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Introduction 
 
Let us speculate about how we will program exascale machines.  Some believe that the 
current “standard” of MPI plus a venerable sequential language (Fortran, C, or C++) will 
become as abruptly obsolete as the vector Fortran compilers of the 1970s.  While it is 
exciting to contemplate an ab initio redesign of the HPC software infrastructure, 
experience tells us that large-scale software (and HPC software is now very large scale) 
requires a migration path that consists of incremental steps during which only some parts 
change at a time.  Indeed, as scalability forced vectorization to give way to message 
passing, Fortran changed a little but was not replaced by Ada. 
 
Where We Are Now 
 
We are about to take another major step, but not a cataclysmic one.  We now have robust, 
portable, and effective standard languages for programming a von Neumann machine 
with a single program counter and a single address space.  Thanks to MPI, we have a 
robust, portable, and effective standard for communication and synchronization among 
such machines, What we lack is a robust, portable, and effective standard for parallel 
programming (multiple program counters) within a single address space.  (Neither 
OpenMP nor POSIX pthreads provide features needed for an approach effective for 
HPC.) 
 
MPI, admittedly cumbersome for some straightforward tasks, has become the universal 
mechanism for expressing parallelism among multiple address spaces, for several 
reasons.  Designed through a completely open process, it included the concerns of 
multiple stakeholders from the beginning.  This process resulted in a definition that was 
portable to a wide class of machines and with a certain degree of performance 
transparency that encourages the development of high-performance, scalable libraries and 
applications.  MPI’s design favored the development of portable libraries over end-
application programs, and in this it has been successful.  Its specification includes 
language interoperability and other features that enable it to fit into the HPC ecosystem 
with existing tools.  These properties are worth reviewing because we must be sure that 
what we add to our programming environment be not worse than MPI. 
 
The Next Step 
 
The next step we are about to take is forced upon us by physics, so it is pointless to resist.  
Because of power and heat dissipation requirements, multicore chips are already with us.  
Whatever shape exascale computers ultimately take, we will be programming machines 
with less memory per processing core than we are now.  This reality will force most (not 



all) applications to augment their existing programming model to include parallelism 
within an address space together with their current MPI-based parallelism across multiple 
address spaces. 
 
This “hybrid” style of programming is already being used by applications in many areas 
as they migrate toward petascale.  The current most common shared-memory approach is 
OpenMP.  Although high-performance programming is difficult with OpenMP because 
of its lack of locality control, OpenMP+MPI is virtually the only approach being widely 
used, for several reasons:  (1) OpenMP is available on a wide variety of machines;  (2) 
both Fortran and C are supported; and (3) the OpenMP and MPI standards make explicit 
commitments to each other that provide clear semantics for various levels of thread safety 
in hybrid programs.  The fact that OpenMPI+MPI represents an incremental step for most 
applications (the overall MPI structure of the application can be maintained while the 
MPI processes are internally parallelized with OpenMP threads) is an important factor in 
encouraging applications to move to a hybrid model. 
 
But OpenMP, at least as currently defined and implemented, is unlikely to be the final 
answer for shared-memory parallel programming.  In addition to the lack of locality 
control, most implementations are restricted to single-node parallelism, where the 
hardware provides the shared memory and synchronization mechanisms.  Applications 
are already finding the need for larger memories to be associated with their MPI 
processes than are hosted on the single nodes of petascale machines.  Therefore it may be 
useful to consider the PGAS languages (UPC, Co-Array Fortran, and Titanium), which 
offer a shared-memory model with a distinction between local and shared memory, thus 
providing locality control and performance transparency. 
 
What the PGAS languages lack so far is clear semantics for interaction with MPI and 
implementations to match.  One can imagine a million-thread computation organized as 
10,000 UPC or CAF address spaces with 100 threads each, communicating via MPI, 
which strains the scalability of neither model.  Again, this would be an incremental 
change for an existing MPI application. 
 
Libraries 
 
In discussing approaches to parallel programming, one often forgets that not all 
programmers require the same features from their programming models.  Let us define a 
library as a collection of functions that are usable in multiple applications.  Writers of 
such libraries need access to performance and (except for certain vendor-specific 
libraries) portability.  To obtain these features, they are willing to give up a certain degree 
of ease of use.  Application writers, on the other hand, wish to focus on their science and 
would rather not cope with some of the details required for scalability and performance.  
For them, the easier it is to develop applications, the better they can produce 
computational science results. 
 
We are most familiar with the dichotomy between application and library in the case of 
mathematical software, since the mathematics is the same for so many applications.  But 



there also exist libraries that are specialized to certain families of algorithms rather than 
areas of application.  For example, researchers have expressed interest in sophisticated 
load-balancing libraries that can hide all of the MPI communication from an application 
code, simultaneously providing scalability while simplifying the application logic. 
 
What We Need to Do 
 
Four actions would make progress toward programming exascale machines. 
 

• Eschew ritualized denigration of MPI.  It is a robust definition, with robust 
implementations, of a critical component of future programming systems, namely 
the transfer of data among separate address spaces.  Support continued research 
into areas of MPI that need it.  The MPI-3 Forum is at work on extending the 
standard. 

• Recognize the need for a shared-memory programming model.  What current 
applications and libraries alike will embrace is a programming system for 
parallelism within an address space.  Such a system needs to be comparable with 
MPI in portability and performance transparency.  It need not be scalable to the 
ultimate levels, but should not be restricted to running on a single node.  Clear 
semantics for interoperability with MPI are required.  This is a critical research 
topic; multiple solutions should be pursued at this point.  PGAS languages show 
promise, but semantics for interoperability with MPI are not yet there. 

• Understand the difference between end applications and libraries.  While some 
applications will use hybrid systems consisting of explicit management of 
parallelism within an address space together with MPI, other applications may be 
able to rely on libraries, some of them specialized to single algorithms or 
domains. 

• Don’t abandon the HPCS language ideas.  While separate, vendor-sponsored 
development of multiple “high-productivity” languages has not attracted much 
attention from application programmers yet, the HPCS languages (Chapel, X10, 
and Fortress) have introduced a number of important ideas. An open, multi-
agency program with a clearly defined research focus could ultimately bear 
significant fruit. 

 
Conclusion 
 
This has been necessarily a simplified speculation on programming models for exascale 
machines.  In particular, it has largely ignored the issue of GPUs (although they often 
come with their own shared address space and thus require a shared-memory 
programming model) and has focused on hierarchies having depth of only two.  Even 
within these simplifications, however, many challenges and exciting research 
opportunities exist on the path to exascale. 
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