Multiple-Level MPI File Write-Back and
Prefetching for Blue Gene Systems

Javier Garcia Blas,! Florin Isaila', J. Carretero!
Robert Latham?, and Robert Ross?

! University Carlos ITI, Spain
fjblas,florin, jcarrete;@arcos.inf.uc3m.es
J J
2 Argonne National Laboratory
{robl,rross}@mcs.anl.gov

Abstract. This paper presents the design and implementation of an
asynchronous data-staging strategy for file accesses based on ROMIO,
the most popular MPI-10 distribution, and ZeptoOS, an open source op-
erating system solution for Blue Gene systems. We describe and evaluate
a two-level file write-back implementation and a one-level prefetching so-
lution. The experimental results demonstrate that both solutions achieve
high performance through a high degree of overlap between computation,
communication, and file I/O.
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1 Introduction

The past few years have shown a continuous increase in the performance of
supercomputers and clusters, as demonstrated by the evolution of Top 500 [1].
IBM’s Blue Gene supercomputers have a significant share in the Top 500 lists
and bring additionally the advantage of a highly energy-efficient solution. Blue
Gene systems scale up to hundreds of thousands of processors. In order to allow
data-intensive applications to make efficient use of the system, compute scale
needs to be matched by a corresponding performance of file I/0.

In earlier work [2] we presented the design and implementation of an MPI-
based hierarchical I/O cache architecture for Blue Gene/L systems based on
open source software. Our solution was based on an asynchronous data-staging
strategy that hides the latency of file system access of collective file operations
from compute nodes. Blue Gene/L presents two limitations, which affected the
efficiency of our solution. First, the BG/L compute nodes do not support mul-
tithreading. Therefore, computation can not be overlapped with the communi-
cation with the I/O node. Second, because L1 caches of the CPUs are not co-
herent, even though multithreading is supported on the I/O nodes, the threads
could use only one processor. Consequently, the communication with the com-
pute node could be not overlapped with file system activity. The limitations
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discussed above have been removed from the Blue Gene/P architecture: multi-
threading is supported on the compute nodes, and the L1 caches of the cores are
cache coherent.

In this paper we discuss the evolution of out hierarchical I/O cache archi-
tecture and its deployment on Blue Gene/P systems. This paper makes the
following contributions:

— We discuss the extensions of the initial Blue Gene/L solution necessary for
the efficient porting to Blue Gene/P systems.

— The novel solution includes a compute-node write-back policy, which asyn-
chronously transfers data from the compute nodes to the I/O nodes.
This policy complements the initial data-staging strategy, which performed
asynchronous transfers between I/0 nodes and the final storage sys-
tem.

— We describe and evaluate an I/O node prefetching strategy that asynchro-
nously transfers file data from the storage system to the I/O node.

— We present and analyze a novel evaluation on a Blue Gene/P system.

The remainder of the paper is structured as follows. Section 2 reviews related
work. The hardware and operating system architectures of Blue Gene/P are
presented in Section 3. We discuss our novel solution for Blue Gene/P systems
in Section 4. The experimental results are presented in Section 5. We summarize
and discuss future work in Section 6.

2 Related Work

Several researchers have contributed techniques for hiding the latency of file
system accesses. Active buffering is an optimization for MPI collective write
operations [3] based on an I/O thread performing write-back in background.
Write-behind strategies [4] accumulate multiple small writes into large, contigu-
ous I/O requests in order to better utilize the network bandwidth. based on
application disclosed access patterns [5],signatures derived from access pattern
classifications [6], and speculative execution [7,8].

A limited number of recent studies have proposed and evaluated parallel I/O
solutions for supercomputers. Yu et al. [9] present a GPFS-based three-tiered
architecture for Blue Gene/L. The tiers are represented by I/O nodes (GPFS
clients), network-shared disks, and a storage area network. Our solution extends
this hierarchy to include the memory of the compute nodes and proposes an
asynchronous data-staging strategy that hides the latency of file accesses from
the compute nodes. An implementation of MPI-TIO for Cray architecture and the
Lustre file system is described in [10]. In [11] the authors propose a collective I/O
technique, in which processes are grouped together for collective 1/O according
to the Cray XT architecture.
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3 Blue Gene/P

This section presents the hardware and operating system architectures of Blue
Gene/P.

3.1 Blue Gene/P Architecture

Compute nodes 1/0 nodes File servers

Control network Service node front-end nodes

Fig. 1. Blue Gene/P architecture overview.

Figure 1 shows a high-level view of a Blue Gene/P system. Applications
run on compute nodes. Compute nodes are grouped into processing sets, or
“psets.” Applications run in exclusivity on partitions, consisting of multiples of
psets. Each pset has an associated I/O node, which performs I/O operations on
behalf of the compute nodes from the pset. The compute and I/O nodes are
controlled by service nodes. The file system components run on dedicated file
servers connected to storage nodes though a 10Gbit Ethernet switch.

Compute and I/O nodes use the same ASIC with four PowerPC 450 cores,
with core-private hardware-coherent L1 caches, core-private stream prefetching
L2 caches, and a 8 MB shared DRAM L3 cache. There are 4 GBytes of main
memory per node.

Blue Gene/P nodes are interconnected by five networks: 3D torus, collective,
global barrier, 10 Gbit Ethernet, and control. The 3D torus (5.1 GBytes/s) is
typically used for point-to-point communication between compute nodes. The
collective network (1700 MBytes/s) has a tree topology and serves collective
communication operations and I/O traffic. The global barrier network offers an
efficient barrier implementation. The 10 Gbit Ethernet network interconnects
I/0O nodes and file servers. The service nodes control the whole machine through
the control network.

3.2 Operating System Architecture

In the IBM solution [12], the compute node kernel (CNK) is a light-weight op-
erating system offering basic services: creation of process address spaces, simple
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Fig. 2. 1/0O forwarding for IBM and ZeptoOS solutions.

system calls such as setting an alarm, and forwarding I/O-related system calls
to the I/O nodes. As shown in Figure 2(a), the I/O system calls are forwarded
through the tree collective network to the I/O node. The I/O nodes run a simpli-
fied Linux OS kernel (IOK) with a small memory footprint, an in-memory root
file system, TCP/IP and file system support, and no swapping and lacking the
majority of classical daemons. The forwarded calls are served on the I/O node by
the control and I/O daemon (CIOD). CIOD executes the requested system calls
on locally mounted file systems and returns the results to the compute nodes.

An open-source alternative to the IBM’s solution is developed in the Zep-
toOS project [13]. Under ZeptoOS, Blue Gene compute nodes may run Linux,
while the I/O forwarding is implemented in a component called ZOID. The I/0O
forwarding process shown in Figure 2(b) is similar to the one based on CIOD,
in the sense that I/O related calls are forwarded to the I/O nodes, where a
multithreaded daemon serves them. However, there are two notable differences
in design and implementation between CIOD-based and ZOID-based solutions.
First, ZOID comes with its own network protocol, which can be conveniently
extended with the help of a plug-in tool, which automatically generates the
communication code for new forwarded calls. Second, the file system calls are
forward through ZOIDFS [14], an abstract interface for forwarding file system
calls. ZOIDFS abstracts away the details of a file system API under a stateless
interface consisting of generic functions for file create, open, write, read, close,
and so forth.

4 Write-Back and Prefetching Policies

In this section we describe how we extended our initial parallel I/O design for
Blue Gene systems. The solution is based on the ROMIO implementation of the
MPI-IO standard [15] and ZOIDFS and is shown in Figure 2(b).
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On the compute node side, the file system calls performed through MPI-IO
are mapped to ADIO. ADIO [16] is an abstract device interface, which consists
of general-purpose components and a file-system specific implementation.In this
case ADIO maps the calls to the ZOIDFS file system. The general-purpose com-
ponents are the collective cache, the write-back module, and the prefetching
module. In this paper we describe the design, implementation, and evaluation
of the write-back module. The compute node prefetching module is part of our
current efforts.

On the I/O node side, ZOIDFS maps the forwarded calls to specific file
system calls (in our case PVFS). Between ZOIDFS and the file system there is
a file cache accessed by the I/O node write-back and prefetching modules. The
write-back module was implemented in our previous work and its performance
evaluated for BG/L. The novelties presented in this paper are the prefetching
module and an evaluation of the whole solution on BG/P systems. The write-
back mechanism is implemented at each I/O node in one I/O thread. The I/0
thread asynchronously writes file blocks to the file system following a high-low
watermark policy, where the watermark is the number of dirty pages. When the
high watermark is reached, the I/O thread is activated. The I/O thread flushes
to the file system the last modified pages until the low watermark is reached.

In our solution, file consistency is ensured by assigning a file block exclu-
sively to one aggregator and caching the respective file block only on the I/O
node responsible for the pset of the aggregator. Therefore, all the processes send
their accesses to the aggregators over the torus network, and in its turn each
aggregator exclusively accesses a nonreplicated cache block at I/O node over the
tree network.

4.1 Write-Back Collective I/0

Our initial Blue Gene/L collective I/O solution was based on view-based co-
llective I/0 [17]. In view-based I/O each file block is uniquely mapped to one
process called aggregator, which is responsible to perform the file access on be-
half of all processes of the application. A view is an MPI mechanism that allows
application to see noncontiguous regions of a file as contiguous. View-based I/0
leverages this mechanism for implementing an efficient collective I/O strategy.
When defined, the views are sent to aggregators, where they can be used by all
the accesses. View-based I/O writes and reads can take advantage of collective
buffers managed by aggregators, which are responsible for performing the file ac-
cess on behalf of all processes of the application. At access time, contiguous view
data can be transferred between compute nodes and aggregators: using the view
parameters, the aggregator can perform locally the scatter/gather operations
between view data and file blocks.

In our initial Blue Gene/L solution, the modified collective buffers were trans-
fered to the I/O node either when the memory was full or when the file was
closed. This approach was taken because the Blue Gene/L did not offer support
for threads on the compute nodes.
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For Blue Gene/P, however, the collective buffer cache is asynchronously writ-
ten back to the file system by an I/O thread. The write-back allows for over-
lapping the computation and 1/0, by gradually transferring the data from the
collective buffer cache to the I/O nodes. This approach distributes the cost of
the file access over the computation phase and is especially efficient for scientific
applications, which alternate computation and I/O phases.

The new implementation of our hierarchical I/O cache includes a two-level
asynchronous file write strategy. The compute nodes asynchronously write back
data to the I/O nodes, while the I/O nodes write asynchronously back data to
the storage system.

4.2 Asynchronous I/O Node Prefetching

Another contribution of this paper is the design and implementation of a prefet-
ching module at I/O node. The objective of I/O node prefetching is to hide the
latency of read operations by predicting the future accesses of compute nodes.

The prefetching mechanism is leveraged by each I/O thread running at the
I/O node. The prediction is based on the round-robin collective buffer distribu-
tion over the aggregators. Given that all collective buffers of an aggregator are
mapped on the same I/O node, we implemented a simple strided prefetching
policy. When an on-demand or a prefetch read for a collective block correspond-
ing to an aggregator returns, a new prefetch is issued for the next file block
of the same aggregator. The prefetching is performed by the I/O thread, while
on-demand reads are issued by the thread serving the requesting compute node.
A cache block, for which a read request has been issued, is blocked in memory,
and all threads requesting data from the same page block at a condition vari-
able. A further relaxation of this approach by allowing reads from page hits to
bypass reads from page misses is possible, but it has not been implemented in
the current prototype.

In the current implementation, only the I/O nodes perform prefetching into
their local caches. However, we are developing an additional layer of prefetching
between compute nodes and I/O nodes and its integration with the I/O prefet-
ching module at I/O node presented in this paper.

5 Experimental Results

The experiments presented in this paper have been performed on the Blue
Gene/P system from Argonne National Laboratory. The system has 1024 quad-
core 850 MHz PowerPC 450 processors with 2 GB of RAM. All the experiments
were run in Symmetric Multiprocessor mode (SMP), in which a compute node ex-
ecutes one MPI process per node with up to four threads per process. The PVFS
file system at Argonne consists of four servers. The PVFS files were striped over
all four servers with a stripe size of 4 MB.
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Fig. 3. SimParlO write performance for different record sizes for 64 and 512 processors.
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Fig. 4. SimParlO write performance for a fixed record size of 32KB and 128KB.

5.1 SimParIO

We have implemented an MPI benchmark called SimParIO that simulates the
behavior of data-intensive parallel applications. The benchmark consists of al-
ternating compute and I/O phases. The compute phases are simulated by idle
spinning. In the I/O phase all the MPI processes write nonoverlapping records
to a file. The number of alternating phases was 20. The maximum file size pro-
duced by 512 processes and record size of 128 KB was 1.25 GB. The compute
nodes do not use any caching.

We compare four cases: IBM’s CIOD-based solution, ZOID without cache,
ZOID with cache and zero-time compute phase, and ZOID with cache with a 0.5
seconds compute phase. In one setup we have fixed the record size (we report
two cases: 128 KB and 1 MB) and varied the number of processors from 64 (one
pset) to 512 (8 psets). In the second setup we use a fixed number of processors
(we report two cases: 64 and 512 processors) and vary the record size from 1 KB
to 128 KB. Figures 3 and 4 show the aggregate file write throughput results.
Figures 5 and 6 plot the aggregate file read throughput.

As expected, the file writes based on the write-back cache significantly out-
perform the CIOD-based and the no-cached solution in all cases. The duration
of the compute phase does not seem to influence the performance of the write-
back strategy. This indicates a good overlap of communication from the compute
nodes to I/O nodes and the write-back from compute nodes to the file system.
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Fig. 6. SimParlO read performance for a fixed record size of 32KB and 128KB.

For file reads, the prefetching policy at I/O nodes works especially well for
compute phases of 0.5 seconds. This performance benefit comes from the overlap
between computation and file reads at I/O nodes. For 0 seconds compute phases,
all 64 processes of a pnode request file reads on-demand roughly at the same
time and reissue a new on-demand read request as soon as the previous one
has been served. In this case the current prefetching implementation has little
margin for improvement, and its costs may even outweigh the benefits.

5.2 BTIO benchmark

NASA’s BTTO benchmark [18] solves the block-tridiagonal (BT) problem, which
employs a complex domain decomposition across a square number of compute
nodes. The execution alternates computation and I/O phases. Initially, all com-
pute nodes collectively open a file and declare views on the relevant file regions.
After each five computing steps the compute nodes write the solution to a file
through a collective operation. At the end, the resulting file is collectively read
and the solution verified for correctness. The aggregator cache on each compute
node has 128 MB, while the I/O node buffer cache had 512 MB. All nodes acted
as aggregators. We report the results for class B producing a file of 1.6 GB.
We have run the BTIO benchmark with four variants of collective I/0 file
writes: two-phase collective I/O from ROMIO, view-based I/O with no write-
back (VB-original), view-based I/O with one-level compute-node write-back
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Fig. 7. BTIO class B times for 64 and 256 processors.

(VB-CNWB), and view-based I/O with two-level write back (VB-2WB). Fig-
ure 7 shows the breakdown of time into compute time, file write time, and close
time. The close time is relevant because all the data is flushed to the file sys-
tem when the file is closed. We notice that in all solutions the compute time
is roughly the same. VB-original reduces the file write time without any asyn-
chronous access. VB-CNWB reduces both the write time and close time, as data
is asynchronously written from compute node to I/O node. For VB-2WB, the
network and I/O activity are almost entirely overlapped with computation. We
conclude that the performance of the file writes gradually improved with the
increasing degree of asynchrony in the system.

6 Conclusions and Future Work

In this paper we describe the novel implementation of a multiple-level cache
architecture for Blue Gene systems. The novel solution includes a compute-node
write-back policy, which asynchronously transfers data from the compute nodes
to the I/O nodes. This policy complements the initial data-staging strategy,
which was performing asynchronous transfers between I/O nodes and the file
system. Additionally, we implemented and evaluated an I/O node prefetching
strategy, which asynchronously transfers file data from the file system to the
I/O node. Both the data-staging and prefetching strategies provide a significant
performance benefit, whose main source comes from the efficient utilization of
the Blue Gene parallelism and asynchronous transfers across file cache hierarchy.

There are several directions we are currently working on. The solution pre-
sented in this paper is specific for Blue Gene architectures. However, the compute
node part runs unmodified on any cluster, by leveraging the ADIO interface. In
our cluster solution the I/O node cache level is managed by AHPIOS middleware
[19]. Additionally, we are implementing and evaluating the prefetching module
on the compute node. Finally, we plan to perform a cost-benefit analysis of
various coordination policies among the several levels of caches.
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