packets
with agents addresses to the firewall.

Firewall

Agent

App

App

AppApp

AgentAgent

Agent

Firewall

AgentAgent

AppApp

AppApp

AppAppAppApp

AgentAgentAgentAgent

AgentAgent

Figure 2: Topology of relay-based systems

from a list of mechanisms possibly in different
categories.

CODO can control outbound as well as inbound
connections. In CODO, connections into or out of a
network are enabled through the cooperation of a
firewall, a FA (firewall agent), and a CL (client library)
linked with applications. Figure 3 shows a typical
CODO topology.

The FA installed on the headnode of a network
dynamically creates and closes pinholes at the firewall
for CODO applications that want to communicate with
the world. Through secure channels, the CL interacts
with the FA by exchanging CODO commands on
behalf of the application. The application uses CODO
services by calling well-defined CODO functions that
the CL provides. Since the CL provides well-defined
APIs, applications can easily be made CODO-aware.

When a server running behind a firewall creates a
socket, the information about the server socket is
registered to the FA of the network. If a client wants to
connect to the server, its CL contacts the FA and asks
for permission to come in the network. The FA then
creates a pinhole so that a connection can be made
from the client to the server. When the pinhole is not
needed anymore, either the client s or the server s CL
notifies the FA so that it may close the hole. If the
client is also behind a CODO-enabled firewall that
does not allow outbound connections, then its CL
contacts the FA of the client network to get permission
to go out, before it contacts the server s FA.

CODO is one of the most secure systems in the on-
demand opening category because pinholes are made
just for the (client, server) address pair and they are
kept open just for as long as necessary. How CODO
achieves this goal is explained in the following
sections.

3.1 Connection procedure
We describe here how a connection is established

by using CODO.

3.1.1 Server binding

In order to be able to accept connections from
outside, server sockets behind a firewall must be
locally bound, registered to the FA of its network, and
officially bound.

Local binding is nothing new. Just as with regular
binding, a socket is bound to an address. Through the
local binding, an (IP, port) pair, called the local address,
is assigned to the socket.

Since inbound connections are arranged by the FA
of the network, enough information about a server
socket must be kept in the FA. This is done by a
process called registration. After a server socket is
bound to a local address, the server s CL sends a
registration request with the local address and the type
of the socket. After authentication/authorization and
the official bind (explained shortly), the FA records the
information sent by the CL and other information that
it collects from the official binding process.

Official binding is the process of assigning the
official address to a server socket. To explain what an
official address is, we need to explain address leasing,
first. This is a major idea of NATs. Because a private
address is not routable in the public network and may
be used by multiple endpoints, a NAT device rents a
public address (or a set of public addresses) to a socket
(a host) and dynamically translates between the
socket s real address and the leased public address as
packets flow. As a result, a socket behind a NAT has
two addresses: one for intratraffic and the other for
traffic outside the network. Note that we call the real
address the local address in this paper. Since the
Berkeley socket API allows only one address per
socket, the local address is known to the owner
application that creates and binds the socket, while the
leased address is known to the peer.

If a server binds a socket to a dynamic address, it
has to pass the address of the socket to a client through
an out-of-band mechanism. Therefore, what address is
known to the owner is important for the connection
setup. We define the address of a socket that is known
to the owner application as the official address of the
socket.

When an FA receives a registration request with a
private local address, it finds a public address and rents
the address to the server socket. This leased address
becomes the official address of the socket. Of course, if
the local address is public, then the local address
becomes the official address without address leasing.
As a successful response to the registration request, the
FA sends the official address to the CL of the server
application.

When an application asks the address that a CODO
socket is bound to, the CL returns with the official
address instead of the local (real) address. Thus, the

FA

Server app

CL

Client app

Data
transfer

CODO
commands

CODO
function

Firewall
control

CODO
function

CL
FA

Server app

CL

Client app

Data
transfer

CODO
commands

CODO
function

Firewall
control

CODO
function

CL

Figure 3: CODO topology

local address of a CODO socket is hidden from the
application. CODO requires that applications not call
the binding function with a private IP address. If an
application calls the function with a private IP address,
then it already knows that the socket is bound to that IP.
Therefore, the IP part of the official address is
automatically decided by the application, and CODO
does not have any freedom to assign a public address.
In this case, CODO assumes that the application does
not want to accept connections from clients outside the
network. Yet, applications can call the binding function
with a specific port number because CODO assigns an
official address with the same port number, if
requested by the application.

3.1.2 Connection arrangement
This section explains how CODO connections are

actually made. As an example, we use a TCP
connection from a client to a server. The client s
network does not allow outbound connections and the
server s network does not allow inbound connections
from the client s network. The setting is shown in
Figure 4. Note that this is the most complex and
hardest situation. It is obvious which may be bypassed
for simpler settings. (UDP connections will be
explained in Section 3.1.3.)

We assume that the FA of the server s network has
the information about the server socket through the
binding process described in Section 3.1.1. We also
assume that the client knows the official address of the
server socket via an out-of-band mechanism. For
example, RTP (Real-time Transport Protocol) [17]
addresses for media stream can be passed, using SDP
(Session Description Protocol) [18] messages, as a part
of a SIP (Session Initiation Protocol) [19] session
establishment. A connection is established through the
following steps:
(1) The client s CL discovers the connection

information such as whether a direct connection is
possible to the server, what FA must be contacted
if direct connection is impossible, and whether
outbound connections are allowed.

(2) If outbound is not allowed, the client s CL
contacts its FA and asks for permission to contact
the server's FA.

(3) The FA of the client network creates a pinhole for
the address pair (client, server's FA).

(4) The client s CL contacts the server's FA and asks
for inbound connection to the server. The CL
sends client s address with the request.

(5) The server s FA creates a pinhole for (client,
server) address pair and replies with the address
that the client can directly send packets to. One
little complication occurs when the client is behind
a NAT. In this case, the client s CL reserves a
NAT binding and asks for an opening for the
address pair (NAT binding, server).

(6) The client s CL contacts its FA again and asks for
outbound permission toward the address that the
server's FA replied.

(7) The client s FA creates a pinhole for the address
pair in the request.

(8) The client and the server communicate through
pinholes created.

How the CL discovers the connection information
in Step 1 is an important issue. 5 In the current
implementation of CODO, each node has a table that
must be manually configured. Obviously this solution
is not scalable, although the table should not be very
big because we can have one entry per a network. A
registry-based mechanism would be a better solution.
However, the connection information must be
determined based not only on the server s address but
also on the client s address because, given a server,
different FAs and policies may have to be used for
different clients in different networks. Therefore, the
registry may become very big and tend to change
relatively often. Managing the registry to a reasonable
size and distributing its entries among nodes is an open
question and requires further research.

Connection establishment within a private network
also needs help from CODO agents. A client within the
same private network as a server cannot make a direct
connection with the official address of the server. In
this case, the client s CL asks the FA of the network
for the server s local address and then makes a direct
connection to it. No pinholes are made for
intraconnections.

3.1.3 UDP connections
Although there is no connection setup in UDP

communications, we can loosely define a UDP session

5 Actually this is not a CODO-specific issue. Any firewall
traversal mechanism must answer this question.

Client app

CL

FA
(1) (2)

(3)

FA

(4)
(6)

(7) (5)
Server app

CL

(8)Client app

CL

FA
(1) (2)

(3)

FA

(4)
(6)

(7) (5)
Server app

CL

(8)

Figure 4: Firewall-firewall connection

as a set of UDP messages that are allowed or rejected
as a whole by stateful firewalls. More precisely, it is a
series of UDP messages from a client to a server such
that each message passes a firewall before a predefined
timeout from the previous one.

In order to support UDP sessions over firewalls, a
CL maintains a mapping table. Each entry in the table
maps the official address, addr1, of a peer to a real
address, addr2. An entry (addr1, addr2) means that
UDP messages addressed to addr1 by the application
must be sent to addr2. When the application wants to
send a UDP message to an address, the CL searches the
mapping table for the address. If an entry is found, then
it refreshes the timeout value of the entry and sends the
packet to the mapped address. Otherwise, a procedure
similar to the TCP cases in Section 3.1.2 is performed.
If the procedure succeeds, then the sender s CL sends
the message to the address that the receiver s FA
returned and then creates an entry with the official and
the real addresses. Entries not referred to for a while
are deleted.

3.1.4 Promiscuous mode
CODO opens pinholes in a very secure way such

that packets only between a designated sender and
receiver can get through firewalls. To do this, it
requires a fair number of interactions between CLs and
FAs. Another drawback of CODO is that it requires
that both the client and the server be able to speak the
CODO protocol. This requirement may result in
server s being unable to communicate with legacy
clients that cannot become CODO-aware.

In order to address this issue, an FA can operate in
a less secure promiscuous mode. In this mode, the FA
creates a pinhole as part of the server binding process.
Since the client s address is not available at the binding
time, the pinhole is made solely based on the server s
address, allowing any client to get. Therefore, clients
need not use the CODO mechanism to connect to the
server. Clients that do use CODO mechanisms still can
connect to a server by contacting an FA in the
promiscuous mode. CODO in the promiscuous mode is
similar to DPF, RSIP, and UPnP.

3.2 Fault tolerance
Successful connection depends on the reliability of

FAs. Nevertheless, applications should continue to
work with a limited ability in the event of FA failure.
During FA downtime, CLs operate as if those FAs do
not exist. For example, if a server s CL cannot contact
the local FA at binding time, it degrades the socket as a
regular one and bypasses all CODO mechanisms. If a
client s CL cannot contact the server s FA, it tries a
direct connection to the server.

If an FA recovers from its failure, applications that
were affected by the failure should switch to full
functional mode. To achieve this goal, we design FAs
to maintain soft states so that they can recover their
states by receiving socket information from server CLs.
The CL periodically tries to contact the failed local
agent. If successful, it sends the current state of sockets
to recover the FA s state and upgrades the sockets to
CODO sockets by doing whatever it would have done
if the FA had not failed.

Pinholes created by an FA survive at the firewall
over the failure and recovery of the FA. Some pinholes
may become unnecessary during the downtime of the
FA because, for example, a socket for which a pinhole
was created is closed while it is down. These leftover
openings should be deleted for security. If firewalls
supported timeout on pinholes, then the process would
be easier because leftover pinholes would be deleted
after timeout. Unfortunately, the firewalls we targeted
do not support this feature.

For garbage collection of leftover openings, each
FA records a snapshot of holes that it is in charge of in
a persistent place and, when it recovers from a failure,
it deletes all pinholes recorded. Certainly this blind
flush will delete necessary rules as well. The necessary
rules are recreated as a part of state recovery when
server CLs send socket information they own.

3.3 Implementation
CL is implemented as a library and as a layer

between the application and the kernel, as depicted in
Figure 5. Applications use CODO socket calls to create
a CODO socket, bind it to an address, connect to a
server, accept a connection from a client, and so forth.
The CL provides some file system calls so that
applications may duplicate socket descriptors, make a
socket non-block, and multiplex multiple file
descriptors, including CODO sockets. The CL also has
a few functions for process control, such as
CODO_fork and CODO_execve. These are mainly for
inheriting open sockets to child processes. All CODO
calls have the same APIs as their regular counterpart.
This strategy is intended to facilitate application
programming and enable dynamically linked
applications to use CODO without rewriting.

FA is implemented as a daemon running on a
firewall machine. It uses Linux netfilter API to create,
delete, and list pinholes. Although CODO currently
supports only firewalls based on the Linux netfilter, it
interacts with firewalls through an abstraction layer
that defines necessary firewall functions to
dynamically control it. Therefore, any firewall with
those functions can be easily supported.

For authentication and secure communication
between CLs and FAs, we designed a variant of
SSL/TLS [20]. One reason for our modification was so
that bidirectional authentications can be done with
fewer message exchanges than SSL/TLS. More
important, we wanted to enable CODO to return to the
application a secure channel. Hence, we needed a
security system that can do authentication and
integrity/encryption for UDP communications in the
face of possible reordering and losing of messages.

4. Deployment
CODO is selfish deployable. Each organization can

independently decide whether to use CODO
mechanisms. Moreover, each organization can
determine the security level to apply for authentication
and authorization and can decide the level of control
(e.g., whether outbound connections are controlled or
allowed). No global or bilateral agreement among
communicating organizations is required.

CODO is also application-by-application
deployable. Organizations can deploy it only to
necessary and proven applications. The selfish and
application-by-application deployable nature of CODO
makes it easy to deploy gradually.

5. Security considerations
To analyze how CODO affects the security of

organizations using firewalls, we need to consider for
what purposes such organizations use firewalls and
which of these are impacted by CODO.

IPv4 address shortage and easy network
management

One of the most important reasons for using NAT is
that IPv4 addresses are being sold out. Another reason
may be easy address planning and network
management. Obviously CODO has no adversary
effect on this goal. In the light of this goal, connections

being blocked are a side-effect. CODO removes this
undesirable side-effect.

Address concealment

A private network is considered secure at some level
because the addresses of hosts are hidden from outside.
In CODO, private addresses are still hidden from the
public network.

Inbound connections

Organizations block inbound connections for many
reasons. We believe that the followings are major ones.
1. Unprepared servers can be protected from attacks.

Unlike clients, servers are generally wide open to
any client. Many legacy servers are not well
prepared for attacks. By blocking inbound
connections, those servers are protected from attacks
launched outside the network.
CODO makes servers accessible from outside and
may introduce security problems. However, two
contending interests operate here. One is to protect
nodes from attacks by closing the door, and the other
is to collaborate with the world by opening the door.
If an organization can totally sacrifice one for the
other, the solution is easy. In most cases, however,
one goal must be achieved with the other sacrificed
as little as possible.
CODO is a near-optimum solution to this problem.
CODO opens a firewall only when there is an
authenticated client and server pair. CODO also
opens holes as narrow as possible.

2. Management can keep employees from running
undesirable services.
By blocking inbound connections to arbitrary
addresses, an organization can keep members from
running undesirable or insecure services. Since
CODO uses a strong security mechanism, only
authorized services can register server sockets to
their FAs and therefore accept connections from
outside of their networks.

Outbound connections
Outbound connections are blocked, although not as
often as inbound cases are, for similar reasons. Since
CODO allows outbound connections only from
authenticated clients, organizations can achieve the
same level of control and security.

Third-party security
Firewalls provide chokepoints of traffic so that other
protection systems such as anti-virus, logging, and IDS
(Intrusion Detection System) can easily be placed.
CODO does not change the flow of traffic and, thus,
has no effect on this goal.

Application

Kernel

CL
socket
calls

FS
calls

Process
control

CODO calls

regular
socket,
FS calls

other
system
calls

Application

Kernel

CL
socket
calls

FS
calls

Process
control

CODO calls

regular
socket,
FS calls

other
system
calls

Figure 5: CL implementation

6. Performance measurement
We used two private networks behind Linux NAT

boxes. One network has 24 nodes connected to the
NAT and each other via 100M Ethernet. The other
network has two nodes connected via 10M Ethernet.
The two networks are connected via department
network. Neither inbound nor outbound connections
are allowed in the networks.

Using a test suite that we wrote, we measured times
for socket binding, private-private connection setup
and data transfer, and intranetwork connection and data
communication. For data transfer, we measured the
total amount of time that 100 messages of 1,000 bytes
long are sent by a client and then echoed back by a
server. Table 1 shows the results for TCP and Table 2
for UDP. In order to indicate the overhead of CODO,
the table also has numbers for regular sockets with
manual openings. For private-private measurements,
we used a client in the smaller network and a server in
the other. For intranetwork communication, we used a
client and a server both in the bigger network. Each
test was performed multiple times over several days to
reduce the effect of network fluctuation. The numbers
in the tables are all in units of microseconds and
include times taken for authentication and
encryption/integrity. We used X.509 (RSA) public key
for authentication and session keys establishment.
SHA-1 and 3DES were used for integrity and
encryption, respectively.

Table 1: TCP results

Inter Intra

Bind Conn

Data Conn

Data
CODO

48720

63433

1957 12426

541
Reg. 16 833 2015 243 503

Table 2: UDP results

Inter Intra

Bind Conn

Data Conn

Data
CODO

48854

63972

2030 12371

608
Reg. 8 8 2025 14 500

The tables show that CODO overhead is fairly large
for both binding and connection setup. However,
almost no overhead for data communication was
observed. Considering the security mechanisms used
and the number of interactions between CODO agents,
the overhead for binding and connection is not
surprising. We profiled CODO operations by running
instrumented CODO codes. The result showed that
about 87% of the binding time was spent on security
handshakes between the CL and FA, and 60% of the
connection time was spent on security handshakes.

The testing environment is very restrictive. In real
settings, one might not use some of the CODO
mechanisms. For example, most networks allow
outbound connections. In such cases, private-private
connections may become a little less efficient than
intraconnections. If a network trusts insiders, then one
can skip security mechanisms with the local agent.

7. Related research
Many firewall traversal systems have been

developed. GCB, Gnutella, STUN, and TURN can be
classified as anonymous systems. All of them basically
use the fact that most firewalls allow outbound
connections. GCB is considered the most versatile
anonymous approach so far. Gnutella does not support
firewall-to-firewall connections. STUN supports only
UDP over full cone firewalls. TURN does not support
the situation in which a server needs to accept
connections from multiple clients. ALG, DPF,
MIDCOM, RSIP, and UPnP are on-demand opening
systems. These systems are as secure and efficient as
CODO in the promiscuous mode. SOCKS, VPN, and
overlay routing systems can be classified as relay-
based systems.

More fundamental approaches to solve connectivity
problems have been proposed, too. TRIAD [21] and
IPNL (a NAT-extended Internet architecture) [22]
propose a new layer between TCP/UDP and IP. They
provide elegant solutions to NAT traversal, but they
cannot be used for firewall traversal.

IPv6 [23] is beginning to be widely deployed. It
provides enough address space and enables easy
network management. Thus, it solves most problems
that NAT tries to solve. However, it is still
questionable whether IPv6 can replace NAT
completely. Furthermore, firewalls will certainly exist
after the full deployment of IPv6.

8. Conclusion
This paper categorizes firewall traversal

mechanisms into four classes and analyzes systems in
each class based on essential features. The
categorization may not be perfect, and new approaches
in the future may require that new classes be added.
However, the categorization does catch important
characteristics of (at least) existing systems and
analyzes important implications. Organizations may
use the results to choose a traversal system and
configure their network to use the system securely and
efficiently. More important, the analysis underscores
the need for integrated systems.

This paper also introduces CODO, a firewall
traversal system. CODO supports firewall traversal

most securely than do other systems in the on-demand
opening class. In the promiscuous mode, CODO also
provides the same security and efficiency as the other
systems in the on-demand opening class.

The security implications are discussed in terms of
the goals of using firewalls that may be broken by
CODO. We believe that this methodology can be a
good reference for the security analysis of any firewall
traversal system.

Acknowledgements
This work was supported in part by the

Mathematical, Information, and Computational
Sciences Division subprogram of the Office of
Advanced Scientific Computing Research, Office of
Science, U.S. Department of Energy, under Contract
W-31-109-ENG-38.

References
[1] K. Egevang, P. Francis, The IP Network Address
Translator (NAT),

IETF RFC1631 May 1994.

[2] I. Foster, C Kesselman, S. Tuecke, The Anatomy of
the Grid: Enabling Scalable Virtual Organizations,

Intl.
Journal of Supercomputing Applications 2001.

[3] E. Adar and B. A. Huberman. Free Riding on
Gnutella.

First Monday, 5(10), 2000.

[4] M. S. Blumenthal and D. D. Clark. Rethinking the
design of the Internet: The End-to-End Argument vs. the
Brave New World,

ACM Transactions on Internet
Technology, 1(1), 2001.

[5] J. Salter, D. Reed, D. D. Clark. End-to-End Arguments
in System Design,

ACM Trans. Comput. Sys., 2(4), 1984, pp.
277 288, 1984.

[6] D. D. Clark, The Design Philosophy of the DARPA
Internet Protocols . Proc. of the ACM SIGCOMM'88, in:
ACM Computer Communication Reviews, 18(4), 1988, pp.
106 114.

[7] S. Son,M. Livny, Recovering Internet Symmetry in
Distributed Computing.

Proceedings of the 3rd
International Symposium on Cluster Computing and the Grid,
Tokyo, Japan, May 2003.

[8] The Gnutella Protocol Specification v0.4 Rev. 1.2,
http://www9.limewire.com/developer/gnutella_protocol_0.4.
pdf.

[9] J. Rosenberg, J. Weinberger, C. Huitema, R. Mahy,
STUN

Simple Traversal of User Data Gram (UDP)
Through Network Address Translators (NATs),

IETF RFC
3489, March 2003.

[10] J. Rosenberg, R. Mahy, C. Huitema, Traversal Using
Relay NAT (TURN),

Internet-Draft, July 2004.

[11] P. Srisuresh et al., Middlebox Communication
Architecture and Framework,

IETF RFC 3303, Aug. 2002.

[12] M. S. Borella, G. E. Montenegro, RSIP: Address
Sharing with End-to-End Security,

Special Workshop on

Intelligence at the Network Edge, San Francisco, 2000.

[13] M. Borella, J. Lo, D. Grabelsky, G. Montenegro,
Realm Specific IP: Framework,

IETF RFC 3102, July 2000.

[14] Universal Plug and Play. http://www.upnp.org

[15] M. Leech, M.Ganis, Y. Lee, R. Kuris, D. Koblas, L.
Jones, SOCKS Protocol Version 5,

IETF RFC 1928,

March 1996.

[16] H. F. Nielsen, S. Tahtte, WS-Routing,
http://msdn.microsoft.com/library/default.asp?url=/library/en
-us/dnglobspec/html/ws-routing.asp

[17] H. Schulzrinne, R .Frederick, V. Jacobson, RTP: A
Transport Protocol for Real-Time Applications,

IETF RFC
3550, July 2003.

[18] M. Handley, V. Jacobson, SDP: Session Description
Protocol,

IETF RFC 2327, April 1998.

[19] M. Handley, H. Schulzvinne, E. Schooler, J. Rosenberg,
SIP: Session Initiation Protocol,

IETF RFC 3261, June
2002.

[20] T. Dierks, C. Allen, The TLS Protocol,

IETF RFC
2246, Jan. 1999.

[21] D. R. Cheriton, M. Gritter, TRIAD: A New Next
Generation Internet Architecture,

March 2000. http://www-
dsg.stanford.edu/triad/triad.ps.gz.

[22] P. Francis, R. Gummadi, IPNL: A NAT-Extended
Internet Architecture,

SIGCOMM 01, Aug. 27, 2001.

[23] S. Deering, R. Hinden, Internet Protocol, Version 6
(IPv6) Specification,

IETF RFC 2460, Dec. 1988.

http://www9.limewire.com/developer/gnutella_protocol_0.4
http://www.upnp.org
http://msdn.microsoft.com/library/default.asp?url=/library/en
http://-us/dnglobspec/html/ws-routing.asp
http://dsg.stanford.edu/triad/triad.ps.gz

THIS PAGE NOT TO BE PRINTED WITH THE ARTICLE

The submitted manuscript has been created by the University
of Chicago as Operator of Argonne National Laboratory
("Argonne") under Contract No. W-31-109-ENG-38 with the
U.S. Department of Energy. The U.S. Government retains

for itself, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said article to
reproduce, prepare derivative works, distribute copies to the
public, and perform publicly and display publicly, by or on
behalf of the Government.

