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Abstract. High-performance computing systems have already approached peta-scale with
hundreds of thousands of processors/cores in many deployments. These systems promise a
new level of predictive and knowledge discovery ability as researchers gain the capability to
model dependencies between phenomena at scales not seen earlier. These applications are
highly I/O and data intensive, leading scientists to observe that performing I/O and subsequent
analyses are major bottlenecks in effectively utilizing peta-scale systems and a major hurdle
in accelerating discoveries. Although significant progress has been made in performance,
interfaces, and middleware runtime systems for I/O in the recent past, significantly more
research and development needs to be carried out to scale the performance to the desired
levels for systems containing tens to hundreds of thousands of cores. In this work we outline
our recent achievements and current research for designing scalable I/O software and enabling
data analytics in storage systems. We also enumerate key challenges for the I/O systems and
discuss ongoing efforts that address these challenges.

1. Introduction

Research and development in science and engineering is increasingly based on simulations and/or
on analysis of observational data requiring the use of high-performance computing (HPC)
systems. HPC systems have already approached peta-scale in many deployments and efforts
are already underway towards designing and scaling systems to exascale. As systems scale,
simulations in areas such as combustion, chemistry, nanoscience, astrophysics, cosmology, fusion,
climate prediction, environmental science, and biology have the potential of providing a new level
of predictive and knowledge discovery, as researchers gain the capability to model dependencies
between phenomena at scales. Many of these applications are expected to use systems with
hundreds of thousands of processors/cores in order to achieve the resolution needed to better
analyze and understand complex science problems. One common characteristic of all these
applications is that they are all highly I/O and data intensive.

For example, in the area of atmospheric science and climate modeling it would be possible
to use more realistic models of clouds, precipitation, and convective processes by substantially
increasing the grid resolution, which would be feasible with computing power at this scale.
At a mesh spacing of 1 km and higher resolution, it is possible to accurately predict tropical
cyclones and other extreme weather events. It has been estimated that a global model on a
uniform grid with 1 km mesh spacing would require a computer with sustained performance of
10 peta flops or more [1]. These types of applications require simulations, data assimilation,
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analytics, validation of simulations with observations, etc. This requirement is quite common
across a range of applications in science and engineering. However, these characteristics across
applications also lead the scientists to observe that performing I/O and subsequent analyses
are major bottlenecks and most scientists also point that out as a major hurdle to effectively
utilizing peta-scale systems and accelerating discoveries.

Although significant progress has been made in performance, interfaces, and middleware
runtime systems for I/O in the recent past, significantly more research and development needs
to be carried out to scale the performance to the desired levels for systems containing tens to
hundreds of thousands of cores. Figure 1 illustrates a typical parallel I/O software stack that is
found in typical HPC systems. We note that this is a logical view and not meant to illustrate
physical connectivity or configuration of the I/O stack, rather to describe the software layers.
A parallel application may directly call MPI-IO or POSIX I/O functions to access files from the
parallel file system. Alternatively, a typical large-scale data-intensive application may use several
layers of software as illustrated in the figure. For example, a weather modeling application may
use NetCDF [2] for data representation and storage, where I/O is carried out through parallel
netCDF (PnetCDF) [3] for fast performance. PnetCDF is built on top of MPI-IO [4], which
may be layered on top of the Parallel Virtual File System (PVFS) [5] or some other parallel file
system. The highest layer normally has semantic information associated with the data, such
as data structures, types, attributes, user annotations, and data partitioning patterns, which
describe the intent of a user. For example, at the high-level I/O library layer, the user may have
represented a three-dimensional structure with a specific distribution of data (each element of
which may be a collection of variables such as temperature, pressure, density, humidity, etc.).
Some relationships can be preserved in the MPI-IO layer, such as the data partitioning patterns
among a group of processes. Furthermore, the MPI-IO may use the partitioning information to
enable optimizations of data caching, process coordination, and other techniques for performance
optimizations [6, 7, 8, 9, 10, 11]. However, the data structures, types, attributes, and annotations
will be converted to byte streams at the MPI-IO layer. Further down, at the POSIX I/O and
file system layers, without proper interfaces for complex metadata communication, high-level
information gets lost, and data appears just a stream of bytes.

As we move towards peta-scale systems and beyond, we have to reconsider the traditional
approaches to I/O optimizations. Traditional interfaces in file systems and storage systems are
designed to handle the worst-case scenarios for conflicts, synchronization, locking, coherence
checks, and other issues, which adversely affect the performance. In other words, in this



conventional design, the lower layers of the software stack are designed pessimistically, rather
than optimistically. Of course, the reasons for those designs are the semantics and expectations
of consistency, reliability, and other features needed from the storage and file systems. However,
by providing and using the appropriate interface at the middleware (e.g., MPI-IO) level,
understanding the access patterns, using some system resources within user application space,
and performing intelligent caching, the desired scalability in performance can be achieved in
such a manner that the optimizations are also portable across different systems through the use
of this middleware. We need to understand the source of the problems and limitations of the
current approaches, rather than blindly trying to deal with their manifestations for particular
architectures and applications. In many cases, the problem is not that of having insufficient I/O
capacity or bandwidth, but it is the excessive synchronization and file system control overhead at
the I/O layer to account for semantics and the worst-case scenarios. This can have devastating
results on overall system performance. Even though research and development for implementing
efficient memory synchronization or file locking scheme (when really needed) is important, high-
level information about access patterns may be the keys to eliminate or reduce such bottlenecks
and are, therefore, critical to achieving real scalability. In Sections 2 and 3, we discuss our recent
research on developing I/O strategies for PnetCDF and MPI-IO, respectively.

The storage systems in most of today’s HPC computers employ a group of servers dedicated
to I/O tasks and managed by a parallel file system. The computational capacity of one of
these I/O servers is equal or even greater than that of one of the compute nodes that run the
application programs. However, due to little computation required for serving I/O requests,
the CPUs at the I/O servers are underutilized. The computational resources at the storage
systems have been proposed as active storage to perform data filtering, a common operation in
database queries. Examples are active disks that embed processing hardware into disk devices
so that data filtering can be accomplished much faster. Utilizing the computational resources
on the I/O servers for data processing extends the same idea of reducing the data amount
transferred between application clients and the storage system. There are two advantages of
enabling data processing at I/O servers over active disks. First, the I/O servers require no
special hardware, unlike active disks which are still not in mass production. Second, the I/O
servers are interconnected and can potentially serve as a computer cluster, running full-blown
parallel programs.

Computational scientists must understand results from experimental, observational and
computational simulation data to gain insights and achieve knowledge discovery. As systems
approach the petascale range, problems that were unimaginable a few years ago are within
reach. With the increasing volume and complexity of data produced by ultra-scale simulations
and high-throughput experiments, understanding the science is largely hampered by the lack of
comprehensive I/O, storage, data manipulation, analysis, and mining tools. Scientists require
techniques, tools, and infrastructure to facilitate better understanding of their data, in particular
the ability to effectively perform complex data analysis, statistical analysis and knowledge
discovery. In Section 4, we discuss the issues of enabling the storage systems to carry out data
analytics computation as part of I/O operations. Without the proper interfaces and standardized
protocols, data structures and their access information at the higer levels of the I/O stack cannot
be passed to the lower leverls systematically.

2. Optimizations in parallel netCDF

Dataset storage, exchange, and access play a critical role in scientific applications. For such
purposes, netCDF serves as a software library and self-describing machine-independent data
format that supports the creation, access, and sharing of array-oriented scientific data [2].
NetCDF stores metadata in a file header that describes the structures of the arrays and their
layout in a netCDF file. Additional information, such as user annotations, can also be saved as
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Figure 2. A 3D array partitioned among 64 processes and its mapping to 4 subfiles.

attributes. Built on top of MPI-IO for portability, Parallel netCDF (PnetCDF) was developed
to support parallel I/O operations while retaining the netCDF file format for compatibility with
existing netCDF datasets and tools [3]. PnetCDF I/O functions take an additional argument of
an MPI communicator to indicate the processes participating in the shared-file I/O operations.
PnetCDF internally constructs MPI derived data types to describe complex access patterns, such
as reading a subarray of a multidimensional variable. MPI hints supplied by users are passed to
the underlying MPI-IO library, so that PnetCDF can take advantage of the I/O optimizations
available in MPI-IO.

PnetCDF encourages a shared-file I/O approach, one of the two parallel I/O programming
styles commonly used by today’s parallel applications, where all application processes store
and access related data in single, shared files. The other style is termed as unique I/O, also
known as the unique-file-per-process style, in which each process accesses files that are unique
to the process. Unique I/O can create a management nightmare for file systems when a parallel
job running on thousands of processes produces hundreds of thousands or millions of files.
Furthermore, accessing millions of files can be a daunting task for post-run data analysis.

The shared-file I/O programming style avoids such problems. It can also be used to save
global partitioned data structures in the canonical order. However, shared-file I/O performance
often suffers from significant file system overheads, at large scale, due to conflicted I/O requests
among processes [12, 11]. Such overheads include the system’s data consistency control for cache
coherency and I/O atomicity. Standard file system atomicity rules require that the results of
an individual write call are either entirely visible or completely invisible to any successive read
call from the same or different process [13]. Similarly, any caches must be kept synchronized so
that a consistent view of the file is preserved. In modern parallel file systems, data consistency
control is usually implemented using a file locking mechanism. As the number of concurrent
accesses to a shared file increases, the overhead due to lock conflicts can increase dramatically.

As a middle ground between the two extremes of small files and very large files, we have
developed a subfiling scheme for PnetCDF that allows a large multi-dimensional global array to
be split into a number of smaller subarrays, each saved in a separate file. The subfiling scheme
reduces the file system control overhead by decreasing the number of processes concurrently
accessing a shared file. By saving the subfiling information in the netCDF files, the structure of
global arrays can be portably reconstructed. In PnetCDF subfiling, the multi-dimensional array
partitioning is always along the most significant axis, and subarrays are stored in the canonical
order. Figure 2 shows an example of a three-dimensional array partitioned among 64 processes
and the mapping of the subarrays to four subfiles. Through the same PnetCDF I/O functions,
the partitioned global array still appears to users as a single netCDF array and access to it is
kept the same as without subfiling. In order to achieve this goal, the subfiling implementation
automatically generates the MPI fileviews for each subfile for a given I/O request. Mapping
information of a global array to subfiles is stored as netCDF attributes which are duplicated
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Figure 3. PnetCDF subfiling performance results for FLASH and S3D I/O kernels.

in all subfiles. Each netCDF subfile is self-contained with sufficient information to describe
the layout of the local array mapped to the global array, including the names of all subfiles and
partitioning of each subfile. Therefore, accessing the metadata from one of the subfiles is enough
to understand the subfiling structure of the global array.

We evaluate this subfiling scheme using two scientific production application I/O kernels,
FLASH-IO and S3D-IO. The performance is compared with the approaches of unique I/O and
single shared-file I/O using two parallel file systems: Lustre on Franklin, the Cray XT4 at
NERSC, and GPFS on Mercury, a TeraGrid machine at NCSA. Figure 3 summarizes the write
bandwidths where β = nproc/nsubfile is the ratio of the number of processes sharing a subfile.
In most of the cases, subfiling performance falls between the two I/O approaches. On GPFS,
subfiling even outperforms the unique-file I/O approach when 256 or 512 numbers of processes
are used. This is because the large number of concurrent file open operations overwhelms the
file system metadata server, causing significant increase in the file open cost.

3. Scalable MPI-IO

The storage systems on high-performance parallel computers usually consist of a small number
of I/O servers to serve requests from a much larger number of compute nodes that run user
applications. As the size of modern computer systems increases, it is obvious that the storage
system is becoming a performance bottleneck. Envisioning this problem, the IBM BlueGene
systems dedicate a set of nodes as intermediate I/O nodes that forward the requests from
application nodes to the I/O servers. These I/O nodes become the actual I/O clients to the
underlying file system, where one I/O node is responsible for the requests from a group of
compute nodes [14]. For example, in BG/L, there is usually an I/O node for every 8 to 64
processors [15, 16]. This design decreases the chances of possible I/O server contention, when
multiple compute nodes are concurrently performing I/O. Imagine, if thousands of process clients
on a HPC system perform I/O operations simultaneously, then the high volume of I/O requests
can easily choke the available network bandwidth at the storage system.

Based on a similar concept, we have developed a software solution, the I/O Delegate Cache
system (IODC), that uses an additional set of MPI processes as I/O delegate nodes (IOD)
dedicated to handle I/O requests from application client processes [17]. The IODC system is
built inside ROMIO [18], an MPI-IO implementation developed at Argonne National Laboratory.
In the IODC system, all I/O requests initiated by a user application running on application
nodes are intercepted and redirected to IOD nodes. This is achieved when parallel applications
pass their I/O requests to the MPI-IO layer directly or through a high-level I/O library, e.g.,
HDF5 [19] or PnetCDF. Like the I/O nodes in a Blue Gene, only IOD nodes access the underlying
parallel file system directly. In addition to forwarding requests, a collaborative distributed
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Figure 4. Performance results of using I/O delegation for FLASH and S3D I/O kernels.

cache is maintained across the IOD nodes for further I/O optimization. Features such as
request aggregation, lock request alignment, cache page migration, and atomicity control are
incorporated. By exploiting processing power and memory of IOD nodes for performing I/O
caching and data aggregation, we achieve significant I/O bandwidth improvements.

We conducted our experiments using the FLASH and S3D I/O kernels using Lustre on
Tungsten and GPFS on Mercury. Both Tungsten and Mercury are TeraGrid machines at NCSA.
Experimental results are given in Figure 4. By allocating only 2-3% of additional computer nodes
as I/O delegates, we achieved the improvement percentages ranging from 25% to 260%. Such
significant performance improvement demonstrates the potential for using a separate group of
MPI processes for I/O tasks to reduce the contention at the I/O servers, a technique that is
applicable to both shared-file and unique-file I/O patterns.

3.1. Adaptive file domain assignment for collective I/O
Although the shared-file I/O method provides a way to preserve the canonical order of structured
data and ease the file management for post-run data analysis and visualization, this method often
performs poorly when the I/O requests are not well coordinated. To address such performance
issue, MPI collective I/O is designed to provide an opportunity to induce collaboration among
the requesting processes for better I/O performance. Well-known examples of using such a
collaboration are two-phase I/O [20] and disk directed I/O [21]. These process collaboration
strategies have demonstrated significant performance improvements over uncoordinated I/O.
However, even with these improvements, the shared-file can I/O still perform far worse than
the unique-file-per-process approach. One of the main reasons is that concurrently accessing
shared files incurs higher file system locking overhead from data consistency control. The same
overhead can never happen if a file is only accessed by a single process. Two of most important
data consistency issues that POSIX-compliant file systems must enforce are I/O atomicity and
cache coherence. Most file systems rely on a locking mechanism for these tasks. Due to the
nature of file striping, the lock granularity is usually set to the file block size or stripe size,
instead of a byte. If two I/O requests simultaneously access the same file block and at least one
of them is a write, they must be carried out serially, even if they do not overlap in bytes.

ROMIO’s collective I/O implementation is based on the two-phase I/O strategy proposed in
[20], which includes a request redistribution phase and an I/O phase. The two-phase strategy
first calculates the aggregate access file region and then partitions it among the I/O aggregators
into approximately equal-sized contiguous segments, named file domains. This partitioning
strategy is referred as the even partitioning method. The I/O aggregators are a subset of the
processes that act as I/O proxies for the rest of the processes. In the data redistribution phase,
all processes exchange data with the aggregators based on the calculated file domains. In the I/O
phase, aggregators access the shared file within the assigned file domains. Two-phase I/O can
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Figure 5. Results for various file domain partitioning methods for FLASH and S3D I/O kernels.

combine multiple small non-contiguous requests into large contiguous ones and has demonstrated
to be very successful, as modern file systems handle large contiguous requests more efficiently.
However, the even partitioning method does not necessarily produce the best I/O performance
on all file systems due to the lock contentions. Since the lock granularity on most parallel file
systems is set to the file stripe size, the file domain partitioning must be carefully aligned with
the lock boundaries in order to minimize the lock conflicts.

We have developed a few file domain partitioning methods [22] as replacements for the even
partitioning method used by ROMIO. The first method aligns the partitioning with the file
system’s lock boundaries. The second method, the static-cyclic method, partitions a file into
fixed-size blocks based on the lock granularity and statically assigns the blocks in a round-robin
fashion among the I/O aggregators. The third method, the group-cyclic method, divides the
I/O aggregators into groups, each being of size equal to the number of I/O servers. Within each
group, the static-cyclic partitioning method is used. This method is particularly designed for the
situation that the number of I/O aggregators is much larger than the I/O servers. We evaluate
these methods using four I/O benchmarks on two parallel file systems, Lustre and GPFS. Due
to the different file locking mechanism implemented in Lustre and GPFS, these partitioning
methods result in significant performance differences on the two file systems.

Figure 5 presents the write bandwidth results of the FLASH-IO and S3D-IO benchmarks on
Jaguar, a Cray XT4 at ORNL, and Mercury at NCSA. These results indicate that the group-
static and lock-boundary aligned methods give the best write performance on Lustre and GPFS,
respectively. The lessons learned from this work can be helpful for the MPI-IO implementation
to adapt the best partitioning method based on the underlying file system configuration. On
file systems that implement server-based locking protocols, such as the Lustre, the group-cyclic
file domain partitioning method is the best choice for collective write operations, as it minimizes
the lock acquisition cost. For token-based locking protocols, such as the one used by GPFS,
the method that aligns the partitioning to the lock boundaries produces the least number of file
lock conflicts. These observations support developing ad hoc file domain partitioning methods
based on the underlying file system characteristics, such as file locking and striping.

4. Data analytics in storage systems

It is known that most large-scale applications carry out their I/O tasks in bursts. That is,
periodically a significant time of I/O inactivity is followed by bursts of I/O. Figure 6 illustrates
the I/O activities of the CTH application in one 3-hour run. CTH is a family of codes
developed at Sandia National Laboratories for modeling complex multi-dimensional, multi-
material problems that are characterized by large deformations and/or strong shocks [23, 24].
Through our collaboration with the Sandia National Laboratory, we are studying the I/O traces
produced from production runs [25]. Data checkpointing was enabled for every 25 minutes and
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Figure 6. The bursty nature I/O activity of application CTH. Checkpoint writes occurs at a
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hence results in bursts of I/O activities on the file system. Such I/O pattern explains a low
utilization of I/O servers commonly observed in today’s parallel file systems.

Active storage has been proposed since late 1990s and prototyped in hard disk drives
[26, 27, 28]. The majority of active storage applications are database operations, which perform
mostly data filtering operations. The concept of active storage has been extended from the
disk devices to the entire storage system, particularly, the I/O servers [29, 30]. Given the
computational capabilities of the I/O servers in a parallel file system, their idle time can
potentially be used to share the burden of computational nodes. Data intensive operations,
such as data analytics and mining, can benefit from such as an active storage model on parallel
file systems. However, offloading computational tasks from application clients to file system
servers has several obstacles on today’s file systems.

As illustrated in Figure 1, high-level information is lost when the data arrives at the file
system. Information such as data types and structures are critical for data analytics programs
to operate correctly. On the POSIX-compliant parallel file systems, the file metadata that can
be transferred between client applications and file systems is limited to the attributes describing
the file status. To enable computation offloading from application clients to file systems, the
file system must adapt object-based protocols to allow user-defined attributes and operations
be associated with the data objects. Object-based concepts have been incorporated into some
parallel file systems, such as PVFS, Lustre, and Panasas, but without standardized metadata
protocols, the potential optimization from metadata availability at the file level is still difficult
to achieve.

Another challenge is the collaboration of multiple file system servers in order to carry out
a single data analytics task in parallel. As files stored on a parallel file system can be striped
across multiple servers, these servers must be able to communicate with each other as part of
a parallel data analytics task. However, the I/O servers in modern parallel file systems are
not programmed to communicate with each other directly. Enabling active storage on parallel
file systems will soon change this phenomenon. Offloading the analytics tasks from application
clients to the I/O servers will require identifying the group of servers holding parts of the data
and informing the server group of data partitioning patterns. This is analogous to defining an
MPI communicator in an MPI program, carried out at run time.

We have started the active storage design for parallel data analytics by extending the
PnetCDF library and the PVFS file system. The well defined metadata in PnetCDF is borrowed
in order to construct the interfaces that allow users to pass customized metadata along with the
data to the PVFS file system. PVFS servers collaborate to execute data analytics operations
as parallel programs. Our initial work also uses the I/O delegation discussed in Section 3 as



another option for operation offloading. Since I/O delegation runs at user space, close to the
applications, it can retain more high-level metadata details for better performance. In our
design, the results of analytics are represented and saved in the netCDF format, so that both
client and server components have a consistent and metadata-rich data presentation. Results
are forthcoming.

5. Conclusions

Hardware and software improvements are constantly being made in the area of HPC I/O to
address the needs of efficient and effective storage system in computational science. However,
there are still challenges for achieving scalable performance as HPC systems enter the peta-
scale era. The most significant one is obsolete standards that cannot address large-scale I/O
requirements. From the performance point of view, abiding by the traditional semantics for data
consistency has been identified as a major obstacle. Such semantics were designed for small-
scale, loosely-coupled distributed environments and the problems addressed by these semantics
seldom appear in parallel I/O operations. New standards for interfaces and semantics must be
adopted to enable performance at scale. From the productivity point of view, the high-level I/O
information has no proper communication channels to be delivered to other components in the
I/O stack. Many aspects of such information can be used to bypass unnecessary system controls
and enable optimizations for better performance. Our work demonstrated the importance of
reducing file system locking overhead in collective MPI-IO operations. Such optimization relies
on the awareness of application I/O patterns as well as the underlying system configurations.
Extensions to POSIX I/O, the ANSI T-10 OSD, and pNFS standards are all important steps in
the direction of high-performance, standards-based I/O systems.

To increase the functionality of I/O systems for computational science, flexible interfaces are
important for exploiting the computational potential in storage systems. We have highlighted
design issues for enabling data analytics in parallel file system servers and pointed out the
deficiency of current standards. As the I/O systems and software are still evolving to meet the
challenges of existing and future HPC systems, adapting informative application programming
interfaces in file systems will elevate the I/O systems to a more versatile component from its
traditional role of simple file access.
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