
Slouching Towards Exascale

Ewing Lusk
Mathematics and Computer Science Division

Argonne National Laboratory

Introduction

Let us speculate about how we will program exascale machines. Some believe that the
current “standard” of MPI plus a venerable sequential language (Fortran, C, or C++) will
become as abruptly obsolete as the vector Fortran compilers of the 1970s. While it is
exciting to contemplate an ab initio redesign of the HPC software infrastructure,
experience tells us that large-scale software (and HPC software is now very large scale)
requires a migration path that consists of incremental steps during which only some parts
change at a time. Indeed, as scalability forced vectorization to give way to message
passing, Fortran changed a little but was not replaced by Ada.

Where We Are Now

We are about to take another major step, but not a cataclysmic one. We now have robust,
portable, and effective standard languages for programming a von Neumann machine
with a single program counter and a single address space. Thanks to MPI, we have a
robust, portable, and effective standard for communication and synchronization among
such machines, What we lack is a robust, portable, and effective standard for parallel
programming (multiple program counters) within a single address space. (Neither
OpenMP nor POSIX pthreads provide features needed for an approach effective for
HPC.)

MPI, admittedly cumbersome for some straightforward tasks, has become the universal
mechanism for expressing parallelism among multiple address spaces, for several
reasons. Designed through a completely open process, it included the concerns of
multiple stakeholders from the beginning. This process resulted in a definition that was
portable to a wide class of machines and with a certain degree of performance
transparency that encourages the development of high-performance, scalable libraries and
applications. MPI’s design favored the development of portable libraries over end-
application programs, and in this it has been successful. Its specification includes
language interoperability and other features that enable it to fit into the HPC ecosystem
with existing tools. These properties are worth reviewing because we must be sure that
what we add to our programming environment be not worse than MPI.

The Next Step

The next step we are about to take is forced upon us by physics, so it is pointless to resist.
Because of power and heat dissipation requirements, multicore chips are already with us.
Whatever shape exascale computers ultimately take, we will be programming machines
with less memory per processing core than we are now. This reality will force most (not

all) applications to augment their existing programming model to include parallelism
within an address space together with their current MPI-based parallelism across multiple
address spaces.

This “hybrid” style of programming is already being used by applications in many areas
as they migrate toward petascale. The current most common shared-memory approach is
OpenMP. Although high-performance programming is difficult with OpenMP because
of its lack of locality control, OpenMP+MPI is virtually the only approach being widely
used, for several reasons: (1) OpenMP is available on a wide variety of machines; (2)
both Fortran and C are supported; and (3) the OpenMP and MPI standards make explicit
commitments to each other that provide clear semantics for various levels of thread safety
in hybrid programs. The fact that OpenMPI+MPI represents an incremental step for most
applications (the overall MPI structure of the application can be maintained while the
MPI processes are internally parallelized with OpenMP threads) is an important factor in
encouraging applications to move to a hybrid model.

But OpenMP, at least as currently defined and implemented, is unlikely to be the final
answer for shared-memory parallel programming. In addition to the lack of locality
control, most implementations are restricted to single-node parallelism, where the
hardware provides the shared memory and synchronization mechanisms. Applications
are already finding the need for larger memories to be associated with their MPI
processes than are hosted on the single nodes of petascale machines. Therefore it may be
useful to consider the PGAS languages (UPC, Co-Array Fortran, and Titanium), which
offer a shared-memory model with a distinction between local and shared memory, thus
providing locality control and performance transparency.

What the PGAS languages lack so far is clear semantics for interaction with MPI and
implementations to match. One can imagine a million-thread computation organized as
10,000 UPC or CAF address spaces with 100 threads each, communicating via MPI,
which strains the scalability of neither model. Again, this would be an incremental
change for an existing MPI application.

Libraries

In discussing approaches to parallel programming, one often forgets that not all
programmers require the same features from their programming models. Let us define a
library as a collection of functions that are usable in multiple applications. Writers of
such libraries need access to performance and (except for certain vendor-specific
libraries) portability. To obtain these features, they are willing to give up a certain degree
of ease of use. Application writers, on the other hand, wish to focus on their science and
would rather not cope with some of the details required for scalability and performance.
For them, the easier it is to develop applications, the better they can produce
computational science results.

We are most familiar with the dichotomy between application and library in the case of
mathematical software, since the mathematics is the same for so many applications. But

there also exist libraries that are specialized to certain families of algorithms rather than
areas of application. For example, researchers have expressed interest in sophisticated
load-balancing libraries that can hide all of the MPI communication from an application
code, simultaneously providing scalability while simplifying the application logic.

What We Need to Do

Four actions would make progress toward programming exascale machines.

• Eschew ritualized denigration of MPI. It is a robust definition, with robust
implementations, of a critical component of future programming systems, namely
the transfer of data among separate address spaces. Support continued research
into areas of MPI that need it. The MPI-3 Forum is at work on extending the
standard.

• Recognize the need for a shared-memory programming model. What current
applications and libraries alike will embrace is a programming system for
parallelism within an address space. Such a system needs to be comparable with
MPI in portability and performance transparency. It need not be scalable to the
ultimate levels, but should not be restricted to running on a single node. Clear
semantics for interoperability with MPI are required. This is a critical research
topic; multiple solutions should be pursued at this point. PGAS languages show
promise, but semantics for interoperability with MPI are not yet there.

• Understand the difference between end applications and libraries. While some
applications will use hybrid systems consisting of explicit management of
parallelism within an address space together with MPI, other applications may be
able to rely on libraries, some of them specialized to single algorithms or
domains.

• Don’t abandon the HPCS language ideas. While separate, vendor-sponsored
development of multiple “high-productivity” languages has not attracted much
attention from application programmers yet, the HPCS languages (Chapel, X10,
and Fortress) have introduced a number of important ideas. An open, multi-
agency program with a clearly defined research focus could ultimately bear
significant fruit.

Conclusion

This has been necessarily a simplified speculation on programming models for exascale
machines. In particular, it has largely ignored the issue of GPUs (although they often
come with their own shared address space and thus require a shared-memory
programming model) and has focused on hierarchies having depth of only two. Even
within these simplifications, however, many challenges and exciting research
opportunities exist on the path to exascale.

Acknowledgment

This work was supported by the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Dept. of Energy, under Contract DE-AC02-06CH11357.

