ADVANCED FLOW-CONTROL MECHANISMS FOR THE

SOCKETSDIRECT PROTOCOL OVERINFINIBAND

P. BALAJI, S. BHAGVAT, D. K. PANDA, R. THAKUR, AND W. GROPP

Preprint ANL/MCS-P1422-0507

Mathematics and Computer Science Division, Argonne Natibaboratory

Advanced Flow-control Mechanisms for the
Sockets Direct Protocol over InfiniBahd

P. Balaji S. Bhagvat D. K. Panda R. Thakuf W. Gropp

TMathematics And Computer Science Division, *Scalable Systems Group,
Argonne National Laboratory Dell Inc.
{balaji, thakur, gropp@mcs.anl.gov sithabhagvat@dell.com

$Computer Science and Engineering,
Ohio State University
panda@cse.ohio-state.edu
Abstract

The Sockets Direct Protocol (SDP) is an industry standaatida existing TCP/IP sockets based applications
to be executed on high-speed networks such as InfiniBand I(iB¢ many other high-speed networks, IB
requires the receiver process to inform the network interfaard (NIC), before the data arrives, about buffers
in which incoming data has to be placed. To ensure that theweprocess is ready to receive data, the sender
process typically performs flow-control on the data trarssioin. Existing designs of SDP flow-control are
naive and do not take advantage of several interestingresaprovided by IB. Specifically, features such as
RDMA are only used for performing zero-copy communicatiaithough RDMA has more capabilities such
as sender-side buffer management (where a sender processmoage SDP resources for the sender as well
as the receiver). Similarly, 1B also provides hardware flomtrol capabilities that have not been studied in
previous literature. In this paper, we utilize these caliads to improve the SDP flow-control over IB using
two designsRDMA-based flow-contr@ndNIC-assisted RDMA-based flow-contridVe evaluate the designs
using micro-benchmarks and real applications. Our evianatreveal that these designs can improve the
resource usage of SDP and consequently its performancedrglanrof-magnitude in some cases. Moreover

we can achieve 10-20% improvement for various applications

*This research is funded in part by DOE grants #DE-FC02-0GZR2 and #DE-FC02-06ER25755; by NSF grants #CNS-0403342
and #CNS-0509452; by an STTR subcontract from RNet Techiedp and by the Mathematical, Information, and Computetio
Sciences Division subprogram of the Office of Advanced SifielComputing Research, Office of Science, U.S. Departroéiinergy
(contract DE-AC02-06CH11357).

1 Introduction

The Sockets Direct Protocol (SDP) [3] is an industry staddaallow existing TCP/IP sockets based applications
to be executed on high-speed networks such as InfiniBand[{|Bgand iWARP [6] (Figure 1). It is designed
around two primary goals: (i) to allow existing applicatcio be directly and transparently deployed onto clusters
connected with high-speed networks and (ii) to allow sugblaenent while maintaining most of the network

performance for applications to utilize.

Application J

There have been several implementations of SDP ovef-——--- - | EEEEEEEEEES ;Sockets
Sockets
IB. The first implementation of SDP [9] utilized IB
. TCP/IP SbpP
send-receive operations to transmit data using mterm
diate buffer copies. This design takes advantage of thg De"“’i’ Diiver | : : :
L2 2 L2
hardware-offloaded protocol stack of IB to achieve high [Og:g?fceoﬂ RDMA }[FE'@r—d&V)ﬁrtﬁ;
InfiniBand or iWARP

performance while using lesser host CPU for communica
tion processing. Later designs of SDP [19, 18, 7] extended Figure 1:SDP Architecture

this to utilize IB’s remote direct memory access (RDMA) daififes and allow for zero-copy transfer of mes-
sages. Each of these designs has its pros and cons. Thedagieapproach has to deal with memory copies on
both the sender and the receiver side during communicatibich add overhead especially for large messages.
The zero-copy approaches, on the other hand, have to ddabwithe-fly registration of buffers with the net-
work interface card (NIC) and synchronization between #redsr and receiver, which add overhead especially
for small and medium-sized messages. Thus, to maximizelbyearformance, current SDP stacks utilize the
buffer copy mechanism for communicating small and mediimaesmessages (up to about 32 KB), while per-
forming zero-copy communication with RDMA for large messadgreater than 32 KB). In this paper, we deal

only with the buffer copy approach used for small and medsimed messages.

While the existing buffer copy design takes advantage ofittdware offloaded protocol stack of IB, it is naive in
aspects such as flow-control. Like many other high-speesanks, 1B requires the receiver process to inform the
NIC, before the data arrives, about buffers in which incayrdiata has to be placed. To ensure that the receiver
process is ready to receive data, the sender process typgoeaforms flow-control on the data transmission.
The existing design of SDP flow-control uses send-receaseth communication, with each process managing
its local flow-control buffers. With the receiver managiig local buffers, however, the sender is not aware of

the receiver’s exact usage status and layout. Accordirighy-control tends to be conservative and results in

underutilization of buffers and loss of performance.

RDMA, however, has more capabilities than just zero-copymainication. For example, it offesender-side
buffer managementSince RDMA is completely handled by the sender processloiva this process to have
complete control of SDP resources, such as flow-controebsiffon both the sender and receiver side. Further,

IB provides other features such as hardware flow-controhsetcapabilities have not been addressed so far.

Thus, in this paper, we propose two novel designs to imprbeeflow-control and performance of small and
medium message communication in SDP over IB. In the firsggeRDMA-based flow-contrpive use RDMA

to allow the sender to manage buffers on both the sender anédbiver side. This design, as we will see in the
later sections, achieves a better utilization of the SDRebuésources and consequently a better performance.
However, this design assumes (from a performance stariiploét the application will perform communication
frequently enough to ensure that data is flushed out reguliamn these buffers. Not doing so can result in
performance penalties. In the second desijiG-assisted RDMA-based flow-contrale utilize the hardware
flow-control capabilities of IB to extenBRDMA-based flow-controlith communication progress (i.e., flushing
out data from the SDP buffers) even when the application doeperform communication frequently enough,

while not sacrificing performance.

We demonstrate the capabilities of these designs usingorhinchmarks as well as real applications. Our
results show that these designs can achieve almost anafrdeagnitude improvement in the bandwidth achieved
by medium sized messages. Moreover, we can achieve perfoarimprovements of about 10% in a virtual

microscope application and close to 20% in an isosurfaaeal/igndering application.

The rest of this paper is arranged as follows. We present arview of the relevant features of IB and SDP in

Section 2. The existing flow control mechanism of SDP is dised in Section 3. In Sections 4 and 5, we propose
the RDMA-based and NIC-assisted RDMA-based flow controllmmasms. Experimental results demonstrating
the performance of these designs is presented in Sectionebdistuss other existing literature related to our

work in Section 7. Concluding remarks and possible futurekvaoe indicated in Section 8.

2 Overview of Relevant InfiniBand Features and the Sockets Dect Protocol

In this section, we present an overview of the features gealby IB (in Section 2.1) and SDP (in Section 2.2)

that are relevant to this paper.

2.1 Overview of InfiniBand Features

In this section, we describe IB communication semanticsthadhardware flow-control feature.

IB Communication Semantics: IB provides two types of communication semantics: chanesiantics (send-

receive communication model) and memory semantics (RDMAmanication model).

Channel Semanticdn channel semantics, every send request needs a corr@spoackeive request at the remote
end. Accordingly, the receiver process has to activelyigpéte in communication. The sender posts a send work
queue entry (WQE) to the NIC informing it about the locatidrtte buffer from which data has to be sent out.
Similarly, before any data arrives, the receiver posts aivedNVQE to the NIC describing the location where the
incoming data has to be placed. The NIC uses these WQEs toaarthe actual data transfer, on completion
of which the WQEs are placed in completion queues (CQs) addtad to reflect the amount of data transmitted

(or received), as well as any errors that may have occurréadglaommunication.

Memory Semanticdn memory semantics, RDMA operations are used. These dpesadre transparent at the
remote end since they do not require the remote end to bevetv@h communication. Therefore, in an RDMA
operation, the sender manages both the local and the remiffeesb This capability is referred to asnder-side
buffer managementThere are two kinds of RDMA operations: write and read. InNRDwrite, the initiator
directly writes data into the remote node’s buffer; in RDMgad, the initiator directly reads data from the remote
node’s buffer. RDMA operations also have a variant knowRBMA with immediate datawWhile RDMA with
immediate data operations lose receiver transparenceg #irey require a receive WQE to be posted, they retain
the sender-side buffer management capability; that isséheer can still dictate the location to which the data is
actually written. On completion of the data transfer, theeree WQES provide information to the receiver about

how much data was written and to what location.

IB Hardware Flow-control: IB provides an end-to-end (or message-level) flow-contaplability for reliable

connections that can be used by a receiver NIC to optimizeshef its resources. A sender NIC cannot send a
message unless it has appropriate credits to do so. Eadhre@@sents the receiver’s willingness to receive one
inbound message. Specifically, each credit represents @ osted to the receive queue. A credit, however,
does not mean that enough physical memory is allocated. Egasredit is available, the inbound message may
be larger than the buffer space allotted by the receiver.sTthe sender and receiver have to synchronize, in

software, the size of the message before any transmissiore tdetails about this capability can be found in [2].

Sender Receiver Sender Receiver
Application SDP Network SDP Applicatiol Application | SDP Network SDP | Applicatiol

Memory

""" Cdpy| sDP _
SDP Data Messags M- \§r\cf-\vall Message
gp'fj [Teop \E\
u RS

N But | | ™ -
BELREN B RDMA Read
Buf App
SDP | Buf A

Flow-control * B PP

Buffers i . o Buf

“ RDMA Read Completp
Message

Figure 2:Existing SDP designs: (a) Buffer-copy based (b) Zero-copy based
2.2 Sockets Direct Protocol

SDP is an IB and iWARP-specific protocol standard for TCP@éksts that focuses on the wire protocaol, finite
state machine, and packet semantics. Other details canpgbenmantation specific. SDP’s upper layer protocol
(ULP) interface is a byte-stream protocol. The mapping eftifite stream protocol to the underlying message-
oriented network semantics is designed to enable dataferapg one of two methods: through intermediate

private buffers using a buffer copy or directly between UlLfdrs in a zero-copy manner.

Buffer-copy Communication: For buffer-copy communication (Figure 2(a)) [9], SDP uti$ IB send-receive
operations. On aend() call, application data that needs to be communicated isedapio intermediate SDP
flow-control buffers and transmitted to the correspondirigrimediate buffers on the receiver side. Qreav ()

call, this data is copied to the final application buffer. Themory copy overhead increases with message size,

making this approach beneficial only for small and mediuregimessages.

Zero-copy Communication: For zero-copy communication (Figure 2(b)) [19, 18, 7], tvemirol messages are
used,source-availandsink-avail When the receiver calls tlreecv () call, if the sender has not sent the data
yet, the receiver sendssink-availmessage containing the receive buffer information to tinelse The sender
uses this to directly RDMA write the data into the receiveféuf A similar approach using RDMA read and
the source-availcontrol message is specified when the sender calls émel() operation before the receiver
is ready to receive the data. The control messages asgbeiéte such zero-copy communication have two
disadvantages. First, explicit synchronization is regglibetween the sender and the receiver, i.e., until both
the sender and the receiver have arrived at their respesivenunication calls in the application, no data can
be transferred. Second, the exchange of control messadgesomdrhead. Thus, zero-copy communication is

typically only beneficial for large messages where the beissjreater than the overhead.

Sender : Receiver

Application H H H H : Application H ﬂ H H
Messages-'| RN : Messages™ ~..
g iz "-..Copy : g A] ... Copy

Application
\ 4 \ : . . - .
SDP SDP SDP SDP H SDP SDP SDP SDP
SDP Flow-control |Flow-control| |Flow-control| |Flow—control H Flow-control| |Flow—control| |Flow-control| |Flow-control
Buffer Buffer Buffer Buffer Buffer Buffer Buffer Buffer
I e . Ao Ao Ao A
Network Transmit Recelve“_f

Figure 3:Credit-based Flow-control Mechanism
3 Existing Credit-based Flow-control Mechanism

As discussed earlier, several high-speed networks, imgu@, require the receiver to prepost WQEs informing
the NIC about receive buffers before a message arrives. eTWE3Es contain information about where the
incoming data has to be placed. To ensure that receive W@gwated before any data arrives, like many other
communication libraries, SDP performs flow-control of naggs being sent. Current SDP implementations
use a credit-based approach for achieving such flow-contdalte that this flow-control is separate from the
hardware flow-control performed by IB and is a consequenaeopting existing designs of high-performance
sockets on other networks [25, 21, 10] to SDP over IB. In $aci 1, we provide an overview of the credit-based

flow-control mechanism. In Section 3.2 we describe the &trohs of this approach.

3.1 Overview of Credit-based Flow-control

In credit-based flow-control (Figure 3), the sender is atlyi given a number of credits, say. Each process
allocatesV SDP send and/ SDP receive flow-control buffers, each of sizbytes. The receiver posis receive
WQEs to the NIC pointing to the receive flow-control buffetisat is, the nextV messages will go into these
buffers. Onasend() call, each message smaller thélbytes is copied into a send buffer and transmitted to the
corresponding receive buffer. Messages larger thagites are segmented and transmitted in a pipelined manner.
On arecv() call, data is copied from the receive buffer to the destomabuffer, and an acknowledgment is
sent to the sender informing it that the receive buffer ig fi@ be reused. The sender loses a credit for every

message sent and gains a credit for every acknowledgmeaivedc

Previous designs [9] also use extensions to credit-baseectiotrol to delay acknowledgments. In other words,

instead of sending an acknowledgment for every messageedcehe receiver can send an acknowledgment

only after half the credits have been used up. This appraaaiices the amount of communication required and

improves performance.

3.2 Limitations with Credit-based Flow-control

Credit-based flow-control has two primary disadvantagaffebutilization and network utilization.

Buffer Utilization: In credit-based flow control, each message uses at leastredi icrespective of its size.

For example, suppose the sender wants to $émnagessages each 1B, and let us say each SDP flow-control buffer
is 8KB. Since the receiver has prepost®dWQEs pointing to its receive buffers, each message is redeiv

a separate receive buffer, effectively wasting the 99.98%h@ SDP buffer space allotted; in other words, only
1B of each 8KB SDP buffer is utilized. This wastage of buffalso reflects on the number of messages that
are transmitted; excessive underutilization of buffercgpeesults in the sendéelievingthat it has used up the

receiver resources, in spite of having free buffer spacitadnle.

Network Utilization: In credit-based flow-control, osend() call, SDP copies the message into the send flow-
control buffer, waits until it has enough credits, and imimtaly transmits the data to the receiver. Thus, when
the application is sending out small or medium-sized messafese messages are directly transmitted on the
network. This approach results in underutilization of tleéwork and consequently loss of performance. On the
other hand, the capability to coalesce multiple small ngssaan allow SDP to transmit larger messages over

the network and thus improve network utilization.

4 Design Overview of RDMA-based Flow-control

As described in Section 3.2, while credit-based flow-cdngreimple and widely accepted, it has several limi-
tations, especially when communicating small and mediiz®dsmessages. In this section, we describe a new
flow-control approach, known as RDMA-based flow-controgtthtilizes the RDMA capabilities of IB to im-

prove the resource usage and performance of SDP flow-control

4.1 Overview of RDMA-based Flow-control
Figure 4 illustrates RDMA-based flow-control, which difeirom credit-based flow-control in two areas: im-

proved buffer utilization and improved network utilizatio

Improving Buffer Utilization: RDMA-based flow-control uses RDMA write with immediate datserations to

allow the sender to manage where exactly data is bufferedeosender as well as the receiver SDP flow-control

Sender : Receiver

Application : Application
Messages | || [[: Messages | .| I~ | [.

Application
SDP Sbp : SDP
Flow-control Buffer : Flow-control Buffer
,,, . :
Network R .

aingg,y, ¥
1y
iy,
i Wiy,

R,ID.';\;I‘X.G(/rite with Immediate Data

Figure 4:RDMA-based Flow-control Mechanism
buffers. This approach allows data to be better packed,itiimng the buffers more efficiently. In credit-based
flow-control, N SDP flow-control buffers each of size¢ are allocated, wheré/ is the number of credits. In
RDMA-based flow-control, on the other hand, one large flowtaa buffer of size(V x S) is allocated. When
the first message (sizB) has to be communicated, it is placed (using RDMA write witimediate data) at
the start of the receive buffer. Then, when the second messiagize() has to be communicated, the sender
knows the exact usage of the receive buffer; in other wotdasfitst P bytes of the SDP buffer are used. Thus,
the second message is written (again, using RDMA write witmediate data) starting at byt + 1) of the
receiver buffer. This approach allows the sender to coralylettilize the available space in the sender as well
as receiver SDP buffers. Orra&cv() call, once data is copied from the receiver SDP buffer to #stidation

buffer, the receiver sends an acknowledgment to the senfigniing it about the additional available space.

Improving Network Utilization: As long as space is available in the SDP receive buffer, RDdd8ed flow-
control follows a similar approach as credit-based flowtadnit sends out the data as soon asend() is
called. Once no more space is available on the receiver sidssages are copied into SDP send buffers, and
control is returned immediately to the application. Thip@ach gives RDMA-based flow-control an opportunity

to coalesce multiple small messages. Once space is freadthp SDP receive buffer, this data is sent out as
one large message instead of multiple small messages. firisach as two advantages. First, since as long as
space is available in the receive buffer data is sent out iteedly, latency of small messages is not hurt. In
fact, when only a few small messages are transmitted, tHerpence should be similar to that of credit-based
flow-control. Second, when a large number of small or mediuessages are transmitted, though the first few
messages are sent out immediately, the remaining messagesadesced and sent out as a few large messages.

This approach improves the network utilization and achidwatter performance.

In summary, RDMA-based flow-control avoids buffer wastagaubing the sender-side buffer management ca-
pability of RDMA. Moreover, it improves network utilizatioand communication performance by coalescing

messages.

4.2 Limitations of RDMA-based Flow-control

While RDMA-based flow-control can achieve better resoutdeation and high performance, it has one disad-

vantage: the lack of communication progress in some casesléétribe this limitation in this section.

Let us consider an example with an SDP flow-control buffer #KB where the sender initiates 64 message
transfers of 2KB each, for a total of 128KB. Of these, the fd@tmessages (64KB) are directly transferred to
the SDP buffer on the receiver side. Then, if the receiventsaatively receiving data, the sender will run out
of space in the receiver buffer to write more data. Thus, #meaining 32 messages (64KB) are copied to the
SDP send buffer, and control is returned to the applicatfnthis time, suppose the application on the sender
side goes into a large computation loop. The applicationherréceiver side, however, calls thecv() call,
copies the 64KB it has already received, frees the SDP reteiffer, and sends an acknowledgment to the sender
informing it that the SDP receive buffer is free to be reusadhis situation, though the sender has buffered data
that needs to be sent and has been informed by the receivatr @@ilable space in the receive buffer, it cannot
seethis information until the application comes out of the cartgtion loop and calls a communication function.

Thus, communication progress is halted.

Note that credit-based flow-control does not face this itioh because for evegend() call, if the sender does

not have credits, it blocks until credits are received arstpthe data to the network before returning control.

In Section 6.2.2, we illustrate the impact of the poor comitation progress in RDMA-based flow-control using

experimental evaluation.

5 Design Overview of NIC-assisted RDMA-based Flow-control

Both credit-based flow-control and RDMA-based flow-contiale disadvantages. Credit-based flow-control
suffers from underutilization of SDP buffer resources amel network and results in low performance. While
RDMA-based flow-control improves these aspects, it suffes limitations with respect to communication
progress when a large number of small messages have to bmited. To deal with these issues, in this section
we describe a new mechanism known as NIC-assisted RDMAdbié@&-control. This mechanism extends

RDMA-based flow-control by utilizing the hardware flow-camtcapabilities offered by IB. In other words, this

scheme provides a hybrid software-hardware approach tlizes the capabilities of software-based schemes
such as RDMA-based flow-control to coalesce data as apptepand improve performance; at the same time it

utilizes the 1B NIC to ensure asynchronous (hardware-ollett) communication progress.

NIC-assisted flow control comprises of two main sub-schemiggial window schemewhich aims at utilizing
the IB hardware flow-control capability while handling itsostcomings, an@gsynchronous interrupt scheme

which enhances the virtual window scheme to improve perdmee by coalescing data.

5.1 Virtual Window Scheme

IB’s hardware flow-control is not a byte-level flow-contrbyt rather a message-level flow-control; it makes sure
that the sender NIC sends out only as many messages as therdtkC is expecting. The onus of ensuring
that the receiver has appropriate buffer space for eachagess on the upper layers such as SDP. To handle
this situation, we utilize theirtual window (W)scheme. The primary idea of this scheme is to ensure that each
posted receive WQE has a guarantee on the amount of buffee spailable. For example, if the sender wants

to send a message of 8KB, the receiver has to post a receive MilpEfter 8KB of space is available.

In this scheme, the receiver posts a receive WQE only whegaat the necessary virtual window size space is
available in the SDP receive buffer. Thus, if the SDP buffee $s S bytes, the receiver initially postS/WW
receive WQEs, wher&/ is the virtual window size. The sender, likewise, makes sha¢ message segments
posted to the network are always smaller than or equél'tbytes, by performing appropriate segmentation.
Thus, the firstS/1V messages can definitely be accommodated in the SDP recdfee bfithe sender has to
send more messages th&fiV, it posts send WQEs corresponding to the additional dataeider, since all the
posted receive WQEs would be used up, IB hardware flow-cbeatrsures that this data is not sent out by the

sender NIC until the receiver posts additional receive WQEs

We note that although each receive WQE correspond$’ tbytes of available buffer space, this space can be
anywhere in the SDP receive buffer; that is, the mapping éetvthe WQE and the actual location of the corre-
sponding buffer is not performed by the receiver. The sendes RDMA write with immediate data operations
to manage the actual location of the buffer to which eachived&QE maps. This flexibility allows the receiver
to manage only the logical space allocated to each WQE adsiéthe actual SDP receive buffer. For example,
suppose the SDP buffer is 64KB and the virtual window is 8KBe Teceiver initially posts 8 receive WQEs.
The virtual window allocated to each receive WQE would beebyi to 8K), (8K+1 to 16K), and so forth. Now,

suppose the first message is only 1KB. In this case, the Virtiralows corresponding to the remaining WQEs

10

automatically shift by 7KB and would be bytes (1K+1 to 9K)K@L to 17K), and so forth. The final 7KB is
retained as free space. Since the sender is managing tte S€IR receive buffers, this shifting of the virtual
windows is transparent to the receiver process. Latergisdtond message that arrives is also 1KB, the virtual
windows for the remaining WQESs again automatically shifl é&ave a total of 14KB of free space. Since this
free space is more than the virtual window size (8KB), SDPmast an additional WQE, after which 6KB of
free space will still be available. When the receiver aggians calls a ecv (), the data in the SDP receive

buffer is copied to the destination buffer, and more freesps created.

5.2 Asynchronous Interrupt Scheme

While the virtual window scheme provides capabilities tidiag 1B hardware flow-control, it does not utilize
any techniques such as coalescing messages to improvempanice. The asynchronous interrupt scheme thus
is designed based on two primary goals: (i) to coalesce rgessand improve performance and (ii) to utilize the
virtual window scheme together with 1B hardware interruptsarry out asynchronous communication progress

without hurting performance.

Sender Receiver

Application H H HU H U HH H : Application H H H H
Messages . H Messages
Copy : ~. \ "\, \ Copy
A

Application

SbP : Virtual

SDP
Flow-control Buffer 1 Window

Network

ik,
v /////(m \
410001000810 e AV

RDMA Write with Immediate Data

Handled Messages
(use hardware flow—control)

Figure 5:NIC-assisted RDMA-based Flow-control Mechanism

Message CoalescingAs shown in Figure 5, in this scheme the SDP send buffer isléivinto two portions:
NIC-handled buffer and software-handled buffer. The NERwiled buffer follows a similar pattern as the virtual
window scheme. That is, data is copied into the local SDP befidr, and a corresponding send WQE is posted
to the NIC. The NIC uses IB hardware flow-control to send the daly after the receiver posts a receive WQE.
After the NIC-handled buffer is full, data is copied into tbeftware-handled buffer. However, this data is not

directly sent out but is held in the buffer to allow it to be @sed with later messages.

Asynchronous Communication ProgressDuring message coalescing, data is copied into the softiemdled

11

SDP buffer and control returned to the application. If moressages are communicated later, they can be
coalesced together with this data to form larger messagdshais improve performance. If no other messages
are communicated later, however, we need to asynchronfiustythis data out. To do so, we request IB hardware
interrupts for the messages in the NIC-handled buffer. Those the first message that is queued in the NIC-
handled buffer is transmitted, an interrupt is generated ith appropriately handled to flush out the data in
the software-handled buffer as well. Although hardwarerinipts are typically expensive, in this design the
NIC can continue to transmit other messages in the NIC-leanbilffer (using IB hardware flow-control), thus
parallelizing the interrupt processing with communicatid his design allows us to handle the interrupt without

facing any performance penalty.

6 Experimental Results

In this section, we compare the performance of RDMA-basedflontrol and NIC-assisted RDMA-based flow-
control, with that of credit-based flow-control. We first delse the experimental test-bed in Section 6.1. Next,

we evaluate the designs based on micro-benchmarks in 8é€cfiand then on real applications in Section 6.3.

6.1 Experimental Test-bed

The experimental test-bed consists of a 16-node clustérduial 3.6 GHz Intel Xeon EM64T processors. Each
node has a 2 MB L2 cache and 512 MB of 333 MHz DDR SDRAM. The na@tesequipped with Mellanox
MT25208 InfiniHost IIl DDR PCI-Express adapters and are emted to a Mellanox MTS-2400, 24-port fully
nonblocking DDR switch. The SDP stack is an in-house implaaten at the Ohio State University. This
stack is similar to other SDP stacks such as that availableanOpenFabrics distribution [5] except that it
is completely in user-space (OpenFabrics SDP is in keqpetes and is built over the VAPI verbs interface

provided by Mellanox Technologies (OpenFabrics SDP isdbonler the OpenFabrics Gen2 verbs interface).

For each experiment, ten or more runs/executions are ctewjutie highest and lowest values are dropped (to
discard anomalies), and the average of the remaining vaueported. For micro-benchmark evaluations, the

results of each run are an average of 10,000 or more itegation

6.2 Micro-benchmark Based Evaluation

In this section, we evaluate the flow-control designs usamipus micro-benchmark tests.

12

Ping-pong Latency Uni-directional Bandwidth

30 4—| —— Credit-based Flow-control 6000 41— —*— Credit-based Flow-control

—a—RDMA-based Flow-control /ﬁ 000 —a—RDMA-based Flow-control r,*:’;-' gty
4 5000 4

[| - 4- NiC-assisted Flow-control - 4- NIC-assisted Flow-control —.4}
| 4
4000 1 ’
3000 #

Latency (us)
Bandwidth (Mbps)

10 2000
5 1000
PR L
0 —— 0 SR T T
1 2 4 8 16 32 64 128 256 512 1K 2K 4K RO A G S S
Message Size (bytes) Message Size (bytes) v

Figure 6:SDP micro-benchmark evaluation: (a) Ping-pong Latency and (b) Uni-directional Bandwidth

6.2.1 Ping-pong Latency and Uni-directional Bandwidth

Ping-pong Latency: Figure 6(a) shows the ping-pong latency of SDP with the tlfl@e-control designs. In
this experiment, the sender sends a message oSsthe receiver, on receiving which the receiver sends back
another message of the same size to the sender. This ised@aeral times and the total time averaged over
the number of iterations to give the average round-trip tifftee ping-pong latency reported here is one-half of

the round-trip time, that is, the time taken for a messagetwdnsferred from one node to another.

As shown in the figure, all three schemes perform identicdlhjs result is expected because the three schemes
differ only in the way they handle flow-control when there ither no remote credit available (in credit-based
flow-control) or no space available in the remote SDP buffeRDMA-based and NIC-assisted flow-control).

In the ping-pong latency test, only one message is commiaaidzefore the sender waits for a response from the

remote process. Thus, there is no flow-control issue in dsisand hence all schemes behave identically.

Unidirectional Bandwidth: Figure 6(b) shows the unidirectional bandwidth of the thHite®-control mecha-
nisms. In this experiment, the sender sends a single mes$ajge S a number of times to the receiver. On
receiving all the messages, the receiver sends back onersessage to the sender indicating that it has received
the messages. The sender calculates the total time, sisbtih@cone way latency of the message sent by the

receiver, and based on the remaining time calculates thestebdata it had transmitted per unit time.

As shown in the figure, RDMA-based flow-control achieves st performance, while credit-based flow-control
achieves the worst, especially for small and medium-sizedsages. For messages in the 256B to 4KB range,
we notice almost an order of magnitude better performandes Gehavior is expected because RDMA-based
flow-control coalesces messages and thus utilizes the retware effectively resulting in a significantly better

performance. In the figure, we also notice that the perfoomar NIC-assisted RDMA-based flow-control is

13

very close to that of RDMA-based flow-control. This resulbwis that our scheme is able to effectively hide the

cost of interrupt handling by overlapping interrupt praieg with data transfer time.

6.2.2 Communication Progress Benchmark

Sender Receiver
Application SDP Network SDP Application
_Merpory
Py| SDP
| Buf \ ,,,,,,

soP| | [App
gkl
| Buf \ it

soP| | [App
SpP “,, ,,,,,,
| —— | [sorl T
| gkl
1
: Sender :
| Computation Receiver !
1
1 Computation
1

Applicati

Sender Receiver
on SDP Network SDP Applicatiol
_Merpory
Capy| spp
| Buf \

SDP
| Buf

Sender
Computation

[spbp
| Buf >

Message Held
For Coalescing

SDP|’
ol |

spP| |
o

Applitation
Waiting for Data

1
1
1
1
1
:
SDP
Buf I
.| SDP App
Buf | | Buf

1
Receiver !

Computatior*:
1

Figure 7:Communication Progress Test: (a) An example of good communication progress — sender and receiver

computations are nearly parallelized and (b) An example of bad communication progress — sender and receiver
side computations are serialized.

The communication progress test (Figure 7) is similar torg{giong latency test but with two changes. First,
instead of one message being sent in each direction, a Hut80anessages is used. Second, after each burst,
an additional computation is added. If the flow-control snhecan achieve good communication progress (Fig-
ure 7(a)), it can send out data even when the applicationrisrpging other computation. Thus, the receiver can
receive the data immediately, and the computation on betlséihnder and the receiver is parallelized to some ex-
tent. However, if the flow-control scheme buffers data irséad buffer without performing good communication
progress (Figure 7(b)), the transmission of data is delayitithe computation is completed; that is, the receiver
would be waiting to receive more data, which is availabldagender's SDP buffer but has not been transmitted.
Only after the sender’'s computation is complete, whenestto receive data, is this data flushed out. Thus, in

this case, the computation on the sender and receiver isletatypserialized resulting in poor performance.

In Figure 8, we report the performance of the three flow-

Communication Progress Capability

control schemes for a message size of 4KB with varying 8
7000 A

—— Credit-based Flow-control
—=— RDMA-based Flow-control

- 4- NIC-assisted Flow-control

amounts of computation. In the figure, we notice that whe

=]

6000 -

there is no or minimal computation, RDMA-based flow-

Latency (us)
w B (o1
o o o
o o o
o o o

14

2000 A

1000 1

800 1000 1200 1400 1600

control and NIC-assisted RDMA-based flow-control take

the least amount of time. Credit-based flow-control, on

the other hand, takes the most time. As the amount of

computation increases, however, we see that credit-based

flow-control and NIC-assisted RDMA-based flow-control

scale well, while RDMA-based flow-control deterioratesidip In fact, for computation amounts greater than

100Qus, it is outperformed even by credit-based flow-control.

This test shows that credit-based flow-control and NICstsdiflow-control are able to achieve good commu-
nication progress even when the application performslaaeing computation. For credit-based flow-control,
when no remote credits are available, the scheme just hlegkising for the credits. Thus, theend() call

does not return until the data is actually sent out. Conggtyiehe communication progress is good. For NIC-
assisted RDMA-based flow-control, although data is buffénethe SDP send buffer without being immediately
transmitted, the NIC interrupt ensures that the data is édisbut even when the application is busy with its
computation. Thus, again the communication progress is.gRDMA-based flow-control, on the other hand,
is not able to achieve good communication progress bechisscheme buffers data hoping to coalesce it with
later messages. Without communicating more messagesyanwehen the application starts doing additional

computation, the buffered data has to wait without beinghiéasout.

6.2.3 Buffer Utilization Test

The buffer utilization test demonstrates the amount of SOffebspace that is utilized by the different schemes.
In this benchmark, we profile the SDP library to periodicatipnitor the amount of buffer space in which data
is already copied and is not free to be used. The averagemagecusage of the buffer space is measured and
shown in Figures 9(a) (for 64KB SDP buffer size) and 9(b) @66KB SDP buffer size). We note two important

aspects in these figures:

1. The buffer utilization of the RDMA-based flow-control ahdC-assisted RDMA-based flow-control is
much higher than that of credit-based flow-control. Thidtistauted to the sender-side buffer management
capability of RDMA, which allows data messages to be placeternompactly, thus allowing for improved
buffer usage. In credit-based flow-control, when each SOfebis 8KB (Figure 9(a)), the scheme is able
to reach 100% utilization only for message sizes of 8KB othbig When each SDP buffer is 32KB

(Figure 9(b)), the scheme achieves a maximum of 25% buffizaiton.

15

Buffer Utilization (SDP buffer size: 8KB x 8 credits = 64KB) Buffer Utilization (SDP buffer size: 32KB x 8 credits = 256KB)
100 e 100 P
- e
90 - el 90 1 ey
g Pt
80 - Lx 80 - -~
X .

70 70 =
=] / = n”
& 60 /,/' —e— Credit-based Flow-control £ 60 /(‘ —e— Credit-based Flow-control -
c - c .
‘% 50 l.'/‘ —=—RDMA-based Flow-control / .% 50 /lr —=—RDMA-based Flow-control|—
N sr - 4- NIC-assisted Flow-control / P I - 4- NIC-assisted Flow-control
= 40 yas = 40 7 —
5 Iz / 5 /

30 ¥ 30 X

20 ’ 20 4

10 4 o 10 4 _al

Ve PX Shae
0 T T T T T T T T T T T T T 0 T T T T T T T T T T T T T
1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K
Message Size (bytes) Message Size (bytes)

Figure 9:Buffer Utilization with SDP buffer size of : (a) 8KB x 8 credits = 64KB and (b) 32KB x 8 credits = 256KB

2. Although the overall trend of these results is similahi® bandwidth test (Figure 6(b)), we notice that the
buffer utilization peaks a lot more rapidly; that is, for a Bbuffer size of 64KB, peak buffer utilization is
achieved at a message size of 512B itself. This indicatéghbasender is able to pack data into the send
buffers and is ready to transmit it, but the receiver is nd¢ &b receive data as fast, resulting in more data

being accumulated in the SDP buffers and consequently abhiff@r utilization.

6.3 Application-based Evaluation

In this section, we evaluate the three flow-control desigasetd on two different applications, virtual micro-
scope [15] and iso-surface visual rendering [14], that Heaen developed using the data-cutter library [12]. We

first give an overview of the data-cutter library and the twplecations, and then demonstrate their performance

using the different flow-control designs.

Overview of the Data-cutter Library: Data-Cutter is a component-based framework [13, 16, 23d24él-
oped by University of Maryland. It provides a framework, ledlfilter-stream programming, for developing
data-intensive applications. In this framework, the aggiion processing structure is implemented as a set of
components, callefilters. Data exchange between filters is performed througtiemmabstraction that denotes

a unidirectional data flow from one filter to another. The allggrocessing structure of an application is realized
by afilter group, which is a set of filters connected through logical streafrsapplication query is handled as

a unit of work (UOW) by the filter group. The size of the UOW also represehésgranularity in which data
segments are distributed in the system and the granularityhich data processing is pipelined. Several data-
intensive applications have been designed and developesity the data-cutter run-time framework such as the

virtual microscope application and the iso-surface visaatlering application.

16

Virtual Microscope:Virtual microscope [15] is a digitized microscopy applicat The software support required

to store, retrieve, and process digitized slides to provitiractive response times for the standard behavior of a
physical microscope is a challenging issue [4, 15]. The rdifitulty stems from the handling of large volumes
of image data, which can range from a few hundreds of megshtigteeveral gigabytes. At a basic level, the
software system should emulate the use of a physical migpeséncluding continuously moving the stage and
changing magnification. The processing of client querigsires projecting high-resolution data onto a grid of

suitable resolution and appropriately composing pixelpmireg onto a single grid point.

Iso-surface Visual Renderinglso-surface rendering [17] is widely used technique usechamy application
areas, including environmental simulations, biomedicages, and oil reservoir simulators, for extracting and
simplifying the visualization of large datasets within a @@lume. In this paper, we utilize a component-based

implementation of iso-surface rendering [14].

Evaluation of the Data-cutter Applications: Figure 10 shows the performance of the virtual microscogk an
iso-surface visual rendering applications for the diffeéerdow-control designs. Both applications have been exe-
cuted with a UOW of 1KB. The complete dataset is about 1GB¢ivis hosted on RAM diskin order to avoid
disk fetch overheads in the experiment. The virtual miaopscapplication used five filtersead data decom-
press clip, zoom andview. For this application, five instances of the filter groupdl@s5 filters) were placed on
13 dual-processor nodes. The iso-surface visual rendegplijcation used four filtergead datasetiso-surface
extraction shade and rasterizeandmerge/view For this application, six instances of the filter group dt@4
filters) were placed on 12 dual-processor nodes. Each fi#gopns some computation and communicates the
processed data to the next filter. Once the communicatiamitiated, the filter starts computation on the next

UOW, thus attempting to overlap communication with compaia

As shown in the figure, credit-based flow-control shows pasfggmance for both applications with all dataset
sizes, while RDMA-based flow-control and NIC-assisted RDigi#sed flow-control achieve significantly better
performance. In these applications, since multiple UOVWspmpcessed and communicated to the next filter,
the coalescing capability of these designs allows themilizeithe network more effectively and hence achieve
better performance. Our designs outperform credit-basaddbntrol by around 10% for the virtual microscope

application and close to 20% for the iso-surface visual eend application.

We also notice no major difference in the performance of RD&&ed flow-control and NIC-assisted RDMA-

based flow-control. This result shows that the enhanced aoriwation progress is not very beneficial since the

17

Virtual Microscope Application Iso-surface Application

4
®
o
o

IN
o
~
o
o

O Credit-based Flow-control L O Credit-based Flow-control

B RDMA-based Flow-control
W RDMA-based Flow-control

[t

ONIC-assisted Flow-control

ONIC-assisted Flow-control

- W -

512x512 1024x1024 2048x2048 4096x4096 1024x1024 2048x2048 4096x4096 8192x8192
Dataset Dimensions Dataset Dimensions

L

Execution Time (secs)
5
o
o

Execution Time (secs)
N
- (62 N (%)) w o =

4
w»

o

Figure 10:Evaluation with the Data-cutter Library: (a) Virtual Microscope Application and (b) Iso-surface Visual
Rendering Application

applications themselves frequently make communicatidie taensure such progress.

7 Related Work

The concept of high-performance sockets, such as SDP, keasapeund for some time over different networks.
Shah, et al., from Intel, were the first to demonstrate suclmglementation over the GigaNet cLAN net-
work [25]. This was followed by other implementations of liigerformance sockets [21, 20, 11, 10]. After
such high-performance sockets were standardized by thestiydto form SDP, different implementations and
evaluations of this standard have evolved [9, 19, 18, 8]. gaper extends these previous designs to provide

efficient flow-control and strongly complements this pressoesearch.

Liu and Panda had previously studied the capabilities ofdRBltvare flow-control with respect to the Message
Passing Interface (MPI) [22]. However, their study did natndine the capabilities of IB hardware flow-control
with any software technigues and thus did not achieve anyifiignt performance gains. In our paper, in-
stead of directly using hardware flow-control, we combinwith software techniques to coalesce messages
and thus achieve good performance. In summary, our papeidgsoa novel and interesting contribution for

high-performance programming layers such as SDP.

8 Concluding Remarks and Future Work

Like many other high-speed networks, IB requires the rexgivocess to inform the NIC, before the data arrives,
about buffers in which incoming data has to be placed. Tlhgsirement mandates the need for flow-control to
ensure that the sender does not transmit messages befarecéner is ready to receive them. In this paper,

we discussed the limitations with the existing flow-contr@chanism, credit-based flow-control, in the Sockets

18

Direct Protocol (SDP) over IB. Specifically, we pointed dudttSDP currently does not take advantage of various
features provided by IB. For example, RDMA communicatiomisged only for zero-copy data transfer, and its
other capabilities such aender-side buffer managememe unutilized. Similarly, IB provides other features,
such as hardware flow-control, that have not been harnessfd. sThus, in this paper, we proposed two new
flow-control mechanisms, known as RDMA-based flow-contrall &1C-assisted RDMA-based flow-control,
to handle these limitations and improve the resource usadegerformance of SDP. We presented a detailed
overview of the two designs and evaluated them using mierezbmarks as well as applications. Our results
show that these schemes can achieve nearly an order-oftomdgyimprovement in the bandwidth achieved by
SDP. Application-level evaluation reveals that these swsecan provide around 10% improvement in perfor-
mance for a virtual microscope application and close to 20%rovement in performance for an iso-surface

visual rendering application.

As future work, we would like to study similar flow-control glgns in other programming models, such as
the Message Passing Interface, which currently utilizelictegased flow-control mechanisms. Also, this work
was done with our in-house SDP implementation over the VA#bs implementation provided by Mellanox

Technologies. We would like to port our changes to otherkstaach as OpenFabrics SDP as well.

References

[1] InfiniBand Trade Association. http://www.infinibandtam.
[2] InfiniBand Trade Association, InfiniBand Architecturpeification, Volume 1, Release 1.0. http://www.infinibedom.
[3] SDP Specification. http://www.rdmaconsortium.orgtre

[4] A. Afework, M. D. Beynon, F. Bustamante, A. Demarzo, Rriéga, R. Miller, M. Silberman, J. Saltz, A. Sussman, and’sang.
Digital Dynamic Telepathology - The Virtual Microscope. Rroceedings of the 1998 AMIA Annual Fall Symposiémerican

Medical Informatics Association, November 1998.
[5] OpenFabrics Alliance. http://www.openib.org.
[6] S.Bailey and T. Talpey. Remote Direct Data Placement@RD April 2005.

[7] P.Balaji, S. Bhagvat, H.-W. Jin, and D. K. Panda. Asymctous Zero-copy Communication for Synchronous Socketsiisbckets
Direct Protocol (SDP) over InfiniBand. lthe Workshop on Communication Architecture for ClusterQ¥; held in conjunction

with the IEEE International Parallel and Distributed Pragsing Symposium (IPDPS3hodes Island, Greece, Apr 2006.

[8] P. Balaji, W. Feng, Q. Gao, R. Noronha, W. Yu, and D. K. Ranéiead-to-TOE Evaluation of High Performance Sockets over
Protocol Offload Engines. IRroceedings of the IEEE International Conference on Cluemputing Boston, MA, Sep 27-30
2005.

19

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

P. Balaji, S. Narravula, K. Vaidyanathan, S. Krishnamtbyg, J. Wu, and D. K. Panda. Sockets Direct Protocol oveniB&ind in
Clusters: Is it Beneficial? IfEEE International Symposium on Performance Analysis sfe®ys and Software (ISPAS3)04.

P. Balaji, P. Shivam, P. Wyckoff, and D.K. Panda. HighfBenance User Level Sockets over Gigabit EthernetPioceedings of

the IEEE International Conference on Cluster ComputiBgptember 2002.

P. Balaji, J. Wu, T. Kurc, U. Catalyurek, D. K. Panda, ahdSaltz. Impact of High Performance Sockets on Data Intensi
Applications. InProceedings of the IEEE International Symposium on HigtidPerance Distributed Computing (HPD(003.

M. Beynon, T. Kurc, A. Sussman, and J. Saltz. Design aofemfework for Data-Intensive Wide-Area Applications.HAroceedings

of the 9th Heterogeneous Computing Workshop (HCW2@@@)es 116—130. IEEE Computer Society Press, May 2000.

M. D. Beynon, T. Kurc, U. Catalyurek, C. Chang, A. Sussmand J. Saltz. Distributed Processing of Very Large Désaséh
DataCutter.Parallel Computing October 2001.

M. D. Beynon, T. Kurc, U. Catalyurek, and J. Saltz. A Campnt-based Implementation of Iso-surface Rendering igwalizing
Large DatasetsReport CS-TR-4249 and UMIACS-TR-2001-34, University ofyMad, Department of Computer Science and
UMIACS 2001.

U. Catalyurek, M. D. Beynon, C. Chang, T. Kurc, A. Sussmand J. Saltz. The Virtual MicroscopdEEE Transactions on

Information Technology in Biomedicin2002.
Common Component Architecture Forutrttp://www.cca-forum.org

J. Gao and H. Shen. Parallel View Dependent Isosurfateé&tion using Multi-Pass Occlusion Culling. Rioceedings ACM/IEEE
Symposium on Parallel and Large Data Visualization and Giap ACM SIGGRAPH, 2001.

D. Goldenberg, M. Kagan, R. Ravid, and M. Tsirkin. Trpasently Achieving Superior Socket Performance using Zaopy
Socket Direct Protocol over 20 Gb/s InfiniBand Links. Workshop on Remote Direct Memory Access (RDMA): Applicatio

Implementations, and Technologies (RAPQO05.

D. Goldenberg, M. Kagan, R. Ravid, and M. Tsirkin. Zerop® Sockets Direct Protocol over InfiniBand - Preliminaryplemen-

tation and Performance Analysis. [IBEE Hot Interconnects: A Symposium on High Performancer¢oinnects2005.

J. S. Kim, K. Kim, and S. I. Jung. Building a High-Perfaante Communication Layer over Virtual Interface Architeeton Linux

Clusters. InProceedings of the IEEE International Conference on Supepting (ICS)2001.

J. S. Kim, K. Kim, and S. I. Jung. SOVIA: A User-level Satk Layer Over Virtual Interface Architecture. Broceedings of the

IEEE International Conference on Cluster Computiag01.

J. Liu and D. K. Panda. Implementing Efficient and SclEdHow Control Schemes in MPI over InfiniBand. Vorkshop on

Communication Architecture for Clusters (CA@)ril 2004.
R. Oldfield and D. Kotz. Armada: A Parallel File Systenmn @omputational Grids. IfProceedings of CCGrid200May 2001.

B. Plale and K. Schwan. dQUOB: Managing Large Data Flblsgg Dynamic Embedded Queries.|IEEE International Confer-
ence on High Performance Distributed Computing (HPD&)gust 2000.

H. V. Shah, C. Pu, and R. S. Madukkarumukumana. HighdPerdince Sockets and RPC over Virtual Interface (VI) Arattitee.

In International Workshop on Communication and Architect@apport for Network-Based Parallel Computing (CANPT)99.

20

The submitted manuscript has been created by UChicago AegdrlC, Operator of Argonne National Laboratory (“Argoiine Argonne, a U.S
Department of Energy Office of Science laboratory, is ogeramnder Contract No. DE-AC02-06CH11357. The U.S. Goventmmatains for itself, an
others acting on its behalf, a paid-up, nonexclusive, acable worldwide license in said article to reproduce, gremlerivative works, distribute copi

to the public, and perform publicly and display publicly, tyon behalf of the Government.

£S

21

