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Abstract— We present a PDE-constrained approach to opti-
mizing the electrostatic interactions between two biomolecules.
These interactions play important roles in the determination of
binding affinity and specificity, and are therefore of significant
interest when designing a ligand molecule to bind tightly to
a receptor. Using a popular continuum model and physically
reasonable assumptions, the electrostatic component of the
binding free energy is a convex, quadratic function of the ligand
charge distribution. Traditional optimization methods require
exhaustive pre-computation, and the expense has precluded a
full exploration of the promise of electrostatic optimization in
biomolecule analysis and design. In this paper we describe an
approach in which the electrostatic simulations and optimiza-
tion problem are solved simultaneously; unlike many PDE-
constrained optimization frameworks, the proposed method
does not incorporate the PDE as a set of equality constraints.
This co-optimization approach can be used by itself to solve un-
constrained problems or those with linear equality constraints,
or in conjunction with primal–dual interior point methods to
solve problems with inequality constraints. Model problems
demonstrate that the co-optimization method is computationally
efficient and that it can be used to solve realistic problems.

I. INTRODUCTION

The electrostatic interactions between biomolecules can
play important roles in determining binding affinities and
specificities [1]–[3]. Methods for estimating these interac-
tions are therefore important computational tools [1], [4].
The task of estimation is challenging because electrostatic
interactions are long-range and involve many solvent water
molecules around the biomolecules of interest. Computa-
tional approaches that treat the solvent explicitly, such as
Monte Carlo or molecular dynamics methods [5]–[9] are
often prohibitively expensive, and therefore implicit solvent
models [10] based on macroscopic, continuum electrostatic
theory are frequently used [1], [3], [11], [12]. Frequently,
these models treat the solvent and solute as homogeneous
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dielectric media and the solute charge distribution is treated
as a set of discrete point charges.

The estimated electrostatic energies are frequently useful
in molecular design efforts, in which one often wishes to
design a molecule, called aligand, that can bind a specified
target, orreceptor, with high affinity and specificity. Binding
free energies between candidate ligands and the target can
be estimated using quite sophisticated methods (see, for
example, [13]). However, for computational expediency the
relative free energies of binding are often modeled much
more simply as sums of electrostatic and non-electrostatic
terms [14]. In these simpler models, the non-electrostatic
interactions between molecules are extremely short-ranged,
and not particularly variable with respect to the types of
atoms at the interface. Consequently, shape complementarity
at the binding site is thought to be necessary but not sufficient
for achieving tight binding. In contrast, the electrostatic
forces between molecules are long-range and can have
significant effects on the binding interaction. Therefore,one
promising approach for improving computational molecular
design methodologies is to identify a ligand charge distribu-
tion, or multiple distributions, that have optimal electrostatic
interactions with the target. Such knowledge may suggest
regions of design space that will have a relatively high
density of compounds that would be predicted to bind tightly.

A rigorous optimization theory, based on linear-response
theory, has been developed to identify optimal charge distri-
butions for molecular design and analysis [15]–[18]. Lee and
Tidor were the first to investigate the possibility of optimiz-
ing a ligand molecule’s charge distribution for binding to a
target receptor [15]. They based their study on analytically
solvable spherical geometries and a multipole representation
of the ligand charge distribution. A series of papers by
Kangas and Tidor extended the optimization theory [16]–
[18], demonstrating that the ligand-dependent component of
the binding free energy is a convex quadratic function of the
ligand charges for more general molecular geometries and
charge distributions. A number of groups have applied and
explored the theory in contexts ranging from cation-binding
studies to protein–protein interface redesign [19]–[29].A
notable validation of the charge optimization approach was
reported by Mandal and Hilvert [30], who modified a known
inhibitor of B. subtilis chorismate mutase to verify the
charge-optimization analysis of Kangas and Tidor [22]. The
modified ligand yielded the expected improvement over the
original and represented the tightest binder measured to
date [30].

Despite these promising results, however, exploitation of



the electrostatic optimization framework has been somewhat
hampered by the computational expense of setting up the
optimization problem. The Hessian matrix, which completely
describes the curvature of the objective function, requires an
expensive pre-computation whose cost scales linearly with
the number of optimization variables. This paper presents an
approach to solving these optimization problems without ex-
plicitly calculating the Hessian matrix. This approach, which
we call co-optimization, resembles some PDE-constrained
optimization methods such as that of Biroset al. [31], but
differs significantly from previously presented strategies. The
next section provides background on biomolecule electrostat-
ics, a method for numerical simulation of electrostatic prob-
lems, and the electrostatic optimization theory. Section III
describes the new coupled optimization/simulation method
and contrasts it with the traditional approach and other PDE-
constrained optimization techniques. Section IV presentsa
set of numerical results demonstrating the computational
efficiency of the new method and its application to a realistic
molecular design problem. Section V summarizes the paper
and discusses areas for future work.

II. BACKGROUND

A. A Mixed Discrete–Continuum Electrostatic Model

One model for studying biomolecule electrostatics is
shown in Figure 1. Space is divided into two regions by
the surfaceΩ: the biomolecule interior (region I) and the
solvent exterior (region II). Region I is a homogeneous
dielectric with low permittivityεI , which is typically between
2 and 4 [3]. The biomolecule charge distribution is modeled
as a set ofnc discrete point charges located at the atom
centers, with theith charge atr i and having valueqL,i . The
electrostatic potentialϕ(r) satisfies a Poisson equation in
this region. The solvent region is a homogeneous dielectric
with high permittivity εII , which is usually approximately
that of bulk water. The potential in this region is assumed to
obey either the Laplace equation (in non-ionic solutions) or
the linearized Poisson–Boltzmann equation (in dilute ionic
solutions) [3]. The potential and the normal displacement
field are continuous at the interface [32] and the potential
satisfies regularity conditions at infinity [33]. The presence
of the charges polarizes the high-dielectric solvent and the
polarization produces areaction potential at the charge
locations; one needs to calculate these potentials in orderto
evaluate the electrostatic energy of the system. Representing
the biomolecule as a union of van der Waals spheres and
rolling a probe sphere over this union allows the interfaceΩ
between the regions to be defined as the set of points closest
to the union that the probe sphere surface can reach [34].
This is called the solvent-excluded, or molecular, surface.

B. Numerical Simulation of Electrostatics

The coupled PDE system described in Section II-A can
be solved using any of a variety of numerical techniques:
finite-difference, finite-element, and boundary-element meth-
ods have all been used [11], [33], [35]–[43]. We demon-
strate the co-optimization approach using a simple integral-
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Fig. 1. Mixed discrete-continuum electrostatics model.

equation formulation specialized to non-ionic solutions and
the boundary-element method (BEM) [40], [41], [44]–[46].
Several other formulations allow treatment of dilute ionic
solutions [33], [42], [43], [47]; for clarity, however, we
present only the simplest formulation.

Consider the unbound ligand molecule. An induced sur-
face chargeσp,u(r) forms at the dielectric boundaryΩ
in response to the ligand charge distribution. The charge
distribution satisfies the second-kind integral equation

εI + εII

2εI (εI − εII )
σp,u(r)+−

∫

Ω

∂
∂n(r)

σp,u(r ′)dA′

4πεI ||r − r ′||

= −
∂

∂n(r)

nc

∑
i=1

qL,i

4πεI ||r − r i ||
, (1)

where the subscriptu denotes the unbound geometry,−
∫

denotes the principal value integral, andn(r) denotes the
normal direction atr on the surface, which is defined to
point outward into solvent. This integral equation may be
derived by replacing region II with a medium of permittivity
εI and forcing the electric field discontinuity across the same
boundary to match the field discontinuity of the original two-
dielectric problem [40], [46], and can be written in operator
form as

A2σp,u = A1qL, (2)

whereqL is the vector of partial atomic charges andA2 and
A1 are linear operators.

The reaction potentialat the ith ligand charge locationr i

induced by solvent polarization in response to the charges
qL may then be found by calculating the potential induced
by σp,u(r):

ϕREAC
u (r i) =

∫

Ω

σp,u(r ′)dA′

4πεI ||r i − r ′||
, (3)

which in operator form is written

ϕREAC
u = A3σp,u, (4)

whereA3 is the linear operator that maps the surface charge
distribution to the reaction potentials.

One can solve (1) numerically by defining a set of basis
functions on the surface such that the unknown surface
variable σp,u(r) can be reasonably well approximated as
a scaled sum of the basis functions. A finite-dimensional



square linear system is formed by forcing the integral to
satisfy a carefully chosen set of constraints [45], [46]. The
resulting matrix equationAx= b is dense, unlike linear sys-
tems produced by finite-difference or finite-element methods.
To eliminate the prohibitiveO(n2) memory requirement and
O(n3) time costs associated with dense LU factorization or
dense Krylov methods, Krylov methods such as GMRES [48]
are used in conjunction with approximate algorithms such
as the fast multipole [49], [50], precorrected-FFT [51], or
FFTSVD [52], which can rapidly compute the required dense
matrix–vector products. The combination of Krylov methods,
effective preconditioners, and fast algorithms allow solution
of the dense BEM systems in linear or near-linear time and
memory [53].

C. Biomolecule Electrostatic Optimization Theory

Combining (2) and (4) allows the reaction potentials at the
ligand charge locations to be written explicitly as a linear
function of the charge values:

ϕREAC
u = A3A−1

2 A1qL. (5)

The electrostatic free energy due to the reaction field, which
is 1

2qT
LϕREAC

u [32], is therefore a quadratic function of the
charge distributionqL. The mappingLu = A3A−1

2 A1 is sym-
metric and positive definite.

The quantity to be optimized is the electrostatic compo-
nent of the binding free energy, which is the difference in
electrostatic free energies between the bound and unbound
states. The ligand is assumed to be rigid, and the ligand
charge values are assumed to be the same in the bound and
unbound states. The bound-state electrostatic free energyis
a sum of four components: the reaction energies associated
with the receptor and ligand charges, the energy associated
with the interaction of the ligand charges with the receptor-
charge-induced reaction field, and the Coulombic interaction
between the ligand and receptor charge distributions. The
receptor charge distribution is assumed to be fixed, and
therefore the first term is independent of the ligand charge
distribution and can be dropped from the objective function.
The third and fourth terms can be grouped into a single vector
c, and then the bound-state ligand-dependent free energy can
be written as

∆Gbound=
1
2

qT
L B3B−1

2 B1qL +cTqL =
1
2

qT
L LbqL +cTqL, (6)

whereB1, B2, andB3 denote the operators for the bound-state
electrostatics problem. The component of the electrostatic
binding free energy that is dependent on the ligand charges
is thus

∆∆G =
1
2

qT
L LbqL −

1
2

qT
L LuqL +cTqL. (7)

It has been shown that this quadratic function ofqL is convex
for many physically reasonable bound- and unbound-state
geometries [17]. Equality constraints are usually appliedto
ensure that the total ligand charge has a particular integer
value [15], [19], [21], and in addition inequality constraints
are often imposed so that the computed charges are limited in
magnitude [21]. The resulting unconstrained or constrained

quadratic programs can be solved using standard techniques
once the matricesLb, Lu, and the vectorc have been
calculated.

III. COUPLING SIMULATION AND
OPTIMIZATION

A. Co-optimization is a “Reverse-Schur-Complement”
Method

The essential idea of the co-optimization approach is that
the Hessian’s Schur-complement structure can be exploited
to solve the optimization problem without explicit calculation
of the Hessian. A simple example demonstrates the approach.
The linear system

A3A−1
2 A1x = b, (8)

where A1 ∈ ℜn×k, A2 ∈ ℜn×n, and A3 ∈ ℜk×n, with n > k,
has the same solutionx as the linear system

[

0 A3

−A1 A2

][

x
y

]

=

[

b
0

]

, (9)

where we have introduced the auxiliary variabley. Because
the original system (8) is the Schur complement of (9),
we say that co-optimization is a reverse-Schur-complement
method.

The Hessian structure in (7) is a difference of two reverse
Schur complements, and the optimal solutionq∗L to the
unconstrained problem may therefore be found by solving
the linear system





0 B3 −A3

−B1 B2

−A1 A2









q∗L
σp,b

σp,u



 =





−c
0
0



 . (10)

Optimization with sum-of-charge or other linear equality
constraints of the formAcqL = b have solutions that satisfy a
linear relation for their optimality (Karush-Kuhn-Tucker, or
KKT conditions [54]), such as

[

Lb−Lu AT
c

Ac

][

q∗L
λ ∗

]

=

[

−c
b

]

, (11)

and this block system can be transformed similarly.

B. Primal–Dual Interior-Point Methods and Co-optimization

Primal–dual interior-point methods represent an extremely
powerful and efficient approach to solving inequality-
constrained quadratic programs [55]. The electrostatic op-
timization problems with linear inequality constraints can be
transformed into the standard quadratic program

minimize
1
2

xTLx+xTc

subj. to Ax= b

and x≥ 0.

(12)

This program has optimality conditions that are nonlinear
in the primal variablesx, the Lagrange multipliersλ , and
the dual slackss. Primal–dual interior-point methods find
an optimal solution using a modified form of the Newton–
Raphson method that preserves positivity of the primal



variables and dual slacks at every iteration by biasing the
Newton–Raphson updates so that the pairwise productsxisi

remain approximately equal. Thekth update is calculated by
solving a linear system such as





Lb−Lu −AT
c −I

Ac 0 0
Sk 0 Xk









∆xk

∆λ k

∆sk



 = (13)

−F(xk,λ k,sk)+





0
0

σ µe



 ,

where F(x,λ ,s) is the nonlinear function whose zeros are
optimal solutions when(x,s) ≥ 0 andxisi = 0∀ i, Sk is the
diagonal matrix withSk

ii = sk
i , Xk is defined similarly with the

entries ofxk along the diagonal,e is a vector of all ones, and
µ = xk,Tsk/n wheren is the number of primal variables. This
linear system can also be expanded using two reverse Schur
complements to be solved using an implicit representation
of the Hessian matrix.

Explicit-Hessian techniques can easily be adapted using
regularization schemes [20], because the eigendecomposition
is readily computed. However, regularization in the co-
optimization is somewhat more subtle, and is a subject of
current research [56]. The results reported in Section IV-
A rely on penalizing the eigenvectors corresponding to the
smallest eigenvalues of an approximate Hessian, which is
computed asL̂ = B3PB2B1 − A3PA2A1, where PB2 and PA2

denote the preconditioners for the bound- and unbound-state
BEM simulations.

C. Comparison to Other Techniques

1) Traditional Optimization Method: Until the co-
optimization method was developed, electrostatic optimiza-
tion problems were typically solved by explicitly calculating
the Hessian one column at a time. Theith column is
calculated by setting theith ligand charge to 1 and all others
to zero, simulating the bound and unbound states, with a null
receptor charge distribution in the bound state, and subtract-
ing the calculated potentials at the ligand charge locations.
The computational expense required for this approach grows
linearly with the number of charges and must be fully paid
before optimization can begin [19], [29].

2) An Alternative Implicit-Hessian Approach:An alterna-
tive to the co-optimization approach might be to solve the
KKT or biased Newton–Raphson equations using a nested
Krylov method. Each Krylov iteration to solve (11) would
then require simulation of the bound and unbound states.
It can be difficult to precondition the outer Krylov method
effectively, and in the worst case may require as much or
more computation than that required to compute an explicit
Hessian [57].

3) PDE-Constrained Optimization:The co-optimization
technique differs markedly from other approaches to PDE-
constrained optimization (see, for instance, references [31],
[58], [59]) in one important respect: in co-optimization, the
PDE constraints are not introduced formally into the math-
ematical program as constraints. In most PDE-constrained

approaches, such as that of Biros and Ghattas [31], [58],
the PDE variables are added as variables to the optimization
problem, and the PDE itself becomes an equality constraint.
The Schur preconditioner presented by Biros and Ghattas
allows efficient solution of the resulting system. In con-
trast, in a co-optimization method one first writes down
the linear system to be solved and assumes the ability to
form the Hessian–vector product. The KKT equations—or
the primal–dual interior-point Newton–Raphson equations—
are then transformed using the reverse Schur complement.
It is possible that the co-optimization approach works only
in very restricted circumstances, such as the selection of an
optimal distribution given a fixed basis set.

IV. COMPUTATIONAL RESULTS

In this section we first present a set of simple examples
to demonstrate the superior scaling of the co-optimization
method relative to the explicit-Hessian method [57], [60].
The examples are similar to those described in Lee and
Tidor’s initial work on electrostatic optimization [15]. In
addition, a problem with realistic geometries and charge
distributions has been optimized successfully and the co-
optimization results validated against the traditional ap-
proach [57].

A. Spherical Geometries

Figure 2 is an illustration of the ligand and ligand–receptor
complex, which are spheres of 8 and 32Å, respectively. The
ligand binds to the receptor such that the ligand center is
at (0, 0, 24) if the center of the complex is the origin. The
receptor has 200 charges placed at random locations inside
the complex, subject to the constraints that charges were all
separated by at least 2.5̊A and at least 1Å away from the
ligand and receptor surfaces. The receptor charge values were
chosen randomly from a uniform distribution between -0.85
and +0.85 times the electron charge. Twelve sets of ligand
charges were generated. The sets varied in size from 4 to 120
charges and placed at random locations in the ligand sphere,
subject to the constraints that no charges be placed within
2.5 Å of one another or within 1̊A of the ligand surface.

Each of the resulting twelve objective functions was
minimized without constraints. Figure 3 is a plot of the
computational expense required to solve the unconstrained
problems using the implicit-Hessian method and using a
standard method in which the Hessian is calculated explicitly.
For each of the optimization methods, the total number
of GMRES iterations required for solution was counted
and used as a cost metric. For all of these problems, the
bound-state and unbound-state geometries each consisted
of 1810 spherical boundary elements [61], the FFTSVD [52]
algorithm was used to compress the BEM operators, and
preconditioned GMRES was run to a tolerance of 1e-5. A
diagonal preconditioner was employed for the BEM sim-
ulations; the co-optimization preconditioner was a product
of four block matrices that would exactly invert the co-
optimization matrix (10) if the BEM preconditioner were ex-
act [56]. A 10 kcal/mol/e2 penalty was assessed for exploring
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Fig. 2. Dielectric boundaries of the model problems. The ligand is a sphere
with radius 8 Å centered atx = 0,y = 0,z = 24 Å. The ligand–receptor
complex is a sphere of radius 32̊A centered at the origin. All units are̊A.

eigendirections corresponding to eigenvalues less than 1e-2
in magnitude.
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Fig. 3. Computational expense required to solve unconstrained optimiza-
tion problems using explicit-Hessian calculation and the co-optimization
technique.

B. A Realistic Example: Chorismate Mutase and an In-
hibitor

The first large-scale implementation of the co-optimization
method was based on the pFFT++ boundary-element method
and the PETSc scientific computing libraries [51], [62],
[63]. This implementation was used to find the optimal
charge distribution in a transition-state analog inhibitor of
the enzyme chorismate mutase fromE. coli [57], imposing
linear equality and linear inequality constraints. The optimal

charges computed using the Hessian-implicit primal–dual
method closely matched those computed by explicitly calcu-
lating the Hessian using a finite-difference method; Figure4
is a plot of the computed charge distributions. The inhibitor
contains 26 charges to be optimized. Each primal–dual step
required the solution of a linear system of dimension greater
than 130,000 by preconditioned GMRES [48].

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

Atom Index

C
al

cu
la

te
d 

O
pt

im
al

 P
ar

tia
l C

ha
rg

e

Explicit Hessian
Implicit Hessian

Fig. 4. Primal–dual interior-point methods, used with co-optimization,
allow accurate computation of optimal charges [57].

V. DISCUSSION

This paper has described biomolecule electrostatic op-
timization and presented an efficient PDE-constrained ap-
proach to solve these problems. Unlike many other PDE-
constrained optimization techniques, the present approach
does not introduce the PDE into the optimization problem
as a set of equality constraints. Numerical results illustrate
that the method’s computational cost grows very slowly as
a function of the number of optimization variables and that
both unconstrained and constrained problems can be solved
using co-optimization. A realistic example demonstrates the
viability of the approach for solving problems in biomolecule
analysis and design.

Although this paper has presented a co-optimization
method built on boundary-element methods to solve the
underlying PDE, no conceptual difficulties preclude the use
of other numerical methods such as the finite-difference or
finite-element methods. Such techniques might decrease the
overall time required to set up the linear system of equations
to be solved, especially because forming the compressed
BEM operator can be expensive. Fast direct methods [64],
[65] may offer significant advantages for some types of
optimization problems, particularly when multiple binding
geometries are being studied. Ultimately, however, the total
computational cost of co-optimization depends criticallyon
the availability of efficient methods for solving the trans-
formed KKT (or biased Newton–Raphson) equations.

Numerous questions about co-optimization remain to be
studied. A detailed convergence analysis has yet to be
presented; the relationship between co-optimization and



other PDE-constrained methods is being examined more
thoroughly; finally, it is possible that electrostatic co-
optimization may offer even better efficiency in other types
of QP solvers such as active-set methods [66]. Work in these
areas continues, and in addition the co-optimization methods
presented here are being applied to study new problems in
drug design.
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