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SIMD Programming by Expansion

Abstract

Since its advent 30 years ago, single-instruction multiple-data (SIMD) functional units continue to

provide an opportunity for high performance at a low hardware cost. However, a general consensus is that

only a class of well-formed computations is suitable for SIMD execution. We believe that the boundary

of the class should be pushed so that more applications can get the benefit of SIMD parallelism. Our goal

is to provide programmers tools that will allow easier access to SIMD functional units. In this paper,

we describe a new method to generate SIMD instructions automatically. Unlike the current approaches

that target either loops or basic blocks, our approach targets a whole function. Instead of trying to keep

the sequential execution semantics, we semantically transform the given input function by replacing the

operators and operands with their SIMD counterparts. The output functions generated this way take

vector arguments and return a vector value. We have implemented the new method in a compiler, called

EXPAND, and show how to use it for user applications. To demonstrate the effectiveness of the new

method, we apply the EXPAND compiler to 12 GNU math library intrinsic functions. When measured

on a PowerPC G5, the transformed output codes achieve speedups ranging from 2.05 to 11.37 over the

scalar baseline.

1 Introduction

Single-instruction multiple-data (SIMD) functional units are employed in most modern microprocessors be-

cause of the potential for high performance and relatively low hardware cost [8, 10, 15, 20]. However,

automatic vectorization by compilers remains far from satisfactory. Therefore, programmers commonly

write SIMD instructions manually, either at assembly level or at a higher level using SIMD extensions to
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programming languages. However, writing parallel programs manually is not easy, is error prone, and un-

dermines the portability of the code. Our goal is to help programmers generate portable parallel programs

by providing software tools such as compilers.

Two approaches are commonly used to generate SIMD instructions automatically. The first is to adapt

the vectorization technique developed for the conventional vector machines. In this approach, each loop

is examined for the possibility of vectorization. If vectorizing the loop is both possible and profitable,

vectorization is performed on the loop. More recently, a new technique has been developed to generate

SIMD instructions from basic blocks [7, 6, 9]. In this approach, loops are unrolled to increase the amount of

SIMD parallelism. Currently, several compilers can generate SIMD instructions automatically [7, 2, 13, 5].

For such compilers to generate efficient SIMD code, however, the input program must not have certain

factors that can limit vectorization. These factors include alignment, irregular memory accesses, unknown

loop bounds during run time, function calls, true data dependency, and not enough SIMD parallelism. To

address these problems, we need to develop new techniques, or even a completely different approach.

In this paper, we describe a new approach to program SIMD functional units. Unlike the current tech-

niques that target loops or basic blocks, our approach targets whole functions. Furthermore, our approach

is a semantic transformation by which the sequential input function is transformed to a parallel version. We

use a simple example below to illustrate how this transformation works. For a sequential function in (a)

given as an input, the output of this transformation is the parallel version shown in (b).

int scalar add(int a, int b)
{

return a + b;
}

(a) scalar input

vector int vector add(vector int va, vector int vb)
{

return vec add(va, vb);
}

(b) vector output

In this transformation, scalar operators and operands in the input function are replaced with their vector

counterparts. Consequently, the original scalar semantics remain as the operations applied to an element of

the vectors in the output code, and the output code as a whole performs a sequence of vector operations,

each of which is the vector counterpart of each operation in the scalar input code.

We call this transformation expansion, and we say that the given input function is expanded when it

is transformed this way because this transform resembles scalar expansion in conventional vectorization.
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Unlike scalar expansion, however, independent scalar operands can be processed in different vector lanes

when expanded. Although we have presented a simple example, our compiler can expand functions that

have arbitrarily complex control flow with multiple return-statements and function calls. The applicability

of this transformation is significantly expanded thanks to a new technique that can generate efficient SIMD

code in the presence of control flow [16].

We suggest this approach as a general programming paradigm for SIMD functional units. Programmers

can outline1 the loopbody of a loop as a separate function that does not have any side effect and can use

our compiler to generate the corresponding vector function. This vector function can be called from the

original loop using vector arguments or inlined back to the loop. We implemented the proposed approach in

a compiler named EXPAND. We demonstrate the effectiveness of the suggested approach by applying the

compiler to 12 GNU math library intrinsic functions.

The contributions of this paper are summarized below.

• Presentation of a new approach to program SIMD functional units

• Development and implementation of the algorithm for the proposed approach

• Experimental evaluation of the implementation on 12 math intrinsic functions

In the next section, we describe the terms and concepts necessary to understand the later sections. We

introduce our approach in Section 3 and describe the algorithm in Section 4. In Section 5, we present our

implementation and the experimental results on 12 math intrinsic functions. In Section 6, we discuss related

work, and in Section 7, we summarize this paper and discuss the future work.

2 Background

We begin by describing background information about vectorization in the presence of control flow.

1Outlining is the reverse transformation of function inlining.
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2.1 Vectorization

A vector register has multiple scalar datapaths side by side. The maximum number of scalar values that

can be held in a vector register is called vector length. In modern microprocessors, the vector register width

is fixed, but the vector length varies depending on the type size of the scalar value. For example, PowerPC

G5 has 32 128-bit vector registers. Each vector register can hold 16 8-bit operands, 8 16-bit operands, or

4 32-bit operands. We say a vector memory access is aligned if the issued address is always a multiple of

the vector register width. Many modern SIMD architectures do not support strided memory accesses where

the data elements are not contiguous in memory. To load such noncontiguous data elements into a vector

register, they have to be copied into contiguous memory addresses before being loaded by using a vector

load. This process of gathering data elements into a contiguous, aligned memory is called packing. Unpacking

moves data elements from the packed locations back to their original locations. Figure 1 illustrates these

two operations. For 32-bit data elements and 128-bit vector registers, a vector register can hold four data

elements. Since moving one data element takes one scalar load and one scalar store (one arrow in Figure 1(a)),

moving all four elements takes eight scalar memory accesses. One more vector load at the end completes the

packing operation. Likewise, the unpacking operation takes the same number of scalar memory accesses but

one vector store before the scalar memory accesses for the same conditions.

(a) packing (b) unpacking

Figure 1: Packing and unpacking.

Vectorization is a process of transforming the given scalar code into a vector code to use vector registers

and vector functional units, while keeping the original semantics of the scalar code. If this transformation is

performed automatically by the compiler, it is called automatic vectorization.
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2.2 If-conversion

If-conversion removes control flow by introducing predicates. For vectorization, if-conversion plays a crucial

role when there is control flow. Since the scalar code might take different control paths for the vector length

consecutive executions, for vectorization the statements in all control paths are executed in vector mode and

the values are merged using the vector predicates representing the taken control path information. Given a

predicated instruction, the destination operand is updated with the result of the instruction if the predicate

is true. Otherwise, the result of the instruction is ignored, and the destination operand remains unchained.

We use Park and Schlansker’s RK-algorithm, which is optimal in number predicates and predicate defining

instructions [14].

2.3 Select Instruction

After if-conversion is applied to remove control flow, the scalar code forms a large basic block of predicated

instructions. Then, vectorization is performed by replacing each scalar operator and operand with the vector

counterparts. At this stage, the basic block contains vector instructions guarded by vector predicates and

can be executed if the machine supports predicated execution. For modern vector architectures that do not

support predicated execution, however, the vector predicates must be removed. To remove vector predicates,

we use select instructions that are common in modern vector ISAs [18].

2.4 Branch-on-superword-condition-code

Branch-on-superword-condition-code (BOSCC) is a branch instruction that can be conditionally taken based

on the comparison result of vector variables. AltiVec supports BOSCC instructions with AltiVec predi-

cates [11]. For example, the vector predicated instruction

Vdst = vec operation; <Vpred>

can be bypassed by introducing a BOSCC instruction as follows.

NotTaken = vec any ne(Vpred, ZeroVector)

if (NotTaken) { Vdst = vec operation; <Vpred> }

The vec any ne instruction returns true if any field of Vpred does not match the corresponding field

of ZeroVector. Assuming ZeroVector contains false values in all fields, NotTaken will be set to false only
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when all fields of Vpred are false. We use BOSCC region to refer to the sequence of instructions enclosed

by a BOSCC. A BOSCC region may contain a large number of instructions including even other BOSCCs,

enabling the vector code to bapass unnecessary instructions much like the scalar branches in the scalar

baseline [17, 16].

3 EXPAND

In Section 1, we briefly introduced the concept of a new transformation called expansion. In this section, we

formally define expand and describe its features in relation with other existing approaches.

Definition 1 A scalar operand, operator, statement, and function are said to be expanded when they are

replaced by the vector counterpart.

When a scalar operand is expanded, it is replaced by a vector operand whose elements have the type of

the original scalar operand. When a scalar operator that takes n scalar source operands is expanded, it is

scalar
operand

vector
operand

expand

replaced by the corresponding vector operator that takes n vector operands. The effect of the vector operator

is to apply the original scalar operator to each element of the vector operands. When a scalar statement of

scalar
operator

vector
operator

expand

+ + + + +

a sequential program is expanded, the consisting operands and operators are expanded to form an expanded

vector statement. Likewise, when a function is expanded, all statements in the function are expanded to

make a vector function that takes vector arguments and returns a vector value. For pointer type operands,

we expand the data objects being pointed to; that is, their reference types are expanded.

Intuitively, given a single scalar data path, the expansion transformation replicates the scalar data path

as many as the vector length times. The replicated data paths are executed at the same time, but they never

interfere with each other.
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3.1 EXPAND: A Compiler That Expands Functions

EXPAND is the name of a compiler that we have developed, and performs the expansion transformation

of the given functions. Figure 2 shows the input and output files together with the compiler. The input

file may contain multiple functions, and the functions in the input file are expanded as shown in the figure.

Since each function in the same input file is processed independently as if it is a unique function in the

input, in the remainder of this paper we focus on expanding a single function. In addition to the input and

float 
add(float x, float y)
{
  return x + y;
}

float 
sub(float x, float y)
{
  return x - y;
}

vector float 
_ExP_add(vector float x, vector float y)
  {
    vector float t1;

    t1 = vec_add(x, y);
    return t1;
  }

vector float 
_ExP_sub(vector float x, vector float y)
  {
    vector float t1;

    t1 = vec_sub(x, y);
    return t1;
  }

EXPAND

expandable functions

input output

Figure 2: The EXPAND compiler at work.

output files, EXPAND takes a list of expandable functions. This list provides information as to whether the

functions called from inside the input function should be redirected to their expanded versions. If a called

function is expandable, we pass expanded function arguments and expect an expanded return value as well.

Otherwise, we perform unpack and pack operations to use in the call to the scalar function. This point is

illustrated in the next subsection by an example.

Currently, only those input functions that satisfy the following three conditions can be expanded by our

compiler. First, loops are not allowed in the input function. Second, nonconstant array subscript expression

values are not supported. Third, only scalar type function arguments are allowed. These conditions are

for the convenience of implementation, however, and we expect that they will be lifted as we improve our

implementation. For example, nonconstant array subscript expressions can be supported by accessing them

in scalar mode as we do for nonexpandable function calls, as illustrated in the next subsection.
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#define GET FLOAT WORD(i,d)\
do { union { \

float value; \
int word; \

} gf u; \
gf u.value = (d);\
(i) = gf u.word; \

} while (0);
static const float two = 2.0;
static const float bp[] = {1.0, 1.5};

void mot(float x, float *y) {
int hx, ix, k;

GET FLOAT WORD(hx,x);
ix = hx&3;
if(ix¡=7) k=0;
else k=1;

if(ix==0) {
*y = powf(bp[k], two);
return; }

*y = sqrtf(ix); }

(a) Scalar original

void mot(float x, float *y) {
do {

union tmp union1 { float value;
int word; };

union tmp union1 gf u;
gf u.value = x;
hx = gf u.word;

} while (0);
ix = (unsigned int)hx & 3u;
if (ix ¡= 7) {

k = 0;
bp k = *bp;

} else {
k = 1;
bp k = bp[1];

}
if (ix == 0) {

*y = powf(bp k, two);
return;

}
*y = sqrtf(ix);
return;}

(b) After making array
subscripts constants

void mot(float x, float *y) {
union tmp union1 { float value;

int word; };
union tmp union1 gf u;

gf u.value = x;
hx = gf u.word;
ix = hx & 3;
t2 = ix ¡= 7;
if (!t2) goto L4;
bp k = *bp;
goto done6;
L4:
bp k = bp[1];

done6:
t4 = ix == 0;
if (!t4) goto L5;
*y = powf(bp k, two);
goto EXIT;
L5:
*y = sqrtf(ix);
EXIT: return; }

(c) After making it single-entry,
single-exit

void ExP mot(vector float x, vector float *y){
union tmp union1 { vector float value;
vector signed int word; };
union tmp union1 gf u;

vec st(x, 0, (float *)&gf u.value);
hx = vec ld(0, (int *)&gf u.word);
t = (vector signed int)(3, 3, 3, 3);
ix = vec and(hx, t);
t1 = (vector signed int)(7, 7, 7, 7);
p8 = vec cmplt(t1, ix);
t9 = (vector bool int)(0, 0, 0, 0);
p2 = vec nor(p8, t9);
bp k = vec ld(0, (const float *)bp);
t11 = vec ld(16, (const float *)bp);
bp k = vec sel(bp k, t11, p8);
t3 = (vector signed int)(0, 0, 0, 0);
p4 = vec cmpeq(ix, t3);
t8 = (vector bool int)(0, 0, 0, 0);
p7 = vec nor(p4, t8);
t6 = ExP powf(bp k, two);
t12 = vec ld(0, y);
t12 = vec sel(t12, t6, p4);
vec st(t12, 0, y);
t5 = vec ctf(ix, 0);
*(float *)&t7 = sqrtf(*(float *)&t5);
((float *)&t7)[1] = sqrtf(((float *)&t5)[1]);
((float *)&t7)[2] = sqrtf(((float *)&t5)[2]);
((float *)&t7)[3] = sqrtf(((float *)&t5)[3]);
t13 = vec ld(0, y);
t13 = vec sel(t13, t7, p7);
vec st(t13, 0, y);
return; }

(d) After predication and expansion

static vector float two = {2.0, 2.0, 2.0, 2.0};
static vector float bp[2] =
{(vector float){1.0,1.0,1.0,1.0},(vector float){1.5,1.5,1.5,1.5}};

void ExP mot(vector float x, vector float *y) {
hx = (vector signed int)x;
t9 = (vector bool int)(0, 0, 0, 0);
ix = vec and(hx, (vector signed int)(3, 3, 3, 3));
p8 = vec cmplt((vector signed int)(7, 7, 7, 7), ix);
p4 = vec cmpeq(ix, (vector signed int)(0, 0, 0, 0));
p2 = vec nor(p8, t9);
if (vec any ge((vector signed int)(7, 7, 7, 7), ix)) {

bp k = vec ld(0, (const float *)bp); }
if (vec any ne(p8, t9)) {

bp k = vec sel(bp k, vec ld(16, (const float *)bp), p8); }
t14 = (vector bool int)vec splat u32(0);
if (vec any ne(p4, t14)) {

t12 = vec ld(0, y);
t6 = ExP powf(bp k, two);
t12 = vec sel(t12, t6, p4);
vec st(t12, 0, y); }

if (vec any ne(ix, (vector signed int)(0, 0, 0, 0))) {
p7 = vec nor(p4, t9);
t5 = vec ctf(ix, 0);
*(float *)&t7 = sqrtf(*(float *)&t5);
((float *)&t7)[1] = sqrtf(((float *)&t5)[1]);
((float *)&t7)[2] = sqrtf(((float *)&t5)[2]);
((float *)&t7)[3] = sqrtf(((float *)&t5)[3]);
t10 = vec ld(0, y);
t13 = vec sel(t10, t7, p7);
vec st(t13, 0, y);

}
return; }

(e) After inserting BOSCCs

Figure 3: A motivating example.
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3.2 EXPAND by an Example

To describe how EXPAND works, we use an example, shown in Figure 3(a). The example is designed to

have the features frequently found in GNU math library implementations.

First, we transform all array accesses to have constants in their subscript expressions. Although array

accesses with nonconstant subscript expressions can be accessed in scalar mode, it is still faster to access

them in vector mode whenever possible. For this transformation, all array subscript expressions should

have constant reaching definitions. If so, we copy the array access next to the definition of each subscript

expression. The code generated by this transformation is shown in Figure 3(b). An array access bp[k] is

replicated in each definition of the subscript expression, k. Then the subscript expression is replaced with

the corresponding definition, which is a constant. A new variable bpk is assigned at each replication point

and used in the original use of the array access. At the final code shown in Figure 3(e), these two array

accesses with constant subscript expressions are converted to vector loads from the expanded global variable

bp.

Next, we replace return statements in the middle of the function with goto statements jumping to the

label at the end of the function. This transformation results in a control flow graph with single entry and

single exit. The use of the RK-algorithm [14] for if-conversion mandates the control flow graph of the input

function to have single entry and single exit. In the transformed code in Figure 3(c), the return statement

in the middle is replaced with a goto statement branching to the label EXIT. If the function returns a value,

an assignment statement is inserted before the goto statement. In the assignment, the value returned at

that point is assigned to the variable returned at the end.

Figure 3(d) shows the code after it is predicated and expanded. Types of all variables are changed to

the corresponding vector types, and all operators are replaced with the vector counterparts, except for the

function call to sqrtf. In this example, we assume that sqrtf is not in the list of expandable functions.

All such nonexpandable functions have to be accessed in scalar mode. Thus, sqrtf is called as many as the

vector length times, 4 in this example, with scalar arguments and scalar destination operands. For the scalar

function arguments, an expanded variable t5 is unpacked, and the scalar return values are packed back into

another expanded variable t7. Note that we did not rename sqrtf, whereas others such as powf and the
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input function itself are renamed by prepending ExP . This function renaming is necessary to distinguish

the expanded function from the original scalar function.

Finally, we remove redundant computations and insert BOSCCs to bypass the statements that are unnec-

essary during run time. The generated code is shown in Figure 3(e). Note that a pair of vector store and load

to the address of gf u is replaced with a type conversion statement. A load preceded by a store statement

to the same address can be replaced by the operand being stored as long as no other memory accesses to

the same address intervene between them. The remaining stores into the address of local variables can be

deleted if there is no use of the variables or loads from the same address. GET FLOAT WORD in (a) is a macro

used to move values from floating point registers to integer registers. For scalar registers, this data movement

goes through memory because there is no direct datapath between different register files. However, changing

interpretation2 of bits in vector registers does not require any additional operation. The two global variables

in Figure 3(a) have definitions. These global variables are read only, and their definitions are expanded as

shown in Figure 3(e).

3.3 Programming by EXPAND

In this subsection, we introduce SIMD programming using the EXPAND compiler. Although we like to leave

the future possibilities of EXPAND open, the current implementation has certain limitations. For example,

loops cannot be expanded. Thus, one model we present in this subsection is to outline the loopbody of

the compute intensive loop into a function. The outlined function is subsequently expanded by EXPAND.

Now, the loop is modified to call the expanded function with expanded arguments. We use an example in

Figure 4(a) to illustrate this procedure.

There are several benefits in the p

The loop in Figure 4(a) implements a simple chroma keying. The function in Figure 4(b) shows the

outlined function, which is in turn expanded by EXPAND to produce ExP chroma similar to the one in

Figure 3(e). Figure 4(c) shows the loop modified to use the expanded function. In this programming model,

arrays are accessed outside the function and passed as function arguments. Compared with the scalar

2whether the bits should be interpreted as an integer or a floating-point value
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for(i=0; i< npix; i++){
fred = f red[i];
fgreen = f green[i];
fblue = f blue[i];

if(fred != 0 || fgreen != 0 \
|| fblue != 255){
b red[i] = fred;
b green[i] = fgreen;
b blue[i] = fblue;

}
}

(a) Scalar original

void chroma(unsigned char fred,
unsigned char fgreen, unsigned char fblue,
unsigned char* bred, unsigned char* bgreen,
unsigned char* bblue){
if(fred != 0 || fgreen != 0 || fblue != 255){

*bred = fred;
*bgreen = fgreen;
*bblue = fblue;

}
}

(b) Loopbody outlined into a function

for(i=0; i< npix; i+=16){
vfred = vec ld(0, &f red[i]);
vfgreen = vec ld(0, &f green[i]);
vfblue = vec ld(0, &f blue[i]);
vbred = vec ld(0, &b red[i]);
vbgreen = vec ld(0, &b green[i]);
vbblue = vec ld(0, &b blue[i]);

ExP chroma(vfred, vfgreen, vfblue,
&vbred, &vbgreen, &vbblue);

vec st(vbred , 0, &b red[i] );
vec st(vbgreen, 0, &b green[i]);
vec st(vbblue , 0, &b blue[i] );

}

(c) Loop modified to call the
expanded function

Figure 4: An example to show how to program by EXPAND.

baseline, this implementation has the disadvantage of always accessing the three arrays of the background

image: b red, b green, and b blue. While multiple output operands can be passed as pointer type arguments

as in this example, if there is a single output, the return value can be used to get the output instead of

using the pointer of the output variable in the function argument list. Since the output of EXPAND is also

in C, programmers can use the expanded code for further optimization. For example, the expanded output

function can be inlined back into the original loop to eliminate the function call overhead.

Programming by EXPAND provides several benefits over the current approaches. First, function calls

are no longer a barrier. As described in the previous subsection, the compiler can expand the whole input

function, and the function calls within it can also be expanded to call the expanded functions if they

are specified in the expandable function list. Moreover, this approach avoids dealing with the problem of

alignment. In the example code shown in Figure 4(c), the aligned memory accesses are used, assuming that

the array objects start at the aligned addresses. If the array objects cannot be guaranteed to have aligned

addresses, the explicit alignment operations must be inserted manually. If the data elements are scattered

in memory, they must be packed into an aligned contiguous memory location before being passed to the

expanded function. While this avoidance of the alignment problem simplifies the compiler, at the same time

it places more burden on the users. Since the alignment problem is one of the major limiting factors in

contemporary vectorizing compilers, however, requiring a small effort for alignment by users can be paid off

with a larger class of SIMD applications by completely relieving the compiler of the alignment problem. In
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addition, the EXPAND compiler does not need to check for data dependence between the vector elements.

The independence among the data elements of the expanded code is guaranteed by the definition of expansion

and the way the compiler is implemented.

3.4 Discussion

The current practice of generating SIMD instructions is either a fully manual SIMD programming or a

fully automatic generation of SIMD instructions by compilers. Both of these extreme approaches have some

benefits and some drawbacks. For example, fine control over the generated SIMD code is a benefit of fully

manual programming but at the same time a drawback of automatic vectorization. Our approach positions

itself between the two extremes. We assume that users play a role in providing aligned memory addresses

and in modifying loops. This role relieves the compiler of major hurdles that have been critical for automatic

vectorization. Yet, most of the time-consuming and error-prone SIMD translation is performed automatically

by the EXPAND compiler. For the simple example shown in Figure 4, users may not save much time by

using the EXPAND compiler. The more complicated the input function, however, the more time and effort

saved by users, as with any other automated approach.

Our approach is applicable to a wide range of applications thanks to Shin et al.’s technique for generating

efficient code in the presence of complex control flow [16]. Without this technique, the expanded code must

execute all control flow paths, possibly leading to slowdowns compared with the scalar baseline that might

bypass a large portion of the code.

The best feature of our approach is simplicity. The concept of expansion is simple and clear, and the

expand transformation is nothing more than replacing each operator and operand with a vector counterpart.

Because of this simplicity and the high-level language output, users can easily understand what is happening

in the transformation process and hence can further optimize the expanded code.

4 Algorithm

In this section, we present the algorithm for our approach.

Figure 5 shows the component passes in the EXPAND compiler. Initially, we examine each array reference
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Constant array subscript

Read expandable function list

Check for expandability

Make it single exit

- Predicate
- Expand transformation
- Insert SELECTs
- Insert BOSCCs

Input function

Output function

Figure 5: Flow of the algorithm.

to see whether its subscript expression can be transformed to a constant. For each nonconstant array

subscript expression, we identify its reaching definitions. If all reaching definitions are constants, we hoist

the array reference to where the subscript expression is defined and replace the subscript expression with

the corresponding constant. Also, a new variable is created and used at the use of the array reference to

convey the value of the array reference.

Next, we check whether the given input function can be expanded. Currently, this pass checks for

three conditions. First, loops are not allowed in the input function. Second, nonconstant array subscript

expressions are not allowed; however, this restriction can be removed by accessing the arrays in scalar mode

and packing them into a vector operand. Third, only scalar arguments are allowed in the function argument

list; that is, only integer, float, enumumeration, and pointer types are allowed for the arguments. We expect

that many of these restrictions will be eliminated as we improve the implementation. If an input function

is expandable, this pass adds an annotation to the function. All later passes examine the annotation to see

whether the function should be processed further for expansion.

A list of expandable functions is provided by users. Although the expandability of the input function

itself is determined by the compiler, the expandability of those functions called from inside the input function

should be given.

Functions might have multiple return-statements resulting in a control flow graph with multiple exit
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nodes. Since we use the RK-algorithm for predication and it requires the control flow graph to have a

single entry and single exit, we replace all return-statements in the middle of the input function with goto-

statements branching to the label at the end of the function. When a return-statement is replaced, the return

value is assigned to the variable returned at the end. After this transformation, the control flow graph will

be still acyclic but may not be structured anymore.

Finally, the expand transformation is performed to expand scalar statements to vector statements. A

major work in this transformation is to change the scalar types of operands to the corresponding vector

types, and scalar operators with the vector counterparts. If the input function contains control flow, it is

predicated to remove the control flow before being expanded, and select instructions are inserted to remove

predicates so that the output code can be executed on the architectures that do not support predicated

execution. However, predicate information is preserved as annotations for the BOSCC insertion passes. A

BOSCC is generated whenever the BOSCC region contains instructions with nonzero costs [17, 16]. For the

calls to the expandable functions, the function names are modified to use the expanded function, and function

arguments are also expanded. For the calls to nonexpandable functions, we unpack the function arguments,

and the function call is replicated as many as vector length times using the unpacked scalar operands. In

this case, the output operands and the return value are also scalar and are packed back into vector operands

for use in subsequent vector operations. The name and type of the input function are modified to reflect the

transformation so that it takes vector arguments and returns a vector value if there is any.

5 Experiments

To evaluate the effectiveness of the suggested approach, we implemented the algorithm described in the

previous section and applied it to 12 GNU math library intrinsic functions. In this section, we describe

our implementation, the experimental environment, the intrinsic functions used in the experiments, and the

experimental results.
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5.1 Implementation

The algorithm described in Section 4 is implemented by using the SUIF compiler infrastructure [4]. The

boxes representing the component algorithms in Figure 5 also closely match the individual passes in our

implementation. Input to the compiler is a sequential code written in C, and the output is also a C code

augmented with vector intrinsics [11].

Table 1: Benchmark programs.

Name Description source file # lines

isinff nonzero if argument is infinite s isinff.c 29
finitef nonzero if argument is finite s finitef.c 35
fabsf absolute value of floating-point number s fabsf.c 39
isnanf is not-a-number s isnanf.c 42

copysignf copy sign of a number s copysignf.c 42
truncf round to integer, towards zero s truncf.c 52
ceilf ceiling function s ceilf.c 62

scalbnf multiply floating-point number by integral power of radix s scalbnf.c 64
floorf largest integral value not greater than argument s floorf.c 71
roundf round to nearest integer, away from zero s roundf.c 73
logf natural logarithmic function e logf.c 99
powf power function e powf.c 258

5.2 Methodology

In order to evaluate our implementation, we used 12 intrinsic functions taken from GNU math library glibc-

2.4. Using our EXPAND compiler implementing the proposed approach, we automatically expanded the

intrinsic functions listed in Table 1. For convenience, we did not use the profitability model that requires

profile information [17]. Instead, BOSCCs are generated for all BOSCC regions that have at least one

statement. For all intrinsic functions, the element data size is 32-bits. Thus, four scalar elements are

processed in one vector operation.

For each intrinsic function, we manually created two driver programs, one for the scalar version and the

other for the expanded version. In the driver for the vector version, we used aligned vector memory accesses

by aligning the array objects, as the users of this approach would do whenever possible. In the same sense,

the return value is stored back, also using the aligned vector stores. For both driver programs, we used

the same sequence of uniform random numbers for the function input arguments. To compile the expanded
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Figure 6: Speedup over scalar baseline with the data size that fits in the L1 cache.

output codes, we used gcc 4.0.1 with -O2 option on Mac OS X 10.4.7. The generated executables were run

on a Power Mac G5, with 32 KB L1 data cache, 512 KB L2 integrated cache, and 8 GB of memory.

5.3 Results

Figure 6 shows the speedups of the expanded versions over the scalar baseline for 12 intrinsic functions. Two

expanded versions are measured. The first versions, labeled “vector,” do not use BOSCCs, while the other

versions, labeled “BOSCC,” use them to bypass vector instructions. Whenever the expandable intrinsic

functions are called from inside the given input function, the same version is used. For example, powf calls

scalbnf. In order to measure the run time of the “vector” version of powf, the “vector” version of scalbnf

is used. For the “BOSCC” version of powf, the “BOSCC” version of scalbnf is used.

The speedups for the “vector” versions range from 1.04 to 11.21, and for the “BOSCC” versions the

speedups range from 2.05 to 11.37. For the first five intrinsic functions, the speedups are identical for both

versions because they don’t have control flow and no BOSCCs are generated even for the “BOSCC” versions.

BOSCCs are generated for the rightmost seven intrinsic functions because the scalar baseline has control
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flow. When BOSCCs are generated, the “BOSCC” versions are faster except for truncf. For truncf,

the “BOSCC” version is slower than the “vector” version for several reasons. First, two out of the five

generated BOSCCs are only overheads because they are never taken. Second, the “vector” version had fewer

statements because the redundancy elimination pass could identify more redundancy when the statements

are not guarded by predicates. When the unprofitable BOSCCs are not generated, the “BOSCC” version was

faster by 6 % than the “vector” version. The speedups of the first five functions in the left are distinctively

higher than the other ones. For the five functions, the scalar baselines have data movements through memory

between the floating-point register file and the integer register file. For SIMD processing, no data movements

are necessary because the same vector register can be used for both integer type and floating-point type, as

illustrated in Section 3.2.

Several factors have affected the speedups of this experiments. First, the vector versions exploit SIMD

parallelism not only at the vector functions but also at the driver programs by using aligned vector loads and

stores. If the data elements are not contiguous in memory, pack and unpack operations should be performed

at the vector driver program, thereby reducing the speedups for the vector versions. Second, we have used

small data sizes that fits in the L1 data cache to filter out the factors coming from memory latencies. If

memory access time dominates the run time, the speedups will not be as significant as in this experiment.

Third, if we inlined the generated code, higher speedups would have been obtained because there would be

no function call overheads. Finally, in addition to the regular function call overhead, an additional overhead

has been observed for vector functions. PowerPC G5 has a VRSAVE register that keeps information on which

vector registers need to be saved when contexts have to be switched. When the expanded functions are

compiled, the GCC generated instructions to manage the VRSAVE register.

6 Related Work

The SIMD programming technique proposed in this paper is most relevant to automatic vectorization tech-

niques. Two different approaches are used for automatic vectorization. The most popular approach is to

adapt the vectorization developed for the conventional pipelined vector machines [2, 19, 3]. If a loop can be

vectorized, the scalar operands and operators are replaced with vector operands and operators, similar to
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expansion in our approach. More recently, a new approach has been developed that exploits SIMD paral-

lelism from basic blocks rather than loops [7, 6, 9, 5]; In order to increase the amount of SIMD parallelism,

the loops are unrolled. Unlike these two approaches, our approach targets whole functions. Because of this

fundamental difference, function calls can also be expanded by our approach. Another difference is that the

expand transformation in our approach is a semantic transformation, whereas the other techniques generate

semantically identical vector code.

Using libraries for vector math intrinsic functions is similar to our approach except that such libraries are

written manually [1, 12], and hence, will probably outperform the vector functions generated by our compiler.

However, library implementations have the same drawbacks as does manual SIMD programming: they are

not portable, there are error prone, and they take a huge amount of time and effort. On the contrary, our

approach is also intended to be used by programmers in general for their application programs.

7 Conclusion

Although SIMD functional units are ubiquitous in contemporary microprocessors, compared with the scalar

functional units, they are significantly underutilized. SIMD parallelism is orthogonal to the parallelism in

other levels and cannot be left out for the highest possible performance. To make it easy to program the

SIMD functional units, we propose a new approach, where the given scalar functions are transformed into

the corresponding vector functions. Our approach positions itself between the fully automated vectorization

by compilers and manual SIMD programming. In experiments on 12 math intrinsic functions, the vector

functions transformed by our compiler achieve speedups from 2.05 to 11.37. Extending this approach to

applications that are far beyond the current state-of-the-art vectorization techniques is left as a future work.
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