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Abstract

The Sockets Direct Protocol (SDP) is an industry standard toallow existing TCP/IP sockets based applications

to be executed on high-speed networks such as InfiniBand (IB). Like many other high-speed networks, IB

requires the receiver process to inform the network interface card (NIC), before the data arrives, about buffers

in which incoming data has to be placed. To ensure that the receiver process is ready to receive data, the sender

process typically performs flow-control on the data transmission. Existing designs of SDP flow-control are

naive and do not take advantage of several interesting features provided by IB. Specifically, features such as

RDMA are only used for performing zero-copy communication,although RDMA has more capabilities such

as sender-side buffer management (where a sender process can manage SDP resources for the sender as well

as the receiver). Similarly, IB also provides hardware flow-control capabilities that have not been studied in

previous literature. In this paper, we utilize these capabilities to improve the SDP flow-control over IB using

two designs:RDMA-based flow-controlandNIC-assisted RDMA-based flow-control. We evaluate the designs

using micro-benchmarks and real applications. Our evaluations reveal that these designs can improve the

resource usage of SDP and consequently its performance by anorder-of-magnitude in some cases. Moreover

we can achieve 10-20% improvement for various applications.

∗This research is funded in part by DOE grants #DE-FC02-06ER25749 and #DE-FC02-06ER25755; by NSF grants #CNS-0403342
and #CNS-0509452; by an STTR subcontract from RNet Technologies; and by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Departmentof Energy
(contract DE-AC02-06CH11357).

1



1 Introduction

The Sockets Direct Protocol (SDP) [3] is an industry standard to allow existing TCP/IP sockets based applications

to be executed on high-speed networks such as InfiniBand (IB)[1] and iWARP [6] (Figure 1). It is designed

around two primary goals: (i) to allow existing applications to be directly and transparently deployed onto clusters

connected with high-speed networks and (ii) to allow such deployment while maintaining most of the network

performance for applications to utilize.

Device Driver
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SDP

Interface
Sockets
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Offloaded
Protocol RDMA Flow−control

Hardware

Application

Figure 1:SDP Architecture

There have been several implementations of SDP over

IB. The first implementation of SDP [9] utilized IB

send-receive operations to transmit data using interme-

diate buffer copies. This design takes advantage of the

hardware-offloaded protocol stack of IB to achieve high

performance while using lesser host CPU for communica-

tion processing. Later designs of SDP [19, 18, 7] extended

this to utilize IB’s remote direct memory access (RDMA) capabilities and allow for zero-copy transfer of mes-

sages. Each of these designs has its pros and cons. The buffercopy approach has to deal with memory copies on

both the sender and the receiver side during communication,which add overhead especially for large messages.

The zero-copy approaches, on the other hand, have to deal with on-the-fly registration of buffers with the net-

work interface card (NIC) and synchronization between the sender and receiver, which add overhead especially

for small and medium-sized messages. Thus, to maximize overall performance, current SDP stacks utilize the

buffer copy mechanism for communicating small and medium-sized messages (up to about 32 KB), while per-

forming zero-copy communication with RDMA for large messages (greater than 32 KB). In this paper, we deal

only with the buffer copy approach used for small and medium-sized messages.

While the existing buffer copy design takes advantage of thehardware offloaded protocol stack of IB, it is naive in

aspects such as flow-control. Like many other high-speed networks, IB requires the receiver process to inform the

NIC, before the data arrives, about buffers in which incoming data has to be placed. To ensure that the receiver

process is ready to receive data, the sender process typically performs flow-control on the data transmission.

The existing design of SDP flow-control uses send-receive-based communication, with each process managing

its local flow-control buffers. With the receiver managing its local buffers, however, the sender is not aware of

the receiver’s exact usage status and layout. Accordingly,flow-control tends to be conservative and results in
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underutilization of buffers and loss of performance.

RDMA, however, has more capabilities than just zero-copy communication. For example, it offerssender-side

buffer management. Since RDMA is completely handled by the sender process, it allows this process to have

complete control of SDP resources, such as flow-control buffers, on both the sender and receiver side. Further,

IB provides other features such as hardware flow-control, whose capabilities have not been addressed so far.

Thus, in this paper, we propose two novel designs to improve the flow-control and performance of small and

medium message communication in SDP over IB. In the first design, RDMA-based flow-control, we use RDMA

to allow the sender to manage buffers on both the sender and the receiver side. This design, as we will see in the

later sections, achieves a better utilization of the SDP buffer resources and consequently a better performance.

However, this design assumes (from a performance standpoint) that the application will perform communication

frequently enough to ensure that data is flushed out regularly from these buffers. Not doing so can result in

performance penalties. In the second design,NIC-assisted RDMA-based flow-control, we utilize the hardware

flow-control capabilities of IB to extendRDMA-based flow-controlwith communication progress (i.e., flushing

out data from the SDP buffers) even when the application doesnot perform communication frequently enough,

while not sacrificing performance.

We demonstrate the capabilities of these designs using micro-benchmarks as well as real applications. Our

results show that these designs can achieve almost an order-of-magnitude improvement in the bandwidth achieved

by medium sized messages. Moreover, we can achieve performance improvements of about 10% in a virtual

microscope application and close to 20% in an isosurface visual rendering application.

The rest of this paper is arranged as follows. We present an overview of the relevant features of IB and SDP in

Section 2. The existing flow control mechanism of SDP is discussed in Section 3. In Sections 4 and 5, we propose

the RDMA-based and NIC-assisted RDMA-based flow control mechanisms. Experimental results demonstrating

the performance of these designs is presented in Section 6. We discuss other existing literature related to our

work in Section 7. Concluding remarks and possible future work are indicated in Section 8.

2 Overview of Relevant InfiniBand Features and the Sockets Direct Protocol

In this section, we present an overview of the features provided by IB (in Section 2.1) and SDP (in Section 2.2)

that are relevant to this paper.
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2.1 Overview of InfiniBand Features

In this section, we describe IB communication semantics andthe hardware flow-control feature.

IB Communication Semantics: IB provides two types of communication semantics: channel semantics (send-

receive communication model) and memory semantics (RDMA communication model).

Channel Semantics:In channel semantics, every send request needs a corresponding receive request at the remote

end. Accordingly, the receiver process has to actively participate in communication. The sender posts a send work

queue entry (WQE) to the NIC informing it about the location of the buffer from which data has to be sent out.

Similarly, before any data arrives, the receiver posts a receive WQE to the NIC describing the location where the

incoming data has to be placed. The NIC uses these WQEs to carry out the actual data transfer, on completion

of which the WQEs are placed in completion queues (CQs) and updated to reflect the amount of data transmitted

(or received), as well as any errors that may have occurred during communication.

Memory Semantics:In memory semantics, RDMA operations are used. These operations are transparent at the

remote end since they do not require the remote end to be involved in communication. Therefore, in an RDMA

operation, the sender manages both the local and the remote buffers. This capability is referred to assender-side

buffer management. There are two kinds of RDMA operations: write and read. In RDMA write, the initiator

directly writes data into the remote node’s buffer; in RDMA read, the initiator directly reads data from the remote

node’s buffer. RDMA operations also have a variant known asRDMA with immediate data. While RDMA with

immediate data operations lose receiver transparency since they require a receive WQE to be posted, they retain

the sender-side buffer management capability; that is, thesender can still dictate the location to which the data is

actually written. On completion of the data transfer, the receive WQEs provide information to the receiver about

how much data was written and to what location.

IB Hardware Flow-control: IB provides an end-to-end (or message-level) flow-control capability for reliable

connections that can be used by a receiver NIC to optimize theuse of its resources. A sender NIC cannot send a

message unless it has appropriate credits to do so. Each credit represents the receiver’s willingness to receive one

inbound message. Specifically, each credit represents one WQE posted to the receive queue. A credit, however,

does not mean that enough physical memory is allocated. Evenif a credit is available, the inbound message may

be larger than the buffer space allotted by the receiver. Thus, the sender and receiver have to synchronize, in

software, the size of the message before any transmission. More details about this capability can be found in [2].
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2.2 Sockets Direct Protocol

SDP is an IB and iWARP-specific protocol standard for TCP/IP sockets that focuses on the wire protocol, finite

state machine, and packet semantics. Other details can be implementation specific. SDP’s upper layer protocol

(ULP) interface is a byte-stream protocol. The mapping of the byte stream protocol to the underlying message-

oriented network semantics is designed to enable data transfer by one of two methods: through intermediate

private buffers using a buffer copy or directly between ULP buffers in a zero-copy manner.

Buffer-copy Communication: For buffer-copy communication (Figure 2(a)) [9], SDP utilizes IB send-receive

operations. On asend() call, application data that needs to be communicated is copied into intermediate SDP

flow-control buffers and transmitted to the corresponding intermediate buffers on the receiver side. On arecv()

call, this data is copied to the final application buffer. Thememory copy overhead increases with message size,

making this approach beneficial only for small and medium-sized messages.

Zero-copy Communication: For zero-copy communication (Figure 2(b)) [19, 18, 7], two control messages are

used,source-availandsink-avail. When the receiver calls therecv() call, if the sender has not sent the data

yet, the receiver sends asink-availmessage containing the receive buffer information to the sender. The sender

uses this to directly RDMA write the data into the receive buffer. A similar approach using RDMA read and

the source-availcontrol message is specified when the sender calls thesend() operation before the receiver

is ready to receive the data. The control messages associated with such zero-copy communication have two

disadvantages. First, explicit synchronization is required between the sender and the receiver, i.e., until both

the sender and the receiver have arrived at their respectivecommunication calls in the application, no data can

be transferred. Second, the exchange of control messages adds overhead. Thus, zero-copy communication is

typically only beneficial for large messages where the benefit is greater than the overhead.

5



Buffer
Flow−control

SDP

Buffer
Flow−control

SDP

Buffer
Flow−control

SDP

Buffer
Flow−control

SDP

Buffer
Flow−control

SDP

Buffer
Flow−control

SDP

Buffer
Flow−control

SDP

Buffer
Flow−control

SDP

Application

SDP

Network

Application

Sender

Application

Receiver

ReceiveTransmit

Messages Messages
Copy Copy

Figure 3:Credit-based Flow-control Mechanism

3 Existing Credit-based Flow-control Mechanism

As discussed earlier, several high-speed networks, including IB, require the receiver to prepost WQEs informing

the NIC about receive buffers before a message arrives. These WQEs contain information about where the

incoming data has to be placed. To ensure that receive WQEs are posted before any data arrives, like many other

communication libraries, SDP performs flow-control of messages being sent. Current SDP implementations

use a credit-based approach for achieving such flow-control. Note that this flow-control is separate from the

hardware flow-control performed by IB and is a consequence ofadopting existing designs of high-performance

sockets on other networks [25, 21, 10] to SDP over IB. In Section 3.1, we provide an overview of the credit-based

flow-control mechanism. In Section 3.2 we describe the limitations of this approach.

3.1 Overview of Credit-based Flow-control

In credit-based flow-control (Figure 3), the sender is initially given a number of credits, sayN . Each process

allocatesN SDP send andN SDP receive flow-control buffers, each of sizeS bytes. The receiver postsN receive

WQEs to the NIC pointing to the receive flow-control buffers;that is, the nextN messages will go into these

buffers. On asend() call, each message smaller thanS bytes is copied into a send buffer and transmitted to the

corresponding receive buffer. Messages larger thanS bytes are segmented and transmitted in a pipelined manner.

On arecv() call, data is copied from the receive buffer to the destination buffer, and an acknowledgment is

sent to the sender informing it that the receive buffer is free to be reused. The sender loses a credit for every

message sent and gains a credit for every acknowledgment received.

Previous designs [9] also use extensions to credit-based flow-control to delay acknowledgments. In other words,

instead of sending an acknowledgment for every message received, the receiver can send an acknowledgment
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only after half the credits have been used up. This approach reduces the amount of communication required and

improves performance.

3.2 Limitations with Credit-based Flow-control

Credit-based flow-control has two primary disadvantages: buffer utilization and network utilization.

Buffer Utilization: In credit-based flow control, each message uses at least one credit irrespective of its size.

For example, suppose the sender wants to sendN messages each 1B, and let us say each SDP flow-control buffer

is 8KB. Since the receiver has prepostedN WQEs pointing to its receive buffers, each message is received in

a separate receive buffer, effectively wasting the 99.98% of the SDP buffer space allotted; in other words, only

1B of each 8KB SDP buffer is utilized. This wastage of buffersalso reflects on the number of messages that

are transmitted; excessive underutilization of buffer space results in the senderbelievingthat it has used up the

receiver resources, in spite of having free buffer space available.

Network Utilization: In credit-based flow-control, onsend() call, SDP copies the message into the send flow-

control buffer, waits until it has enough credits, and immediately transmits the data to the receiver. Thus, when

the application is sending out small or medium-sized messages, these messages are directly transmitted on the

network. This approach results in underutilization of the network and consequently loss of performance. On the

other hand, the capability to coalesce multiple small messages can allow SDP to transmit larger messages over

the network and thus improve network utilization.

4 Design Overview of RDMA-based Flow-control

As described in Section 3.2, while credit-based flow-control is simple and widely accepted, it has several limi-

tations, especially when communicating small and medium-sized messages. In this section, we describe a new

flow-control approach, known as RDMA-based flow-control, that utilizes the RDMA capabilities of IB to im-

prove the resource usage and performance of SDP flow-control.

4.1 Overview of RDMA-based Flow-control

Figure 4 illustrates RDMA-based flow-control, which differs from credit-based flow-control in two areas: im-

proved buffer utilization and improved network utilization.

Improving Buffer Utilization: RDMA-based flow-control uses RDMA write with immediate dataoperations to

allow the sender to manage where exactly data is buffered on the sender as well as the receiver SDP flow-control
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buffers. This approach allows data to be better packed, thusutilizing the buffers more efficiently. In credit-based

flow-control, N SDP flow-control buffers each of sizeS are allocated, whereN is the number of credits. In

RDMA-based flow-control, on the other hand, one large flow-control buffer of size(N × S) is allocated. When

the first message (sizeP ) has to be communicated, it is placed (using RDMA write with immediate data) at

the start of the receive buffer. Then, when the second message of sizeQ has to be communicated, the sender

knows the exact usage of the receive buffer; in other words, the firstP bytes of the SDP buffer are used. Thus,

the second message is written (again, using RDMA write with immediate data) starting at byte(P + 1) of the

receiver buffer. This approach allows the sender to completely utilize the available space in the sender as well

as receiver SDP buffers. On arecv() call, once data is copied from the receiver SDP buffer to the destination

buffer, the receiver sends an acknowledgment to the sender informing it about the additional available space.

Improving Network Utilization: As long as space is available in the SDP receive buffer, RDMA-based flow-

control follows a similar approach as credit-based flow-control; it sends out the data as soon as asend() is

called. Once no more space is available on the receiver side,messages are copied into SDP send buffers, and

control is returned immediately to the application. This approach gives RDMA-based flow-control an opportunity

to coalesce multiple small messages. Once space is freed up in the SDP receive buffer, this data is sent out as

one large message instead of multiple small messages. This approach as two advantages. First, since as long as

space is available in the receive buffer data is sent out immediately, latency of small messages is not hurt. In

fact, when only a few small messages are transmitted, the performance should be similar to that of credit-based

flow-control. Second, when a large number of small or medium messages are transmitted, though the first few

messages are sent out immediately, the remaining messages are coalesced and sent out as a few large messages.

This approach improves the network utilization and achieves better performance.
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In summary, RDMA-based flow-control avoids buffer wastage by using the sender-side buffer management ca-

pability of RDMA. Moreover, it improves network utilization and communication performance by coalescing

messages.

4.2 Limitations of RDMA-based Flow-control

While RDMA-based flow-control can achieve better resource utilization and high performance, it has one disad-

vantage: the lack of communication progress in some cases. We describe this limitation in this section.

Let us consider an example with an SDP flow-control buffer of 64KB where the sender initiates 64 message

transfers of 2KB each, for a total of 128KB. Of these, the first32 messages (64KB) are directly transferred to

the SDP buffer on the receiver side. Then, if the receiver is not actively receiving data, the sender will run out

of space in the receiver buffer to write more data. Thus, the remaining 32 messages (64KB) are copied to the

SDP send buffer, and control is returned to the application.At this time, suppose the application on the sender

side goes into a large computation loop. The application on the receiver side, however, calls therecv() call,

copies the 64KB it has already received, frees the SDP receive buffer, and sends an acknowledgment to the sender

informing it that the SDP receive buffer is free to be reused.In this situation, though the sender has buffered data

that needs to be sent and has been informed by the receiver about available space in the receive buffer, it cannot

seethis information until the application comes out of the computation loop and calls a communication function.

Thus, communication progress is halted.

Note that credit-based flow-control does not face this limitation because for everysend() call, if the sender does

not have credits, it blocks until credits are received and posts the data to the network before returning control.

In Section 6.2.2, we illustrate the impact of the poor communication progress in RDMA-based flow-control using

experimental evaluation.

5 Design Overview of NIC-assisted RDMA-based Flow-control

Both credit-based flow-control and RDMA-based flow-controlhave disadvantages. Credit-based flow-control

suffers from underutilization of SDP buffer resources and the network and results in low performance. While

RDMA-based flow-control improves these aspects, it suffersfrom limitations with respect to communication

progress when a large number of small messages have to be transmitted. To deal with these issues, in this section

we describe a new mechanism known as NIC-assisted RDMA-based flow-control. This mechanism extends

RDMA-based flow-control by utilizing the hardware flow-control capabilities offered by IB. In other words, this
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scheme provides a hybrid software-hardware approach that utilizes the capabilities of software-based schemes

such as RDMA-based flow-control to coalesce data as appropriate and improve performance; at the same time it

utilizes the IB NIC to ensure asynchronous (hardware-controlled) communication progress.

NIC-assisted flow control comprises of two main sub-schemes: virtual window scheme, which aims at utilizing

the IB hardware flow-control capability while handling its shortcomings, andasynchronous interrupt scheme,

which enhances the virtual window scheme to improve performance by coalescing data.

5.1 Virtual Window Scheme

IB’s hardware flow-control is not a byte-level flow-control,but rather a message-level flow-control; it makes sure

that the sender NIC sends out only as many messages as the receiver NIC is expecting. The onus of ensuring

that the receiver has appropriate buffer space for each message is on the upper layers such as SDP. To handle

this situation, we utilize thevirtual window (W)scheme. The primary idea of this scheme is to ensure that each

posted receive WQE has a guarantee on the amount of buffer space available. For example, if the sender wants

to send a message of 8KB, the receiver has to post a receive WQEonly after 8KB of space is available.

In this scheme, the receiver posts a receive WQE only when at least the necessary virtual window size space is

available in the SDP receive buffer. Thus, if the SDP buffer size is S bytes, the receiver initially postsS/W

receive WQEs, whereW is the virtual window size. The sender, likewise, makes surethat message segments

posted to the network are always smaller than or equal toW bytes, by performing appropriate segmentation.

Thus, the firstS/W messages can definitely be accommodated in the SDP receive buffer. If the sender has to

send more messages thanS/W , it posts send WQEs corresponding to the additional data. However, since all the

posted receive WQEs would be used up, IB hardware flow-control ensures that this data is not sent out by the

sender NIC until the receiver posts additional receive WQEs.

We note that although each receive WQE corresponds toW bytes of available buffer space, this space can be

anywhere in the SDP receive buffer; that is, the mapping between the WQE and the actual location of the corre-

sponding buffer is not performed by the receiver. The senderuses RDMA write with immediate data operations

to manage the actual location of the buffer to which each receive WQE maps. This flexibility allows the receiver

to manage only the logical space allocated to each WQE, instead of the actual SDP receive buffer. For example,

suppose the SDP buffer is 64KB and the virtual window is 8KB. The receiver initially posts 8 receive WQEs.

The virtual window allocated to each receive WQE would be bytes (1 to 8K), (8K+1 to 16K), and so forth. Now,

suppose the first message is only 1KB. In this case, the virtual windows corresponding to the remaining WQEs
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automatically shift by 7KB and would be bytes (1K+1 to 9K), (9K+1 to 17K), and so forth. The final 7KB is

retained as free space. Since the sender is managing the actual SDP receive buffers, this shifting of the virtual

windows is transparent to the receiver process. Later, if the second message that arrives is also 1KB, the virtual

windows for the remaining WQEs again automatically shift and leave a total of 14KB of free space. Since this

free space is more than the virtual window size (8KB), SDP canpost an additional WQE, after which 6KB of

free space will still be available. When the receiver applications calls arecv(), the data in the SDP receive

buffer is copied to the destination buffer, and more free space is created.

5.2 Asynchronous Interrupt Scheme

While the virtual window scheme provides capabilities to utilize IB hardware flow-control, it does not utilize

any techniques such as coalescing messages to improve performance. The asynchronous interrupt scheme thus

is designed based on two primary goals: (i) to coalesce messages and improve performance and (ii) to utilize the

virtual window scheme together with IB hardware interruptsto carry out asynchronous communication progress

without hurting performance.
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Figure 5:NIC-assisted RDMA-based Flow-control Mechanism

Message Coalescing:As shown in Figure 5, in this scheme the SDP send buffer is divided into two portions:

NIC-handled buffer and software-handled buffer. The NIC-handled buffer follows a similar pattern as the virtual

window scheme. That is, data is copied into the local SDP sendbuffer, and a corresponding send WQE is posted

to the NIC. The NIC uses IB hardware flow-control to send the data only after the receiver posts a receive WQE.

After the NIC-handled buffer is full, data is copied into thesoftware-handled buffer. However, this data is not

directly sent out but is held in the buffer to allow it to be coalesced with later messages.

Asynchronous Communication Progress:During message coalescing, data is copied into the software-handled
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SDP buffer and control returned to the application. If more messages are communicated later, they can be

coalesced together with this data to form larger messages and thus improve performance. If no other messages

are communicated later, however, we need to asynchronouslyflush this data out. To do so, we request IB hardware

interrupts for the messages in the NIC-handled buffer. Thus, once the first message that is queued in the NIC-

handled buffer is transmitted, an interrupt is generated that is appropriately handled to flush out the data in

the software-handled buffer as well. Although hardware interrupts are typically expensive, in this design the

NIC can continue to transmit other messages in the NIC-handled buffer (using IB hardware flow-control), thus

parallelizing the interrupt processing with communication. This design allows us to handle the interrupt without

facing any performance penalty.

6 Experimental Results

In this section, we compare the performance of RDMA-based flow-control and NIC-assisted RDMA-based flow-

control, with that of credit-based flow-control. We first describe the experimental test-bed in Section 6.1. Next,

we evaluate the designs based on micro-benchmarks in Section 6.2 and then on real applications in Section 6.3.

6.1 Experimental Test-bed

The experimental test-bed consists of a 16-node cluster with dual 3.6 GHz Intel Xeon EM64T processors. Each

node has a 2 MB L2 cache and 512 MB of 333 MHz DDR SDRAM. The nodesare equipped with Mellanox

MT25208 InfiniHost III DDR PCI-Express adapters and are connected to a Mellanox MTS-2400, 24-port fully

nonblocking DDR switch. The SDP stack is an in-house implementation at the Ohio State University. This

stack is similar to other SDP stacks such as that available inthe OpenFabrics distribution [5] except that it

is completely in user-space (OpenFabrics SDP is in kernel-space) and is built over the VAPI verbs interface

provided by Mellanox Technologies (OpenFabrics SDP is build over the OpenFabrics Gen2 verbs interface).

For each experiment, ten or more runs/executions are conducted, the highest and lowest values are dropped (to

discard anomalies), and the average of the remaining valuesis reported. For micro-benchmark evaluations, the

results of each run are an average of 10,000 or more iterations.

6.2 Micro-benchmark Based Evaluation

In this section, we evaluate the flow-control designs using various micro-benchmark tests.
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Figure 6:SDP micro-benchmark evaluation: (a) Ping-pong Latency and (b) Uni-directional Bandwidth

6.2.1 Ping-pong Latency and Uni-directional Bandwidth

Ping-pong Latency: Figure 6(a) shows the ping-pong latency of SDP with the threeflow-control designs. In

this experiment, the sender sends a message of sizeS to the receiver, on receiving which the receiver sends back

another message of the same size to the sender. This is repeated several times and the total time averaged over

the number of iterations to give the average round-trip time. The ping-pong latency reported here is one-half of

the round-trip time, that is, the time taken for a message to be transferred from one node to another.

As shown in the figure, all three schemes perform identically. This result is expected because the three schemes

differ only in the way they handle flow-control when there is either no remote credit available (in credit-based

flow-control) or no space available in the remote SDP buffer (in RDMA-based and NIC-assisted flow-control).

In the ping-pong latency test, only one message is communicated before the sender waits for a response from the

remote process. Thus, there is no flow-control issue in this test and hence all schemes behave identically.

Unidirectional Bandwidth: Figure 6(b) shows the unidirectional bandwidth of the threeflow-control mecha-

nisms. In this experiment, the sender sends a single messageof sizeS a number of times to the receiver. On

receiving all the messages, the receiver sends back one small message to the sender indicating that it has received

the messages. The sender calculates the total time, subtracts the one way latency of the message sent by the

receiver, and based on the remaining time calculates the amount of data it had transmitted per unit time.

As shown in the figure, RDMA-based flow-control achieves the best performance, while credit-based flow-control

achieves the worst, especially for small and medium-sized messages. For messages in the 256B to 4KB range,

we notice almost an order of magnitude better performance. This behavior is expected because RDMA-based

flow-control coalesces messages and thus utilizes the network more effectively resulting in a significantly better

performance. In the figure, we also notice that the performance of NIC-assisted RDMA-based flow-control is
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very close to that of RDMA-based flow-control. This result shows that our scheme is able to effectively hide the

cost of interrupt handling by overlapping interrupt processing with data transfer time.

6.2.2 Communication Progress Benchmark
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Figure 7:Communication Progress Test: (a) An example of good communication progress – sender and receiver
computations are nearly parallelized and (b) An example of bad communication progress – sender and receiver
side computations are serialized.

The communication progress test (Figure 7) is similar to a ping-pong latency test but with two changes. First,

instead of one message being sent in each direction, a burst of 100 messages is used. Second, after each burst,

an additional computation is added. If the flow-control scheme can achieve good communication progress (Fig-

ure 7(a)), it can send out data even when the application is performing other computation. Thus, the receiver can

receive the data immediately, and the computation on both the sender and the receiver is parallelized to some ex-

tent. However, if the flow-control scheme buffers data in itssend buffer without performing good communication

progress (Figure 7(b)), the transmission of data is delayeduntil the computation is completed; that is, the receiver

would be waiting to receive more data, which is available in the sender’s SDP buffer but has not been transmitted.

Only after the sender’s computation is complete, when it tries to receive data, is this data flushed out. Thus, in

this case, the computation on the sender and receiver is completely serialized resulting in poor performance.
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In Figure 8, we report the performance of the three flow-

control schemes for a message size of 4KB with varying

amounts of computation. In the figure, we notice that when

there is no or minimal computation, RDMA-based flow-
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control and NIC-assisted RDMA-based flow-control take

the least amount of time. Credit-based flow-control, on

the other hand, takes the most time. As the amount of

computation increases, however, we see that credit-based

flow-control and NIC-assisted RDMA-based flow-control

scale well, while RDMA-based flow-control deteriorates rapidly. In fact, for computation amounts greater than

1000µs, it is outperformed even by credit-based flow-control.

This test shows that credit-based flow-control and NIC-assisted flow-control are able to achieve good commu-

nication progress even when the application performs interleaving computation. For credit-based flow-control,

when no remote credits are available, the scheme just blocks, waiting for the credits. Thus, thesend() call

does not return until the data is actually sent out. Consequently, the communication progress is good. For NIC-

assisted RDMA-based flow-control, although data is buffered in the SDP send buffer without being immediately

transmitted, the NIC interrupt ensures that the data is flushed out even when the application is busy with its

computation. Thus, again the communication progress is good. RDMA-based flow-control, on the other hand,

is not able to achieve good communication progress because this scheme buffers data hoping to coalesce it with

later messages. Without communicating more messages, however, when the application starts doing additional

computation, the buffered data has to wait without being flushed out.

6.2.3 Buffer Utilization Test

The buffer utilization test demonstrates the amount of SDP buffer space that is utilized by the different schemes.

In this benchmark, we profile the SDP library to periodicallymonitor the amount of buffer space in which data

is already copied and is not free to be used. The average percentage usage of the buffer space is measured and

shown in Figures 9(a) (for 64KB SDP buffer size) and 9(b) (for256KB SDP buffer size). We note two important

aspects in these figures:

1. The buffer utilization of the RDMA-based flow-control andNIC-assisted RDMA-based flow-control is

much higher than that of credit-based flow-control. This is attributed to the sender-side buffer management

capability of RDMA, which allows data messages to be placed more compactly, thus allowing for improved

buffer usage. In credit-based flow-control, when each SDP buffer is 8KB (Figure 9(a)), the scheme is able

to reach 100% utilization only for message sizes of 8KB or higher. When each SDP buffer is 32KB

(Figure 9(b)), the scheme achieves a maximum of 25% buffer utilization.
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Buffer Utilization (SDP buffer size: 8KB x 8 credits = 64KB)
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Figure 9:Buffer Utilization with SDP buffer size of : (a) 8KB x 8 credits = 64KB and (b) 32KB x 8 credits = 256KB

2. Although the overall trend of these results is similar to the bandwidth test (Figure 6(b)), we notice that the

buffer utilization peaks a lot more rapidly; that is, for a SDP buffer size of 64KB, peak buffer utilization is

achieved at a message size of 512B itself. This indicates that the sender is able to pack data into the send

buffers and is ready to transmit it, but the receiver is not able to receive data as fast, resulting in more data

being accumulated in the SDP buffers and consequently a highbuffer utilization.

6.3 Application-based Evaluation

In this section, we evaluate the three flow-control designs based on two different applications, virtual micro-

scope [15] and iso-surface visual rendering [14], that havebeen developed using the data-cutter library [12]. We

first give an overview of the data-cutter library and the two applications, and then demonstrate their performance

using the different flow-control designs.

Overview of the Data-cutter Library: Data-Cutter is a component-based framework [13, 16, 23, 24]devel-

oped by University of Maryland. It provides a framework, called filter-stream programming, for developing

data-intensive applications. In this framework, the application processing structure is implemented as a set of

components, calledfilters. Data exchange between filters is performed through astreamabstraction that denotes

a unidirectional data flow from one filter to another. The overall processing structure of an application is realized

by afilter group, which is a set of filters connected through logical streams.An application query is handled as

a unit of work (UOW) by the filter group. The size of the UOW also represents the granularity in which data

segments are distributed in the system and the granularity in which data processing is pipelined. Several data-

intensive applications have been designed and developed byusing the data-cutter run-time framework such as the

virtual microscope application and the iso-surface visualrendering application.
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Virtual Microscope:Virtual microscope [15] is a digitized microscopy application. The software support required

to store, retrieve, and process digitized slides to provideinteractive response times for the standard behavior of a

physical microscope is a challenging issue [4, 15]. The maindifficulty stems from the handling of large volumes

of image data, which can range from a few hundreds of megabytes to several gigabytes. At a basic level, the

software system should emulate the use of a physical microscope, including continuously moving the stage and

changing magnification. The processing of client queries requires projecting high-resolution data onto a grid of

suitable resolution and appropriately composing pixels mapping onto a single grid point.

Iso-surface Visual Rendering:Iso-surface rendering [17] is widely used technique used inmany application

areas, including environmental simulations, biomedical images, and oil reservoir simulators, for extracting and

simplifying the visualization of large datasets within a 3Dvolume. In this paper, we utilize a component-based

implementation of iso-surface rendering [14].

Evaluation of the Data-cutter Applications: Figure 10 shows the performance of the virtual microscope and

iso-surface visual rendering applications for the different flow-control designs. Both applications have been exe-

cuted with a UOW of 1KB. The complete dataset is about 1GB, which is hosted on aRAM diskin order to avoid

disk fetch overheads in the experiment. The virtual microscope application used five filters:read data, decom-

press, clip, zoom, andview. For this application, five instances of the filter group (total 25 filters) were placed on

13 dual-processor nodes. The iso-surface visual renderingapplication used four filters:read dataset, iso-surface

extraction, shade and rasterize, andmerge/view. For this application, six instances of the filter group (total 24

filters) were placed on 12 dual-processor nodes. Each filter performs some computation and communicates the

processed data to the next filter. Once the communication is initiated, the filter starts computation on the next

UOW, thus attempting to overlap communication with computation.

As shown in the figure, credit-based flow-control shows poor performance for both applications with all dataset

sizes, while RDMA-based flow-control and NIC-assisted RDMA-based flow-control achieve significantly better

performance. In these applications, since multiple UOWs are processed and communicated to the next filter,

the coalescing capability of these designs allows them to utilize the network more effectively and hence achieve

better performance. Our designs outperform credit-based flow-control by around 10% for the virtual microscope

application and close to 20% for the iso-surface visual rendering application.

We also notice no major difference in the performance of RDMA-based flow-control and NIC-assisted RDMA-

based flow-control. This result shows that the enhanced communication progress is not very beneficial since the
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Virtual Microscope Application
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Figure 10:Evaluation with the Data-cutter Library: (a) Virtual Microscope Application and (b) Iso-surface Visual
Rendering Application

applications themselves frequently make communication calls to ensure such progress.

7 Related Work

The concept of high-performance sockets, such as SDP, has been around for some time over different networks.

Shah, et al., from Intel, were the first to demonstrate such animplementation over the GigaNet cLAN net-

work [25]. This was followed by other implementations of high-performance sockets [21, 20, 11, 10]. After

such high-performance sockets were standardized by the industry to form SDP, different implementations and

evaluations of this standard have evolved [9, 19, 18, 8]. Ourpaper extends these previous designs to provide

efficient flow-control and strongly complements this previous research.

Liu and Panda had previously studied the capabilities of IB hardware flow-control with respect to the Message

Passing Interface (MPI) [22]. However, their study did not combine the capabilities of IB hardware flow-control

with any software techniques and thus did not achieve any significant performance gains. In our paper, in-

stead of directly using hardware flow-control, we combine itwith software techniques to coalesce messages

and thus achieve good performance. In summary, our paper provides a novel and interesting contribution for

high-performance programming layers such as SDP.

8 Concluding Remarks and Future Work

Like many other high-speed networks, IB requires the receiver process to inform the NIC, before the data arrives,

about buffers in which incoming data has to be placed. This requirement mandates the need for flow-control to

ensure that the sender does not transmit messages before thereceiver is ready to receive them. In this paper,

we discussed the limitations with the existing flow-controlmechanism, credit-based flow-control, in the Sockets
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Direct Protocol (SDP) over IB. Specifically, we pointed out that SDP currently does not take advantage of various

features provided by IB. For example, RDMA communication isused only for zero-copy data transfer, and its

other capabilities such assender-side buffer managementare unutilized. Similarly, IB provides other features,

such as hardware flow-control, that have not been harnessed so far. Thus, in this paper, we proposed two new

flow-control mechanisms, known as RDMA-based flow-control and NIC-assisted RDMA-based flow-control,

to handle these limitations and improve the resource usage and performance of SDP. We presented a detailed

overview of the two designs and evaluated them using micro-benchmarks as well as applications. Our results

show that these schemes can achieve nearly an order-of-magnitude improvement in the bandwidth achieved by

SDP. Application-level evaluation reveals that these schemes can provide around 10% improvement in perfor-

mance for a virtual microscope application and close to 20% improvement in performance for an iso-surface

visual rendering application.

As future work, we would like to study similar flow-control designs in other programming models, such as

the Message Passing Interface, which currently utilize credit-based flow-control mechanisms. Also, this work

was done with our in-house SDP implementation over the VAPI verbs implementation provided by Mellanox

Technologies. We would like to port our changes to other stacks such as OpenFabrics SDP as well.
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