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 1 Introduction 

 

 Brain activity can be studied at multiple levels, ranging from synapses to 

single neurons to networks of millions of nerve cells. Gaining understanding of the 

complex, opaque relationships between activities across the microscopic and 

macroscopic levels is a major goal in neuroscience, because it would be a tremendous 

help to unravel the underpinning of both normal and pathological function. For 

example, one would be able to describe how individual neural components interact to 

generate the γ-rhythm of the electroencephalogram (EEG), how neurons go awry 

during an epileptic seizure, or how they generate a steering signal for a muscle group.   

 Current experimental techniques cannot capture the behavior of all the 

individual neural components of a large network in sufficient detail: 

electrophysiology lacks the spatial resolution for measuring individual cells in a 

network, while imaging techniques lack temporal resolution. Data collected from 

computational models of neural networks are not thus limited and therefore can reveal 

individual and aggregate neuronal activity at the same time [12, 17, 18, 19, 20].  

    Traditional network models usually contain neurons with integrate-and-fire 

properties. Recently it was recognized that neurons can also have inductor-like 

resonant characteristics (reviewed in [8]). Depending on the voltage-dependence of 

stabilizing ion channels, these characteristics can be simulated with models that 

include biophysically realistic channels (e.g., [9]). Since brain rhythms are believed to 

play a critical role in neural processing (e.g., [3]), it is important to establish how such 

resonant properties affect network dynamics. 

 The purpose of this study is to model and examine the relationship between 

cellular and network oscillations. We examine network activity in a previously 

developed neuronal model of neocortex with biophysically realistic ion channels 

following the Hodgkin and Huxley formalism [7, 11, 19, 20]. We determine the 

resonant properties of single neocortical cells and study how these properties relate to 

onset and offset of network oscillations. 
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2 Methods 

 

Modeling.  

 Because the histo-physiology of neocortex is not described at the same level of 

detail as other areas in the brain, such as hippocampus, we focus on replicating the 

general network characteristics of neocortical circuitry. Therefore we include 

excitatory and inhibitory neuronal populations, recurrent excitation, inhibition, 

disinhibition, direct electrical contact between the inhibitory cell types, and feedback 

and feedforward loops. Because thalamic input is not of primary interest for intrinsic 

cortical oscillations, we focus on the pyramidal neurons and neglect stellate cells. 

Inhibitory neurons, although a minority in the cortex, are more variable than the 

excitatory neuronal population. In the current model we focus on the inhibitory 

neurons that predominantly connect to soma and initial segment and that have 

significant horizontal spread (relevant for propagation of cortical activity). 

 Details of the model are described in [18, 19, 20]. Briefly, the neural network 

representing neocortex includes excitatory and inhibitory neuronal populations with a 

multicompartmental representation for each cell type. Sodium and potassium channels 

following the Hodgkin and Huxley formalism are included in the soma and initial 

segment compartments of the cell models. Excitatory synaptic function was simulated 

with an alpha function (time constant 1-3 ms), while inhibitory synaptic activity was 

modeled by a dual exponential function with time constants of 1 and 7 ms. 

The excitatory component of the network (Fig. 1) consists of superficial 

pyramidal cells from cortical layers 2/3 (S, Fig. 1) and deep pyramidal cells from 

layers 5/6 (D, Fig. 1). The network inhibition is provided by three types of basket 

cells and the chandelier cell (I, Fig. 1), all of which receive input from both types of 

pyramidal neurons. The basket cells inhibit the pyramidal cell soma, whereas the 

chandelier cells directly inhibit the initial segment. The model captures essential 

features of neocortical microcircuitry: we use a ratio of 4:1 for excitatory to inhibitory 

neurons; excitatory synapses end on the dendritic portion and the inhibitory ones on 

the soma, initial segment, and dendrites [4]; connections include recurrent excitation, 

reciprocal inhibitory contacts, axo-axonic interneurons, and nearest-neighbor gap 

junctions (R, Fig. 1) between inhibitory cells [1].  The neurons are placed in a three-

dimensional grid with realistic cell density and network connectivity based on 

histological and physiological studies [4, 5, 6, 10, 13, 14].   
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 The computational model is implemented in the parallel GENESIS neural 

simulator [2]. Extracellular activity was obtained as the weighted sum of currents 

generated by the model cells’ somas [15].  Depending on the overall levels of synaptic 

excitation E and inhibition I, the model displays a variety of EEG rhythms; for 

example, with I=2.0, the model produces desynchronized activity (E>~3.0), network 

bursts (E<0.5), or oscillations around 28 Hz (0.5<E<3.0) [18]. 

 Two sets of simulations were preformed.  In the first, one of each cell type in a  

656-cell network was primed with a 300 pA current injection for 200 ms; thereafter, 

the simulation was allowed to progress without further stimulation.  The network 

coupling (E & I) were set so that the network would oscillate.  In the second set of 

simulations, the response of the model neurons and network to the frequency of 

external stimulation was evaluated by injecting sinusoidal currents. A 1 nA current (1-

100 Hz) applied to the soma of a single model cell elicited a response just below its 

spiking threshold. Network stimulation during bursting activity was modeled by 

injecting a 30 pA sinusoidal current into 25% of the superficial pyramidal cells in 

their distal apical dendrite compartments. We varied the frequency of this current 

between 1 and 300 Hz. 

 

Experimental Procedures. Coronal slices (500 µm) were prepared from CD-1 mice 

ages P8-12 and transferred into artificial cerebral spinal fluid (ACSF) consisting of (in 

mM) 118 NaCl, 25 NaHCO2, 30 glucose, 3 KCl, 1 NaH2PO4, 1 CaCl2, and 1 MgCl2 

(pH 7.4). Patch pipettes and electrodes for extracellular recordings were manufactured 

from glass capillaries and filled with intracellular solution containing (in mM) 140 D-

gluconic acid, 10 EGTA, 10 HEPES, 2 MgCl2, 1 CaCl2, 4 Na2ATP (pH 7.2). Layer 5 

pyramidal neurons in the frontal cortex were patched using the blind-patching 

technique. The resonant properties of each neuron were measured by recording the 

cellular voltage response to intracellularly-injected sinusoidal current stimuli that 

ramped linearly in frequency from 0 to 15 Hz over 30 seconds (ZAP input). 

Extracellular recordings were performed in layer 5/6 frontal cortex using pipettes 

filled with bath ACSF solution. Network resonance was evaluated by delivering the 

ZAP current through a second stimulation electrode placed in layer 5/6. The 

measurement was repeated after blocking action potential generation (and synaptic 

transmission) by bath application of 1 mM tetrodotoxin (TTX) in order to verify the 

biological origin of the signal.   
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3 Results 

 

Role of Neuronal Resonant Properties in Network Oscillation. A sample of the EEG 

generated by the simulated neocortical patch is shown in Fig. 2A and the 

corresponding amplitude spectrum in Fig. 2B.  These oscillations are also observed in 

the membrane potentials of individual neurons in the simulation (Fig. 2C, D). 

Although different cells show very different suprathreshold (spiking) behavior during 

the network oscillation, their subthreshold oscillations are remarkably similar and 

synchronized (Fig. 2C). Frequency analysis of each neuron’s activity shows a strong 

component around 28 Hz, the same frequency as the EEG oscillation. The dominant 

peak in the amplitude spectrum reflects the predominant frequency of the 

subthreshold oscillations; while, the harmonics correspond to the varying degrees of 

spiking behavior among individual neurons. When isolated model neurons are 

stimulated with sinusoidal signals of varying frequencies, their responses display a 

resonant peak around 30 Hz (Fig. 2E, F): not identical, but very close, to the dominant 

frequency of the network oscillations. 

 

Offset of Network Bursting in the Model. In a second set of simulations we evaluated 

how effectively one might stop network bursting patterns with electrical stimulation. 

The upper trace in Fig. 5A depicts the EEG of a bursting network , and the six bottom 

traces show examples of how the EEG is altered by electrical stimulation with a 

sinusoidal current of different frequencies (ranging between 2 and 127 Hz). The graph 

in Fig. 5B shows how well different frequencies attenuate the network bursts. The 

stimulus is most effective in the range of the cellular resonance (~30 Hz). 

  

The Membrane Equivalent Circuit and Resonance. The close relationship observed 

between the resonant behavior of individual neurons and the dominant oscillatory 

frequency of the network has important implications for elucidating mechanisms 

underlying oscillatory behavior across macroscopic and microscopic levels.  To 

analyze how intra-cellular components might contribute to resonance, we follow [8] 

and represent the electrical properties of a neuronal membrane as a parallel RLC 

circuit (see Fig. 3A,B).  The fundamental concept is that passive properties of the cell 

membrane (i.e., membrane resistance R and membrane capacitance C) interact with 
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an active current or currents (represented by the inductor in series with a resistor).  As 

a whole, the circuit acts as a band-pass filter: in other words, it exhibits resonance.   

 From a dynamical systems point of view, the RC portion of the circuit can be 

described by a one-dimensional system whose equilibrium at rest is a node and is 

therefore incapable of producing oscillatory behavior.  A simple parallel RC circuit 

can be used to model the linear subthreshold behavior of an integrator-type neuronal 

membrane.  In order to model the properties of resonator neurons, a second dimension 

must be incorporated so that oscillations are possible near rest.  A so-called resonate-

and-fire (RF) neuron is the simplest example of a linear, two-dimensional model 

system that exhibits resonator-like properties [9, 16].  Furthermore, the RF neuron’s 

subthreshold behavior can be modeled by the equivalent circuit shown in Fig. 3B, a 

simplified version of the Hodgkin and Huxley neuronal membrane model [7] depicted 

in Fig. 3A.  The inductor-resistor series component of the circuit in Fig. 3B is a good 

model for an ion channel capable of producing resonance.  An inductor, which 

generates an electromotive force that opposes the injected current to the circuit, is 

analogous to a resonant channel, such as the delayed rectifier potassium channel, that 

can oppose changes in membrane voltage by, for example, activating outward current 

upon depolarization. 

 To gain a more intuitive understanding of how resonance arises in the cell, we 

approximate the RLC impedance curve as follows.  First, we consider the effective 

impedance (ZRC) for the resistor (Rm) and capacitor (Cm) in parallel separately from 

the impedance for the inductor (LK) and resistor (RK) in series (ZLR).  From the usual 

rule for adding impedances in parallel,
mmCRRC fC

i

RZZZ
mm

2

1111
 . As a result, 

|ZRC| must be smaller than either 
mRZ  or 

mCZ  (these limits, with the exact solution 

for |ZRC|, are shown and labeled accordingly in Fig. 3C).  We also note that 

KKRLLR RfLiZZZ
KK

 2 , so that |ZLR| must be greater than either 
KLZ or 

KRZ (dotted line, indicated LKRK, in Fig. 3C).  Finally, the effective impedance for the 

entire circuit, Z, is given by 
RCLR ZZZ

111
 ; neglecting for the moment the relative 

phase angle of the components, |Z| can be approximated as being less than either |ZRC| 

or |ZLR|.  As the exact solution to |Z| (dotted curve indicated “whole cell impedance” in 
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Fig. 3C) illustrates, combining these constraints can help estimate whether, and at 

what frequency, a resonant peak exists in the cell’s impedance curve.  Conversely, it 

is possible to estimate the values of the circuit elements from the impedance curve. 

Properties of Ion Channels and Resonance. Simplifying further, if the circuit in Fig. 

3B is under voltage clamp, we can disregard the contribution of the Cm branch 

(because the membrane is charged directly by the voltage clamp electrode, not 

through the membrane resistance, the voltage across the capacitor tracks the set point 

voltage rapidly compared to any timescales relevant to the channels in the 

membrane).  If, in addition, we consider just the conductance due to potassium (e.g., 

if all other channel types are blocked pharmacologically), the circuit reduces to only 

the RK and LK components in series with the voltage clamp command potential V (Fig. 

3D).  This simplified circuit allows us to describe the current response (the output 

measured in a voltage clamp experiment) to a voltage step as follows: 
















 t
L

R

K

K

K

e
R

V
tI 1)( . 

The channel time constant K  is equal to
K

K

R

L
, so finding the values of KL and 

KR provides the time constant of the ion channel (or channels) primarily responsible 

for the resonance peak (see the impedance plots in Fig. 3C: KL  is estimated from the 

value of the total impedance at the resonance peak, while KR  is roughly the low-

frequency baseline value of the total impedance). 

We now show an example of how to calculate K . Fig. 2F shows the 

impedance curve from a model pyramidal cell; point 3 indicates the impedance Zres at 

the resonant frequency fres, point 1 shows the low frequency limit of the impedance Z1 

at f1 << fres and point 2 indicates the impedance Z2 at a high frequency f2>>fres. To 

estimate the channel time constant: 

(1) Find mC  from f2, Z2: At f2 the capacitor contributes most of the impedance 

Z2 (see Fig. 3C), so mC can be estimated by substituting 2f = 61.35 Hz and 

2Z = 50 MΩ into 
)2(

1

22 Zf
Cm


  = 5.2 × 10

-5
 µF. 

(2) Estimate KL  from fres, mC : At fres, the total impedance consists of roughly 

equal contributions from the capacitor and inductor: 
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km LC ZZ  
Kres

mres

Lf
Cf




2
2

1


mres

K
Cf

L
224

1


  (in Henrys).  

Substituting mC  from (1) and resf 30 Hz (see Fig. 2F) gives KL 0.54 

MH. 

(3) Find KR from Z1 : Suppose we determine the value of mR to be 170 MΩ by 

delivering a hyperpolarizing current step. From Fig. 2F, the impedance 

1Z 50 MΩ; since the current is quasi-static at f1, we consider only the 

resistors and estimate KR  from 
mK RZR

111

1

   KR = 70 MΩ.   

(4) We can now estimate the time constant K = 
K

K

R

L
 7.7 ms. 

That these estimates land fairly close to the actual model parameters ( KR = 68 MΩ; 

mC = 5.8 x 10
-5

 µF; KL = 0.38 MH; K = 5.7 ms) indicates that potassium channels 

play the principal role in shaping resonance in the model. 

  We tested for the presence of resonance in mouse in vitro neocortical networks 

by injecting current according to the ZAP protocol both to individual cells and via an 

extracellular electrode to stimulate the network (Fig. 4). Although an order of 

magnitude below the resonant peak in our model (~2 Hz versus ~30 Hz in the model), 

we did observe similar principles at work: the frequency of the cellular and network 

resonances are nearly equal (the ratio between cellular and network resonance 

frequency in both the model and real neurons is ~1).  Blocking communication (with 

TTX) resulted in loss of resonance in the network.  The purpose of adding TTX was 

to show that the network resonance was a biological signal rather than artifact; block 

of the frequency-dependent network effect by TTX could be due either to individual 

cells or loss of emergent network properties.  Using the same procedure as described 

for the model pyramidal cell above, we calculated the time constant of the channel(s) 

responsible for shaping resonance observed experimentally in the real neurons (e.g., 

Fig. 4A) to be ~300 ms.   

 

4 Discussion 
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 Although one would expect the suprathreshold behavior of neurons to be most 

important for the network’s activity, and therefore the generated local field potentials 

and EEG, we show that subthreshold resonant behavior may determine spike timing 

and that synchronized subthreshold oscillation significantly contributes to the 

compound electrical activity generated by the population of neurons in the network. 

We acknowledge that it is difficult to unravel cause and effect, and that mechanisms 

promoting oscillations as an emergent property of the network’s spiking activity offer 

possible explanations; however,the population of cells in the network creates 

sufficient activity to sustain oscillations in the neuron’s membrane potential and the 

likelihood of sustained oscillations is highest near the peak of the single-cell 

resonance curve. These subthreshold oscillations affect the probability of action 

potential generation (Fig. 2C), thereby influencing overall spike timing in the 

network.  At reasonable levels of spiking activity, the subthreshold oscillations in 

individual neurons become synchronized and together generate an oscillating 

extracellular current observable in the EEG signal. From the perspective of the 

network function, the oscillatory activity propagates back and forth between the 

superficial and deep layers [20].   

 From the analysis of the cell model’s membrane equivalent circuit (Fig. 3), we 

confirm that the resonate-and-fire behavior seen in Fig. 2C can be explained with the 

inductive properties of the membrane [8]. To the best of our knowledge this is the first 

procedure that directly relates induction to the time constant of the membrane’s 

resonant ion currents. We validate this procedure in our model by correctly estimating 

the known time constant of the K
+
 channel from the impedance measurement of the 

pyramidal cell in Fig. 2F. Applying this relationship between the cell’s impedance and 

the resonant current to data recorded from slices of mouse neocortex, we show that 

inductive properties in real neurons are associated with a time constant of several 

hundred milliseconds. This estimate indicates that the ion current responsible is 

significantly slower than the delayed rectifier potassium current. Thus if, as in our 

model neurons, potassium channels play a major role in the resonance we observed in 

mouse neocortical pyramidal neurons, we can exclude channels with relatively rapid 

activation (such as KDR or KA) from consideration; more probable contenders such as 

KM must be further investigated experimentally. 

   The ultimate goal of our computational modeling effort is to create a virtual 

nervous system. In such a virtual environment one can study spontaneous and 
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perturbed activity patterns, thereby generating insight into neural function across 

scales. In our example, presented in Fig. 5, we show a relationship between the 

effectiveness of electrical stimulation of the network and the resonant frequency of 

the neurons. Insight into relationships across scales not only sheds light on brain 

function and malfunction, but it can also be used for computer-aided design of brain-

computer interfaces. This approach may help to determine what signals are most 

effective as steering input to an interface (e.g., for a robotic arm), or it may provide a 

strategy for developing algorithms to decompose compound signals into more 

effective individual steering components. 
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Figures 

 

Fig. 1: Diagram of the neocortical model and the associated EEG electrodes. Included 

are superficial pyramidal neurons (S), deep pyramidal cells (D), and inhibitors (I). 

The pyramidal cells are the excitatory component with short-range and long-range 

connections (in steps of ~1 mm), the inhibitors inhibit the pyramidal cells and each 

other and have only short-range connections (not shown in the diagram). Each type of 

inhibitory neuron has interconnections via gap junctions, indicated by the resistor 

symbol (R). During oscillatory activity, symbolized with the stippled arrows, there is 

activity propagating between the superficial and deep layers. These oscillations are 

reflected in the compound signals recorded from the EEG electrodes. 
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Fig. 2: Resonance and oscillatory activity across different levels in the model.  Panels 

(A) and (B) show the time and frequency domain representations of the compound 

activity from the EEG electrode. The dominant oscillation of ~28 Hz is indicated by 

the arrow in panel (B). Panels (C) and (D) show oscillations in individual superficial 

pyramidal cells during the same EEG epoch (spikes in (C) are truncated). These cells 

have different levels of activity varying from non-spiking (cell 3), to occasional firing 

(cell 2), to continuous spiking (cell 1). The subthreshold signal component shows 

somewhat synchronized oscillations in all neurons, and the associated amplitude 

spectrum (D) shows that these oscillatory components are located at ~28 Hz (arrow), 

the same frequency as the EEG in panel (B). The harmonics in the amplitude 
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spectrum are associated with the action potentials.  Single-cell resonance can be 

recorded by injecting currents at a range of frequencies and recording the response in 

the membrane potential (E). The neuronal resonance can be expressed as the ratio of 

membrane potential amplitude and injected current amplitude, that is, the impedance 

(F). The peak of the cellular resonance is in the same area (~30 Hz) as the 

subthreshold oscillations of the neurons and the network oscillations. 

 

Fig. 3: (A) Hodgkin and Huxley neuronal membrane equivalent circuit including 

sodium, potassium, and leak channels (represented by RNa, RK, and RL, respectively).  
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Batteries shown represent the equilibrium potentials (ENa, EK, and EL) for the 

respective channels. (B) Equivalent circuit model for a resonate-and-fire (RF) neuron 

simplified from panel (A).  Batteries are omitted from the figure. (C) RF circuit 

elements interact to produce a peak in the impedance curve for the whole cell 

indicating resonance.  Impedance traces are from the inductor (LK), resistor in series 

with inductor (RK), membrane resistance (Rm), and membrane capacitance (Cm). The 

dotted curves show the combined impedances for the RmCm, RKLK, and the whole cell 

model. (D) A simplified circuit of the membrane under voltage-clamp conditions that 

represents the potassium channel behavior. 

 

Fig. 4: Cellular (A) and network resonance (B) in mouse neocortical tissue in vitro. 

The resonance properties of real neural structures were examined by injection of a 

ZAP current, a signal for which the frequency increases from 0 to 15 Hz over time, 

top traces in panels (A) and (B). In both the cell and network we see resonance 

occurring at 1.6 Hz and 1.9 Hz respectively (arrows, panel (A) and (B)).  
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Fig. 5: Effect of electrical stimulation in a bursting model network. The top trace in 

panel (A) shows the EEG of a bursting network. When stimulating the network with 

sinusoidal currents at different frequencies, both the amplitude and frequency of the 

network bursting is affected (panel (A), six bottom traces with stimulus frequencies 

ranging from 2 to 127 Hz). The ratio between the amplitude of the network bursts 

with and without electrical stimulation is plotted versus the stimulus frequency in 

panel (B). 

 

 

 

 

 

 

 






