
1

M"#$%"&$#')#* D$,-"./&0 $#) W/2 S/&.$-/, F&)5/6"&78
F9#-%$"#):$%0)#* P/&<"&5)#-/ "< %=/

G:"29, T"":7$%@, MDS4

Jennifer M. Schopf1,4, Mike D’Arcy3, Neill Miller2, Laura Pearlman3, Ian Foster1,2, Carl
Eesselman3

1. Mathematics and Computer Science Div., Argonne National Laboratory
2. Department of Computer Science, The University of Chicago

3. Information Science Institute, University of Southern California
4. UE National eScience Centre

Abstract

The Globus Toolkit’s Monitoring and Discovery System, (MDS) defines and implements
mechanisms for service and resource discovery and monitoring in distributed environments. We
introduce here MDS4, the new monitoring and discovery system component included in Globus
Toolkit version 4. MDS4 is distinguished from previous similar systems by its extensive use of
interfaces and behaviors defined in the new WS-Resource Framework and WS-Notification
specifications, and by its deep integration into essentially every component of the Globus Toolkit.

We describe the MDS4 architecture and the relevant Web Service interfaces and behaviors to
allow users to discover resources and services, monitor resource and service states, receive
updates on current status, and visualize monitoring results. We also describe how MDS4 can be
used to implement large-scale distributed monitoring and distributed systems, and present
preliminary experimental results that provide insights into the performance that can be achieved
via the use of these mechanisms.

1 O./&.$/6

In a Grid environment, the set of resources available for use by a virtual organization can change
frequently V new resources and services (compute servers, file servers) may be added; old ones
may be removed; capacity may be increased or decreased; and basic properties of a resource or
service may change, for example, a data server may be upgraded to one with larger capacity,
different access rates, and different access protocols. Because these systems are so dynamic in
nature, disco&ery V the process of finding suitable resources to perform a task V can be a
significant undertaking. Similarly, *onitoring V the process of observing resources or services to
track their status for purposes such as fixing problems and tracking usage V can be more
complicated in Grids because of the dynamic, distributed nature of these environments.

Typical monitoring and discovery use cases include providing data so that resource brokers can
locate computing elements appropriate for a job, streaming data to an application steering
application so adjustments can be made to a running application, and notifying system
administrators when changes in system load or disk space availability occur in order to identify
possible performance anomalies.

The Globus Toolkit’s solution to these closely related problems is its Monitoring and Discovery
System (MDS): a suite of components for monitoring and discovering Grid resources and
services on Grids [CFF\01]. MDS4, the version recently released as a part of the Globus Toolkit
4 [Foster05], uses standard WSRF interfaces to provide query and subscription interfaces to

2

arbitrarily detailed resource data and a trigger interface that can be configured to take action when
pre-configured conditions are met. The services included in MDS4 acquire their information
through an extensible interface that can be used to query WSRF services for resource property
information, execute a program to acquire data, or interface with third-party monitoring systems

Grid computing resources and services can advertise a large amount of data for many different
use cases. MDS4 was specifically designed to address the needs of a Grid monitoring system V
one that publishes data that is of use by multiple people across multiple administrative domains.
As such, it is not an event handling system, as is NetLogger [GT03], or a cluster monitor in its
own right, as is Ganglia [MCC04], but can interface to more detailed monitoring systems and
archives, and can publish summary data using standard interfaces.

In this paper, we detail MDS4 services, infrastructure, data sources, and its visualization tool. In
Section 3 we then give preliminary performance results.

The principal contributions of this paper are as follows:

!" We show by example how monitoring and discovery capabilities can be integrated into
the design of a distributed computing infrastructure so that any and every resource and
service can be monitored and discovered in a uniform manner.

!" In so doing, we validate the value of primitive interfaces and behaviors defined by the
WSRF and WS-N specifications as a basis for building such systems.

!" We present performance results that provide insights into the performance of our MDS4
implementation of a WSRF/WSN-based monitoring and discovery system, and compare
those results to previous non-WSRF/WSN based systems.

2 MDS4 D/%)$:,

MDS4 builds heavily on capabilities provided by the WSRF and WS-Notification specifications
[FCF\05]; indeed, it can be viewed above all as a use case for those specifications, which define
the mechanisms used to describe information sources, access information via both queries and
subscriptions, and manage information lifetimes.

In the following sections we describe the basics behind the MDS4 implementation, beginning
with the Web Service standards that underpin our approach. Two higher-level services are
described in Section 2.2: an Index Service, which collects and publishes aggregated information
about grid resources, and a Trigger Service, which collects resource information and performs
actions when certain conditions are triggered. These services are built upon a common
infrastructure called the .ggreg/tion 1r/*e2or3, described in Section 2.3, that provides common
interfaces and mechanisms for working with data sources. MDS4 also includes several software
components, called 4nfor*/tion Pro&iders, described in Section 2.4, that are used to collect
information, and a web-based user interface called 7e8M:;, described in Section 0. We
describe a typical MDS4 deployment in Section 2.6.

!"# %eb (er*ices (tandards 2sed 34 M6(7

Grid computing resources and services can advertise a large amount of data for many different
use cases. Our previous experience with a mixed-protocol toolkit made it clear that the best way
to leverage a monitoring infrastructure was to have basic interfaces and monitoring functionality
as part of every service in a standard way. In this way basic monitoring and discovery data would
become part of the core of every service, not an exception to the rule. Based on this experience,

3

several Web Services standards have emerged to address the interfaces for interacting with
service data, including registration, querying, and naming:

!" WS-ResourceProperties [GT04] defines a mechanism by which Web Services can
describe and publish resource properties, or sets of information about a resource.
Resource property types are defined in the service’s WSDL, and the resource properties
themselves can be retrieved, in the form of cML documents, using WS-
ResourceProperties query operations.

!" WS-BaseNotification [GS04] defines a subscription/notification interface for accessing
resource property information.

!" WS-ServiceGroup [MS04] defines a mechanism for grouping related resources and/or
services together as ser&ice groups.

The Index and Trigger services make extensive use of these standards and the mechanisms
defined by them: both use service groups as part of their administrative interface, to keep track of
what information they are to collect. The primary client interfaces to the Index Service are
resource property queries and subscription/notification.

!"! M6(7 (er*ices

The central component in MDS is the Index Service, which collects information about Grid
resources and makes this information available. It is similar to a UDDI registry [UDDI], however
it does not have the static limitations of that approach, and allows the last value for every data
element to be cached in order to improve query performance. The Index Service interacts with
data sources via standard WSRF resource property and subscription/notification interfaces (WS-
ResourceProperties and WS-BaseNotification). Any WSRF-based service can make information
available as resource properties, however the Index Service collects information from
(potentially) many sources and publishes it in one place. Resource properties may be queried by
name or via cPath [cPATH] queries.

Administration of the Index Service is done via service groups (WS-ServiceGroup); service group
entries describe the mechanisms and associated parameters used to collect data and to hold the
collected data itself. This interface and the available data collection mechanisms are described in
Section 2.3.

There may be many Indexes available to a Grid user. Each GT4 container has a default Index
Service that keeps track of resources that have been created within the container. In addition,
sites and virtual organizations often keep track of all the containers, resources, and services that
are available to the site or fO in an Index Service. Users need only know the location of a single
suitable Index Service in order to discover and monitor all of the resources and services that it
indexes.

MDS4 Index Services have a number of features that are sometimes surprising to new users, but
are necessary due to Grid scalability and policy issues:

!" Index Services can be arranged in hierarchies1 but there is no single global Index
that provides information about every resource on the Grid. This is deliberate, as
each virtual organization will have different policies on who can access its resources. No
person in the world is part of every virtual organizationg

!" The presence of a resource in an Index makes no guarantee about the availability of
the resource for users of that Index. An index provides an indication that certain
resources are likely to be useful, but the ultimate decision about whether the resources
can be used is left to direct negotiation between user and resource. A user who has
decided on a particular service to access based on MDS information might still find they

4

are not authorized when they submit a job. This means that MDS does not need to keep
track of policy information (something that is hard to do concisely) and that resources do
not need to reveal their policies publicly.

!" MDS has a soft consistency model. Published information is recent, but not guaranteed
to be the absolute latest. This allows load caused by information updates to be reduced at
the expense of having slightly older information. This delay is not a problem in practice V
for example, it is generally acceptable to know the amount of free disk space on a system
5 minutes ago rather than 2 seconds ago.

!" Each registration into an Index Service is subAect to soft-state lifetime management.
Registrations have expiry times and must be periodically renewed to indicate the
continued existence of the resource. This allows each Index to be self-cleaning, with
outdated entries disappearing automatically when they cease to renew their registrations.

In the most common use case, the Index Server essentially republishes data that was originally
made available by some other service. Currently, however, the Index Server does not collect and
enforce these remote servers’ access control policies. To guard against the risk that an Index
Server will allow broader access than the original publisher of the data intended, we recommend
that the Index Servers be run in one of two modes: a pu8lic inde?, in which all Index data is
collected through anonymous queries and access is granted to everyone, and a person/l inde?, in
which all index data is collected using credentials delegated by an individual and access is
restricted to that same individual.

The M:;-Trigger service, the other higher-level service distributed as part of MDS4, collects
information and compares that data against a set of conditions defined in a configuration file.
When a condition is met, an action takes place, such as emailing a system administrator when the
disk space on a server reaches a threshold. This functionality, inspired by a similar capacity in
Hawkeye [Haw], has proven useful in trouble shooting for projects such as the Earth Science Grid
(ESG) [BBB\05], who used the GT3 version of this service and are in the process of transitioning
to the new software

!"8 9::re:ator <rame>or? Implementation

The MDS-Index and MDS-Trigger service implementations are both specializations of a more
general /ggreg/tor fr/*e2or3, a software framework for building services that collect and
aggregate data. Services built on this framework are sometimes called /ggreg/tor ser&ices. Such
services have three properties in common.

First, they collect information via /ggreg/tor sources. An aggregator source is a Java class that
implements an interface (defined as part of the aggregator framework) to collect cML-formatted
data. MDS4 supports three types of aggregator source. A Buery source uses WS-
ResourceProperty mechanisms to poll a WSRF service for resource property information. A
;u8scription source collects data from a service via WS-Notification subscription/notification.
Finally, an C?ecution source executes an administrator-supplied program to collect information.
Figure 1 summarizes how information flows through the aggregator framework.

5

Figure 1E Information flow through the MDS4 aggregator framework.

Second, aggregator services use a common configuration mechanism to maintain information
about which aggregator sources to use and their associated parameters, which generally specify
what data to get, and from where. The aggregator framework WSDL defines an aggregating WS-
ServiceGroup entry type that holds both configuration information and data. Administrative client
programs use standard WS-ServiceGroup registration mechanisms to register these service group
entries to the Aggregator Service.

Third, aggregator services are self-cleaning V each registration has a lifetime; if a registration
expires without being refreshed, it and its associated data are removed from the server.

!"7 Information Pro*iders

The data that an MDS4 aggregator source publishes into its aggregator service is always obtained
from an external component called an infor*/tion pro&ider. In the case of a Query or
Subscription source, the information provider is a WSRF-compliant service from which data is
obtained via WS-ResourceProperty or WS-Notification mechanisms, respectively. In the case of
an Execution source, the information provider is an executable program that obtains data via
some domain-specific mechanism.

We have implemented seven such information providers in GT4, as summarized in Table 1. For
each provider we give a name, the resource or service for which data is provided, the type of
aggregator source, and the information made available. In all cases the schema is a standard cML
document. For Hawkeye, Ganglia and GRAM, we publish information using the cML mapping
of the GLUE schema [GLUE].

!"E %ebM6(2ser Interface

WebMDS is a web-based interface to WSRF resource property information that can be used as a
user-friendly front-end to the Index Service. WebMDS uses standard resource property requests
to query resource property data and cSLT transforms [cSLT] to format and display them. Web
site administrators can customize their own WebMDS deployments by using HTML form options
and creating their own cSLT transforms.

6

Table 2E Information providers included in GT4.I

Name Info source Source Type Information Provided
Hawkeye Condor pool Execution Basic host data (name, ID), processor

information, memory size, OS name and
version, file system data, processor load data,
and other basic Condor host data.

Ganglia Cluster Execution Basic host data (name, ID), memory size, OS
name and version, file system data, processor
load data, and other basic cluster data.

GRAM GT4 grid resource
allocation and
management
service

Query,
Subscription

Processor information, memory size, queue
information, number of CPUs available and
free, job count information, and some
memory statistics

RFT GT4 reliable file
transfer service

Query,
Subscription

RFT service status data, number of active
transfers, transfer status, information about
the resource running the service

CAS GT4 community
authorization
service

Query,
Subscription

Identifies the fO served by the service
instance

RLS GT4 replica
location service

Execution Location of replicas on physical storage
systems (based on user registrations) for later
queries.

Basic Every GT4 Web
service

Query,
Subscription

ServiceMetaDataInfo element includes start
time, version, and service type name

!"F Puttin: it all to:ether

To describe a typical MDS4 deployment we envision a multi-project fO that consists of 30 sites
(3 representative sites are shown in Figure 2), and a wide set of collaborating applications. These
systems are heterogeneous in nature, and deploy a varied set of software and services.

Working from the local level up, each clustered resource has deployed Ganglia (for common
queued clusters) or Hawkeye (for condor pools) for host-level monitoring and to allow MDS
access to scheduler and cluster information. Specifically, in our summary picture, Site 1 has two
clusters, each with a Ganglia deployment and Site 2 is running Condor and the Hawkeye
monitoring tool. Note also that the two clusters at Site 1 are running different queuing systems
(one has PBS; the other has LSF) this doesn’t make a difference in our MDS deployment. More
information about deploying the Ganglia or Hawkeye information provider to view cluster
information in the Index Service is also available [MDSa].

Each site is also running additional services. Shown in the figure is Site 1 is running an RFT
server and Site 3 is running an RLS server.

7

Each site has also deployed a site-wide Index service (the one for Site 1 is labeled A in Figure 2).
This has all the services and resources at the site registered to it, and will allow each site to view
its local resources, including those provided by Ganglia or Hawkeye [MDSb].

Application B also has an application-specific Index set up (labeled B in Figure 2) which has
registrations for the application specific services, in this case the RFT server at Site 1 and the
RLS server at Site 3. This allows those application users to easily see just those resources and
services specific to that application.

This project has decided on a 3-level tiering for the fO-wide indexes. The first tier is at the site
level, as described. The second tier is an East Coast-West Coast division, where Sites 2 and 3
share a combined West Coast Index running at Site 2 (labeled C in Figure 2). Site 2 also
maintains the fO-wide server running on a resource at Site 2 (labeled D in Figure 2) to which the
Index servers from the other sites have registered as well. This allows anyone from the fO to
view all of the resources available to the full fO [MDSc]. In general this hierarchy can be
arbitrarily deep.

The fO has deployed WebMDS as well (labeled D in Figure 2) so all fO users can view the
current state of the resources and services across the fO [MDSd]. They have also deployed a
Trigger Service (not shown) to alert interested parties about changes in the status of the fO
[MDSe]. The fO operations center uses this to be automatically advised of failures in services.

With this deployment, members of the project can discover needed data from services in order to
make job submission or replica selection decisions by querying the fO-wide Index; evaluate the
status of Grid services by looking at the fO-wide WebMDS setup; be notified when disks are full
or other error conditions happen by being on the list of administrators, part of the Trigger Service
set up. Individual projects can examine just the state of the resources and services of interest to
them, as Application B is doing.

Figure 2. Sample MDS4 deployment. Orange (grey) box is a container, white boxes with a small
outline are resources, white boxes with a thick line stand for sites. The dashed lines are
registrations, and ovals are Indexes.

8

3 MDS4 P/&<"&5)#-/ R/,9:%,

For any new software, some basic performance information is needed to determine its feasibility
for use. In its simplest form, we believe this includes:

1) How long does one response take?
2) How many responses per minute are possible?
3) How long does the service stay up while being used before failing?

For MDS4 the most important service to investigate in terms of performance is the Index Service,
so we began our performance analysis there. These experiments show results for the 3.9.5 version
(beta to the 4.0 release) of MDS4. 1or the fin/l dr/ft of the p/per these e?peri*ents 2ill 8e re-
run using the EFG fin/l codeF

For the following experiments, the testbed consisted of a set of 5 client nodes (ned0Vned4) and
one server node (dc-user2) all located at ISI/USC. Each client node was a dual CPU 1133MHz
Pentium III machine with 1.5GB of RAM. The server node was a dual Intel (hyperthreaded)
ceon running at 2.20GHz with 1GB of RAM. All of these machines are interconnected by
Gigabit Ethernet and are located on the same physical switch. Dedicated access to the client
nodes was obtained for the duration of these tests, however the server was shared during the
experiments, although the monitored load was not substantially high during the testing.

When we ran experiments using 25 clients, we ran 5 processes on each of 5 client machines. For
testing the performance of 100 clients, we ran 20 processes on each of 5 client nodes.

The 'entries' described in these tests are pieces of data that are registered with the Index Service
using the standard mds-servicegroup-add tool included in the GT4 release. Each entry consisted
of all standard pieces of information required for a ServiceGroupEntry (i.e.
ServiceGroupEntryEPR, MemberServiceEPR, Aggregator configuration information), as well as
a small amount of filler data that simulated useful information. A simple script that published
formatted data of a constant size generated the filler data, which was then registered to the Index
Service as a simple Execution Aggregator Source. As the number of entries increased, the size of
the queried data increased. Each entry returned by a single query was approximately 1.9EB
(1850 bytes) in size. Thus, a single query for 100 entries returned approximately 190EB of data
across the network.

All registered entries had an identical configuration in that the scripts were executed by the Index
Service every 10 minutes, thereby regenerating the cached data. Due to the soft state nature of
the registration, the registration itself was also configured to be renewed with the Index Service
every 10 minutes. These values are reasonable defaults for actual data published in a Web
service-based system, although current Grid-level service monitoring seen in other projects are
more on the order of 1 hour, 6 hour, or 24 hour updates for service uptime checks [GITS]
[SOE\04]. The duration of each test lasted well over 10 minutes to ensure that the updates would
occur several times.

For the test results presented, it is important to recognize that we have averaged aggregate data
across all of the involved clients. Not all clients performed equally on any given machine. In the
tests with larger numbers of client processes, it should be noted that the results between clients
varied quite a bit. For example, in one run with 100 client processes for 100 entries, a client on
one machine was obtaining an average query response time of n1000 milliseconds, while another
querying the same index server had an average query response time of n7000 milliseconds. Thus,
the average across all clients is used to indicate an average expected performance.

9

8"# Index (er*ice Performance

Our first set of experiments study the impact of index size on query performance. We ran
repeated sequential queries from 1, 2, 25, or 100 clients on one machine against one service on
the server machine, as detailed above. Table 3 summarizes our results for different index sizes.

Table 3E Index service per client performance.
1 client 2 Clients 25 Clients 100 Clients Index

Entries Single
client
queries
/sec

Response
Time
(msec)

Single
client
queries
/sec

Response
Time
(msec)

Single
client
queries
/sec

Response
Time
(msec)

Single
client
queries
/sec

Response
Time
(msec)

10 24 40 22 44 4.5 245 0.85 1243
30 15 64 10 93 n/a n/a n/a n/a
100 5 190 4 265 0.78 1334 0.19 5824

As expected, as the MDS4 Index grows, query rate and response time both slow, although
sublinearly. We believe the response time slows due to increasing data transfer rate, since the full
Index is being returned. The response is re-built for every query and re-sent each time, and as the
number of entries increase the packaging and message size grows. This can also be seen when we
compare these results to the stability experiment, which has a 0-entry Index and even better
performance. 4n the fin/l dr/ft of the p/per 2e 2ill 8e /8le to sho2 results for HI /nd JGG clients
for our KG-entry 4nde? testF 7e 2ill /lso use LetMogger to further in&estig/te 2hich ph/se of the
Nuery is the perfor*/nce 8ottlenec3F

8"! M6(7 Index Jompared to nonK%eb (er*ice 9pproaches

Table 4 shows a rough comparison of MDS4 index queries as described versus 4 other Grid
monitoring systems: MDS2 (v. 2.4.3) with caching, MDS2 (v.2.4.3) without caching, R-GMA
[CGM\03] version 3.4.6, and Hawkeye (version 1.0). This data came from a related paper
[oFS05] and the comparison is not quite equal. In the other experiments, the size of the index was
10 entries, and the query was for the full set of values, but that varied from 10EB (for MDS2 and
Hawkeye) to 2EB (for R-GMA), compared with approximately 19EB for MDS4. The testbed
setup was also slightly different, although both client and server machines were similar, the
network was between LANs, with a bandwidth of approximately 55 Mbits per sec on average and
a latency (Round-Trip Time) of 2.3 msec on average. Since a different number of clients were run
in those experiments and ours, we have approximated the missing values for MDS4 using simple
curve fitting, these values are in italics.

Table 4E comparison of Index service performance for 5 monitoring systems. Note values in italics
are curve-fitting approximations.

1 client 10 Clients 50 Clients 100 Clients Monitoring
System Single

client
queries
/sec

Response
Time
(msec)

Single
client
queries
/sec

Response
Time
(msec)

Single
client
queries
/sec

Response
Time
(msec)

Single
client
queries
/sec

Response
Time
(msec)

MDS2
w/cache

0.88 129 0.45 147 0.92 153 0.93 182

MDS2 w/o
cache

0.45 1219 0.15 5534 0.77 29,175 0.91 40,410

R-GMA 0.92 61 0.03 277 0.24 3230 0.89 9734
Hawkeye 0.93 79 0.02 106 0.12 113 0.68 463
MDS-4 24 40 JOFP n/a KFHQ n/a 0.85 1243

10

We plan to have an apples-apples comparison for the other monitoring system data for the final
draft of the paper. We would also like to explore how our performance compares to that of basic
WSRF/WSN.

8"8 Index (er*ice (tabilit4

We set up an Index Service with only one entry and ran queries against it over a longer period of
time to help judge the stability of the service. After running for 1,225,221 seconds (just over 2
weeks), the server machine was accidentally rebooted. In that time, the Index service processed
93,890,248 requests, averaging 76 per second, with an average query round-trip time of 13
milliseconds.

We feel this indicates that the Index Service is a stable service, as there was no noticeable
performance or usability degradation over the entire duration of the test. There was also no
indication that the test would not continue indefinitely had it been run for a longer period of time.

4 R/:)%/* W"&7

Performance studies of Grid monitoring systems include work on previous MDS versions. Smith
et al. [SWM\00] investigated MDS2 performance by focusing on the effect of different versions
of backend LDAP and data distribution strategies. Aloisio et al. [ACE\01] studied the
capabilities and limitations of MDS2 as well as the security effect on the performance although
their experiments were limited to simple tests on the MDS2 Index (GIIS) only.

Eeung et al. [EDJ\03] analyzed the MDS2 GRIS performance with different back-end
implementations by varying information-gathering methods. More recently, Eeung et al.
[EDJ\03b] evaluated performance differences when querying the MDS2 GIIS using different
evaluation methods. This work compliments our studies [oS04] in which we examined MDS2
behavior at a fine granularity by using NetLogger technologies to instrument the server and client
codes, but did not compare this behavior to any other system.

In more general studies, Plale et al. [PJJ\04, PJL\03] benchmarked a synthetic workload (queries
and updates) against a non realistic Grid information service implemented with three different
database platforms: relational (MySQL), native cML (cindice), and LDAP. In other work, Plale
et al. [PDvL02] discussed the pros and cons of building a Grid Information Service on a
hierarchical representation and a relational representation; however, their approach was
theoretical not experimental. We have also examined the scalability performance of MDS2, R-
GMA, and Hawkeye in a coarse-grain manner [oFS03], and then in more detail using NetLogger
to better understand the performance benchmarks [oFS05].

G C"#-:9,$"#

In this paper we have shown by example how monitoring and discovery capabilities can be
integrated into the design of a distributed computing infrastructure so that any and every resource
and service can be monitored and discovered in a uniform manner. Using Web Service standards
that define the primitive interfaces and behaviors, we have built the basis of a monitoring system
for Grid use. Our initial performance results indicate that the basic performance is acceptable,
although further work is needed to understand performance bottlenecks of the system.

11

A-7#"6:/*'5/#%,
This work was supported in part by the Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department
of Energy, under contract W-31-109-Eng-38. Additional support was provided by NSF NMI Award SCI-
0438372.

R/</&/#-/,

[ACE\01] G. Aloisio, M. Cafaro, I. Epicoco, and S. Fiore, "Analysis of the globus toolkit grid information
service," GridLab, technical report GridLab-10-D.1-0001-GIS_Analysis, 2001

[BBB\05] Bernholdt, D., Bharathi, S., Brown, D., Chanchio, E., Chen, M., Chervenak, A., Cinquini, L.,
Drach, B., Foster, I., Fox, P., Garcia, J., Eesselman, C., Markel, R., Middleton, D., Nefedova, f.,
Pouchard, L., Shoshani, A., Sim, A., Strand, G. and Williams, D. The Earth System Grid: Supporting the
Next Generation of Climate Modeling Research. Proceedings of the IEEE, 93 (3). 485-495. 2005.

[CFF01] Czajkowski, E., Fitzgerald, S., Foster, I. and Eesselman, C., Grid Information Services for
Distributed Resource Sharing. 10th IEEE International Symposium on High Performance Distributed
Computing, 2001, IEEE Computer Society Press, 181-184.

[CGM\03] A. Cooke, A.Gray, L. Ma, W. Nutt, J. Magowan, P. Taylor, R. Byrom, L. Field, S. Hicks, and J.
Leake, "R-GMA: An Information Integration System for Grid Monitoring," Proceedings of the 11th
International Conference on Cooperative Information Systems, 2003.

[Foster05] I. Foster, A Globus Toolkit Primer, www.globus.org/primer, 2005.

[FCF\05] Foster, I., Czajkowski, E., Ferguson, D., Frey, J., Graham, S., Maguire, T., Snelling, D. and
Tuecke, S. Modeling and Managing State in Distributed Systems: The Role of OGSI and WSRF.
Proceedings of the IEEE, 93 (3). 604-612. 2005.

[GITS] Grid Integration test Service (GITS), http://www.ngs.rl.ac.uk/sites/common/docs/gits14.html

[GLUE] Glue Schema Specification, www.hicb.org/glue/glue-schema/schema.html.

[GM04] Steve Graham, Bryan Murray, eds., “Web Services Base Notification 1.2 (WS-BaseNotification)”,
OASIS Working Draft twsn-WS-BaseNotification-1.2-draft-03, June 2004, http://docs.oasis-
open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-03.pdf

[GT03] D. Gunter and B. Tierney, "NetLogger: A Toolkit for Distributed System Performance Tuning and
Debugging," Proceedings of Integrated Network Management 2003, 2003.

[GT04] Steve Graham, Jem Treadwell, eds., “Web Services Resource Properties (WS-Resource
Properties)”, OASIS Working Draft twsrf-WS-ResourceProperties-1.2-draft-04, June 2004,
http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-04.pdf

[Haw] Hawkeye, http://www.cs.wisc.edu/condor/hawkeye.

[EDJ\03] H. N. Lim Choi Eeung, J. R. D. Dyson, S. A. Jarvis, and G. R. Nudd, "Performance evaluation
of a grid resource monitoring and discovery service," 4CCC ProceedingsR ;oft2/re, vol. 150, pp. 243-251,
2003.

[EDJ\03b] H. N. Lim Choi Eeung, J. R. D. Dyson, S. A. Jarvis, and G. R. Nudd, "Predicting the
Performance of Globus Monitoring and Discovery Service (MDS-2) Queries," Proceedings of the 4th
International Workshop on Grid Computing, 2003.

[MCC04] Massie, M.L., Chun, B.N. and Culler, D.E. The Ganglia Distributed Monitoring System: Design,
Implementation, and Experience. Parallel Computing, 30 (7). 2004.

http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-04.pdf

12

[MDSa] "GT 4.0 WS MDS: Cluster Monitoring Information and the GLUE Resource
Property", http://www-unix.globus.org/toolkit/docs/development/4.0-drafts/info/key/gluerp.html

[MDSb] "GT 4.0 WS MDS Index Service: System Administrator's Guide",
http://www-unix.globus.org/toolkit/docs/development/4.0-drafts/info/index/admin/

[MDSc] "Deploying WS MDS in a firtual Organization",
http://www-unix.globus.org/toolkit/docs/development/4.0-drafts/info/key/deployment_overview.html

[MDSd] "GT 4.0 WS MDS WebMDS",
http://www-unix.globus.org/toolkit/docs/development/4.0-drafts/info/webmds/

[MDSe] "GT 4.0 WS MDS Trigger Service: System Administrator's Guide",
http://www-unix.globus.org/toolkit/docs/development/4.0-drafts/info/trigger/admin/

[MS04] Tom Maguire, David Snelling, eds.,”Web Services Service Group 1.2 (WS-ServiceGroup)”,
OASIS Working Draft twsrf-WS-ServiceGroup-1.2-draft-02, June 2004, http://docs.oasis-
open.org/wsrf/2004/06/wsrf-WS-ServiceGroup-1.2-draft-02.pdf

[PDvL02] B. Plale, P. Dinda, and G. v. Laszewski, "Eey concepts and services of a grid information
service," Proceedings of the 15th International Conference on Parallel and Distributed Computing Systmes
(PDCS), 2002.

[PJJ\04] B. Plale, C. Jacobs, S. Jensen, Y. Liu, C. Moad, R. Parab, and P. faidya, "Understanding Grid
Resource Information Management through a Synthetic Database Benchmark/Workload," Proceedings of
the 4th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid2004) (to
appear), 2004.

[PJL\03] B. Plale, C. Jacobs, Y. Liu, C. Moad, R. Parab, and P. faidya, "Benchmark Details of Synthetic
Database Benchmark/Workload for Grid Resource Information," Indiana University Computer Science
Technical Report TR-583 Technical Report TR-583, August 2003 2003.

[SOE\04] Shava Smallen, Catherine Olschanowsky, Eate Ericson, Pete Beckman,
and Jennifer Schopf, "The Inca Test Harness and Reporting Framework", Proceedings of
SuperComputing '04, November 2004. Also available as SDSC Technical Report tSDSC-TR-2004-3,
http://www.sdsc.edu/TR/SDSC-TR-2004-3-IncaTest.pdf.

[SWM\00] W. Smith, A. Waheed, D. Meyers, and J. Yan, "An Evaluation of alternative designs for a grid
information service," Proceedings of the 9th IEEE International Symposium on High Performance
Distributed Computing (HPDC-9), 2000.

[UDDI] UDDI Standard, http://www.uddi.org

[cPATH] cML Path Language (cPath) fersion 1.0, Nov. 1999, http://www.w3.org/TR/xpath

[cSLT] cSL Transformations (cSLT) fersion 1.0, Nov. 1999, http://www.w3.org/TR/xslt

[oFS03] c. ohang, J. Freschl, and J. M. Schopf, "A performance study of monitoring and information
services for distributed systems," Proceedings of the 12th IEEE International Symposium on High
Performance Distributed Computing (HPDC-12), 2003.

[oS04] c. ohang and J. M. Schopf, "Performance Analysis of the Globus Toolkit Monitoring and
Discovery Service, MDS2," Proceedings of IEEE IPCCC International Workshop on Middleware
Performance (IWMP 2004), 2004.

http://www-unix.globus.org/toolkit/docs/development/4.0-drafts/info/trigger/admin/
http://www.w3.org/TR/xslt

13

[oFS05] cuehai ohang, Jeffrey L. Freschl, and Jennifer M. Schopf, “A Scalability Analysis of Three
Monitoring and Information Systems: MDS2, R-GMA, and Hawkeye”, ANL Tech Report, available from
www.mcs.anl.gov/njms/jmspubs.html, 2005.

The submitted manuscript has been created in part by the University of Chicago as Operator of Argonne National Laboratory
("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and
others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

http://www.mcs.anl.gov/~jms/jmspubs.html

