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Abstract. Irregular and sparse scientific computing programs frequently
experience performance losses because of inefficient use of the memory
system in most machines. Previous work has shown that, for a graph
model, performing a partitioning and then reordering within each par-
tition (hierarchical reordering) improves performance. More recent work
has shown that reordering heuristics based on a hypergraph model re-
sult in better reorderings than those based on a graph model. This paper
studies the effects of hierarchical reordering strategies within the hyper-
graph model. In our experiments, the reorderings are applied to the nodes
and elements of tetrahedral meshes, which are used as input to a mesh
optimization application. This application includes computations such
as loops over the elements in the mesh and sparse matrix multiplication
based on the structure of the mesh. We show that cache performance
degrades over time with consecutive packing, but not with breadth-first
ordering, and that hierarchical reorderings involving hypergraph parti-
tioning followed by consecutive packing or breadth-first orderings in each
partition improve overall execution time.

1 Introduction

Irregular scientific computing applications often achieve less than 10% of peak perfor-
mance on current high performance computation systems, whereas on some systems
dense matrix multiply can achieve more than 90% of peak performance [9]. This gap
in performance between dense (and regular) computations and sparse (and irregular)
computations has been called the “sparse matrix gap” [2]. The sparse matrix gap can
be attributed primarily not to poor scaling but to poor single-processor performance
because of irregular memory references.

Within the context of this paper, we focus on irregular memory references due to
indirect array addressing, which occurs in many applications such as partial differ-
ential equation solvers, molecular dynamics simulations, finite element analysis, mesh
manipulation applications, and computations involving sparse matrix data structures.
Figure 1 shows a loop with indirect array references that traverses triangular elements
in a mesh. Each array entry in data could contain multiple fields such as the x and y co-
ordinates of the corresponding vertex. Indirect memory references such as data[n1[i]]
can exhibit poor data locality, and therefore cause performance problems. Improving
data locality in irregular applications has been shown to improve parallel performance
even more than serial performance [10,12, 20, 15].

Previous research has studied various heuristic data and computation reorderings
for improving data locality [1,17,7,12,16,27,24], but automatic determination of the
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Fig. 1. Loop iterating over triangular elements and example triangular mesh and
index arrays that represent the mesh topology. For each triangle ¢, the indices
for the three vertices are stored in nl[i], n2[i], n3[i].

reordering strategy that results in the best performance improvement remains an open
problem. Toward solving this problem, this paper contributes a performance study
of how hypergraph partitioning combined with a low overhead consecutive packing
reordering [7] or a high performance hypergraph breadth-first ordering [24] affects
the execution of a mesh optimization algorithm. In the context of Figure 1, a data
reordering involves reordering the entries in the data array. Each iteration of the loop
in Figure 1 is a computation. Figure 1 shows an example triangular mesh for use with
the code in Figure 1, where the data associated with one triangle is visited at each
iteration of the loop. The data for each node in the mesh, (0), (1), etc., is stored in
the corresponding entry in the data array. The index arrays store the mesh topology.
An iteration, or computation, reordering involves rearranging the values in the index
arrays and logically corresponds to permuting the order that triangles in the mesh are
visited. Both the data and computation reordering problems can be modeled as the
minimal linear arrangement problem, which is NP-complete.

Previous work on data reordering for irregular applications observed that hierarchi-
cal, or hybrid, heuristics can result in a 5 to 10% performance improvement over local
heuristics alone [1]. Hierarchical heuristics perform a graph partitioning and then use
a local reordering heuristic within each partitioning. The hierarchical technique pro-
posed in [1] entails a graph partitioning , followed by a breadth-first ordering within
each partition.

More recent research showed that local reordering heuristics (e.g., consecutive pack-
ing and breadth-first ordering) based on the hypergraph model perform up to 30%
better than those based on a graph model in computations when three or more pieces
of data are accessed within each iteration of the loop [24]. A hypergraph model groups
any number of nodes into hyperedges. For the example in Figure 1, each triangle could
be represented with a hyperedge.

This paper studies the effect of hierarchical reordering in concert with a hypergraph-
model based consecutive packing (Hyper-CPACK) or breadth-first ordering (Hyper-
BFS) heuristics. We hypothesize that the performance of a computation when the
data has been reordered using consecutive packing will degrade over the course of the
computation. We also hypothesize that performing a hypergraph partitioning followed



by a consecutive packing within each partition will improve performance because of
the degradation within a partition having less effect than degradation over the full
computation. For a breadth-first ordering based on a hypergraph model (Hyper-BFS),
we hypothesize some improvement with hierarchical reordering, but not much because
previous work [18] has shown that a breadth-first ordering using a hypergraph model
achieves a high percentage of the memory bandwidth limit.

This paper makes the following contributions:

— algorithms for hierarchical reordering within the hypergraph model for both con-
secutive packing and breadth-first orderings within each partition;

— experimental results showing that cache performance degrades over time with con-
secutive packing and not with breadth-first on a hypergraph; and

— experimental results showing that hierarchical reordering on the hypergraph pre-
vents the performance degradation since the local reorderings are performed within
partitions.

2 Heuristics Using the Hypergraph Model

The distinguishing feature of hypergraphs are hyperedges, which are capable of connect-
ing any number of nodes. Figure 2(a) shows the hypergraph that models relationships
between the nodes in the mesh in Figure 1. In the figure, the square vertices with
parenthesized numbers directly correspond to nodes in the mesh. The filled-in squares
are hyperedges connecting all the vertices of the element the hyperedge represents. Fig-
ure 2(b) is a dual hypergraph for the hypergraph in Figure 2(a). Hyper-BFS and the
hierarchical version of Hyper-BFS use both the hypergraph and the dual hypergraph.

‘We use various combinations of six orderings for the experiments in this paper: orig-
inal order, Hyper-BFS, Hyper-CPack, Hyper-Pack, HierBFS (Hierarchical BFS), and
HierCPack (Hierarchical consecutive packing). We know from earlier work that heuris-
tics based on hypergraph models outperform graph models [24]; we know hierarchical
orderings are better capable of limiting the growth of the working set, therefore in this
work we hypothesize and show that combining hierarchical orders with hypergraph
models do well.

Hypergraph Consecutive Packing (Hyper-CPack): One heuristic that most
naturally generalizes to a hypergraph model is consecutive packing. The consecutive
packing heuristic [7] packs the data associated with nodes in the hypergraph in the
order that they are visited within the computation. For the example in Figure 1,
that means visiting the triangles in their given order and packing data for nodes as
each node is seen in that order. It is critical that the tetrahedrons should be ordered
well in this scheme, which is why our baseline mesh orderings start with tetrahedrons
lexicographically sorted by the nodes they contain. Consecutive packing is commonly
used because of its low overhead and reasonable resulting performance improvement.

Hyper-CPack on the example in Figure 1 first orders the nodes of triangle 0: (0),
(4), (5); then triangle 1: (2); and so on. The following data ordering results: (0), (4),
(5), (2), (1), (3), (7), (6). The nodes in the first elements are guaranteed to be near
each other, but the nodes in the later elements can be spread out because some of them
have already been placed by earlier elements in which they are included. Therefore we
hypothesize that the performance will deteriorate for the elements/iterations near the
end of the ordering.

Hypergraph Breadth-First (Hyper-BFS): Hyper-BFS [24] also operates on
the hypergraph. It starts at the first node and performs a breadth-first traversal, placing



(a) Hypergraph (b) Dual hypergraph

Fig. 2. The hypergraph and dual hypergraph models of the relationship between
data and computation. The small black squares represent hyperedges. Numbers
in parentheses represent nodes in the original mesh and the other numbers rep-
resent triangles in the original computation.

the nodes in the order the traversal visits them. Other heuristics for selecting the start
node for the traversal exist [8], but our experience has not indicated that the starting
node significantly affects the final performance. Hyper-BFS on the hypergraph visits
all neighboring nodes that are part of the same hyperedge, before going on to other
neighboring nodes. When Hyper-BF'S orders a neighboring node, it orders all currently
unordered nodes that are part of the same element before it orders other neighboring
nodes. For example, in Figure 1, a Hyper-BFS starting at node (0) could have the
ordering (0), (4), (5), (2), (3), (7), (1), (6).

Hypergraph Partitioning (Hyper-Part): Hypergraph partitioning decom-
poses the nodes of a hypergraph into disjoint sets. A reordering heuristic based on
hypergraph partitioning then orders the nodes by partition. We have not done an
extensive study, but differences between mesh partition quality given by various par-
titioners do not appear to have a significant effect our results. This is probably due
to the fact that we are using the partitioners for single core data locality and not for
parallelization. We use PaToH [5] as our hypergraph partitioner. If a hypergraph par-
titioner is used alone, the nodes and elements within each partition are left in their
original order. If used as part of a hierarchical reordering, the local reordering is used
within each partition created by a hypergraph partitioner. For these experiments, we
set the size of the partitions so that the memory accesses of the computations for each
partition fit into a fraction of the L2 cache (1/2 to be exact), which is a heuristic that
has been used previously [22].

Hierarchical Consecutive Packing (HierCPACK): The hierarchical reorder-
ing heuristics, which are the new contributions of this paper, start with a hypergraph
partitioning of the nodes and then perform a local reordering of the nodes within each
partition. Hierarchical consecutive packing proceeds by visiting each hyperedge in the
hypergraph model in the order that the hyperedges will be visited during run-time
computations and packing the nodes in those hyperedges on a per partition basis. The
algorithm visits all hyperedges in order and then maintains one packing lists of nodes
for each partition. The final ordering concatenates all of the packing lists.



As an example, for the hypergraph in Figure 2(a) assume two partitions with nodes
(0), (1), (2), and (5) in the first partition and nodes (3), (4), (6), (7) in the second
partition. An in-order visit to the hyperedges (represented as black filled squares) will
result in the node ordering (0), (5), (2), (1) for the first partition and (4), (3), (7), (6)
for the second partition. Concatenating the orders for the partitions will result in the
following ordering: (0), (5), (2), (1), (4), (3), (7), (6).

Hierarchical Breadth-First (HierBFS): Hierarchical Breadth-First also uses
a hypergraph partitioning for hierarchical reordering. A breadth-first traversal over
the nodes in each partition provides the local ordering. As with the non-hierarchical
breadth-first ordering over a hypergraph, both the primal and dual hypergraphs are
used to perform this reordering.

The algorithm first selects a root node for the breadth-first traversal from each
partition. Next, it loops though the partitions, and for each partition it uses a queue
data structure to perform a breadth-first traversal of the nodes based on adjacent
hyperedges. Then, it loops through all unvisited neighbors in all the hyperedges and
adds those to the new ordering and a queue. When it has searched through all the
hyperedges for the root node, which can be found by accessing the dual hypergraph,
it repeats the process for the next node in the queue. This process continues until all
nodes in the partition have been added to the new ordering or it runs out of nodes in
the queue. If the queue runs out before all the nodes in the partition have been visited,
it searches the nodes for one in this partition that has not yet been visited and uses it
as a new root node.

To illustrate, assume the nodes in the example in Figure 2(a) are split into two
partitions: the first partition containing nodes (0), (1), (2), and (5), and the second
partition containing nodes (3), (4), (6), (7). The root node for the first partition would
be node (5). Assuming the hyperedges adjacent to (5) are visited in order, a breadth-
first ordering of the first partition would be (5), (0), (2), (1). The breadth-first ordering
for the second partition would be (7), (3), (4), (6).

3 Experimental Results

We test the efficacy of the data and iteration/element reorderings by reordering real
mesh data sets and feeding the reordered meshes into the FeasNewt mesh-quality opti-
mization benchmark [18]. FeasNewt optimizes the quality of the tetrahedra by adjusting
the coordinates of the internal mesh vertices. Higher-quality tetrahedra improve the
accuracy and speed of computations or simulations using a discretization method. This
approach does not change the topology of the mesh or the external shape.

FeasNewt has calculations and memory access patterns similar to those found in
many scientific computing applications [18]. FeasNewt’s gradient evaluation, Hessian
computation, and a sparse matrix-vector product take the majority of its execution
time. The gradient evaluation and Hessian computations iterate over mesh elements
while the matrix-vector product operates on a sparse matrix with a row for each mesh
node with non-zero blocks for higher-numbered neighboring mesh nodes. Although
FeasNewt iteratively optimizes the mesh quality until convergence is reached, none of
the reorderings used in this study alter the number of convergence iterations.

For input, we use six irregular tetrahedral meshes modeling different physical enti-
ties and from varying mesh generators (see Table 1). The sources of the meshes include
tetrahedral volume mesh generated using TetGen [23] using surface meshes from the
INRIA Gamma team research database [13] (INRIA and TetGen), meshes generated



Table 1. Mesh data-set information.

Mesh\# Nodes\# Elements\Size in MB\Comments ‘

1-001.mesh| 120,399 725,258 25.4(INRIA and TetGen
dna.mesh| 185,823 938,168 33.3|/INRIA and TetGen
ductbig.mesh| 177,887 965,759 31.5|/CUBIT
gear.mesh| 285,640 1,595,392 58.3|CUBIT
sf2.mesh| 378,747 2,067,739 61.6|CMU UMS
ucol.mesh| 477,977 1,955,366 67.0|BioMesh

using CUBIT [6], a mesh of the San Fernando Valley in Southern California from the
CMU Unstructured Mesh Suite [19] (CMU UMS), and a mesh of parts of the circula-
tory system, generated as part of BioMesh Project [4], courtesy Chaman Singh Verma
at Argonne. For the original ordering (baseline), the mesh node ordering provided by
a mesh generator is used and all mesh elements are lexicographically sorted.

Our experiments were performed on a quiescent HP-xw9300 with 2 GB of memory
and dual 64-bit AMD Opteron 250 2.4 GHz processors with 128 KB L1 cache and
1 MB L2 cache per processor. The code is single-threaded and therefore uses only one
of the processors.

3.1 Effect of Hierarchical Reordering

Hierarchical data reordering improves performance over local reordering strategies
alone (Hyper-CPack and Hyper-BFS), although for Hyper-BFS the improvement is
minimal. Execution times for the full FeasNewt benchmark and the Hessian compu-
tation only are shown in Figures 3(a) and 3(b), respectively. The execution times are
normalized to the execution time for the benchmark when the original ordering is used
and shown for each mesh and reordering strategy. The hierarchical reordering strate-
gies show the most improvement for most of the meshes for full FeasNewt benchmark
execution times. In some cases, the performance improvement over the original mesh
ordering is 40%.

One observation for Figure 3(a) is that although the hierarchical reordering clearly
improves over the local ordering consecutive packing, the hierarchical reorderings do
not significantly improve over a global ordering based on hypergraph partitioning.
One exception to this is the gear mesh, where hierarchical reorderings are the only
reorderings that do not cause a slowdown. Possible future work is determining whether
hierarchical reorderings can be “proven” safe from the standpoint of never causing
slowdown.

3.2 Fine-Grained Cache Miss Results

We now demonstrate why hierarchical reordering improves over a consecutive packing
alone. The performance due to a consecutive packing degrades over time, and hier-
archical reordering evens out the performance benefits by doing consecutive packing
within localized partitions. We observe this degradation by using a novel approach to
studying the effect of data reordering. Specifically, we break the loop over tetrahedrons
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in the Hessian computation into equal-sized segments and record the cache miss rates
for each segment. This approach exposes the data ordering quality as the computation
progresses through the iteration ordering.

We use PAPI [14] to instrument FeasNewt to record L1 cache, L2 cache, and TLB
hits and misses at 32 regular intervals, hereafter called segments, in the Hessian com-
putation. The Hessian computation is performed multiple times per outer convergence
loop. We therefore record a weighted running average for each segment’s measurements.
Execution times for these segments as well as the overall benchmark execution time
were recorded. We present the minimum execution time from three runs.

To determine if Hyper-CPack and Hyper-BFS degrade over time and if hierarchical
reordering with HierCPack and HierBFS stop this degradation, we observe the L1
cache miss rate by segment over the runs. Figure 4 shows L1 cache miss rates for the
32 segments of the Hessian loop. The graphs show the data reorderings for the ductbig
and dna. The trends seen in ductbig and dna are typical of the trends seen in the other



meshes, except for sf2. sf2 does not show much improvement in the cache miss rate
over the segments, because it appears to already be well ordered.

Hyper-CPack does show the expected degradation over time, and HierCPack levels
out this degradation and reduces the the overall cache misses as hypothesized ( See
the triangles pointing down and the triangles pointing up in Figure 4). HierCPack
can eliminate the performance degradation of Hyper-CPACK. Unlike Hyper-CPACK,
Hyper-BFS does not show a degradation. Nonetheless, HierBF'S still has consistently
lower miss rates than Hyper-BFS and marginally better performance.

4 Related Work

Making decisions among all of the reordering heuristics is an open problem. Some work
has done comparison among subsets [21,12, 20, 16]. However, since such comparisons
might be relevant only to the specific benchmarks and datasets in the study, no clear
winner exists. Typically, an ordering is selected due to results from earlier work on
similar problems, or the desire to keep reordering costs low. Other work has used
metrics to select among various reorderings without comparing execution time, with
some success [24].

Many earlier studies on memory system performance of irregular codes have fo-
cused on reordering for data locality and other optimizations for sparse matrix-vector
multiplication [25-27,20]. The mesh optimization benchmark [18] used in our experi-
ments includes a symmetric, blocked sparse matrix multiply as well as iteration over a
large tetrahedral mesh data structure. We observe that orderings based on a model of
computation over the mesh data structure also improve the performance of the sparse
matrix-vector multiply. Techniques specific to sparse matrices such as register tiling [27]
might lead to even further performance benefits in the mesh optimization benchmark.

Our work differs from previous research in that the effect of data reordering on
execution time and the memory hierarchy is explored at a finer granularity and in the
context of multiple real datasets for a single benchmark. Previous work [11] has looked
at the degradation of performance as the relationship between nodes in a molecular
dynamics application changes. The granularity that we look at is smaller, since we
focus on segments of one sweep over the mesh.

This paper studies the detailed differences between two local reordering heuristics
and a hypergraph partitioning heuristic coupled with a local reordering heuristic. Al
Furaih and Ranka [1] showed experimentally that hierarchical reorderings within a
graph model improve performance, and later research has used some form of parti-
tioning followed by a reordering within each partition [10,3]. This paper provides a
similar basis for performing hierarchical reordering in reorderings based on hypergraph
models. Selecting between hierarchical reorderings on a graph model versus a hyper-
graph model remains an open problem, but we hypothesize that, based on previous
comparisons between the two models [24], hierarchical reordering on the hypergraph
model will prevail.

5 Conclusion

Reordering the data and computation within irregular applications is important for
improved data locality and performance. This paper presents new hierarchical heuris-
tics based on a hypergraph model of the data reuse between computations. The new



heuristics, hierarchical consecutive packing and hierarchical breadth-first, depend on a
hypergraph partitioning followed by local reorderings within each partition. Our results
show that hierarchical consecutive packing does improve performance in comparison
with consecutive packing alone. More detailed experiments show that consecutive pack-
ing degrades in performance later in the ordering. When partitioning is done before the
consecutive packing, each partition degrades separately and the overall degradation is
not as severe. Hierarchical reordering does not improve significantly over a breadth-
first ordering of the nodes in a hypergraph. Based on hardware counter results, we
conclude that a breadth-first reordering on the hypergraph model does not result in
the same degradation as consecutive packing and therefore does not benefit much from
the grouping provided by hypergraph partitioning.
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