
Using Dynamic Accounts to Enable Access to Advanced
Resources through Science Gateways

Joseph A. Insley
University of Chicago / Argonne

National Laboratory
9700 S. Cass Ave.
Argonne, IL 60439

insley@ci.uchicago.edu

Ti Leggett
University of Chicago / Argonne

National Laboratory
9700 S. Cass Ave.
Argonne, IL 60439

leggett@ci.uchicago.edu

Michael E. Papka
University of Chicago / Argonne

National Laboratory
9700 S. Cass Ave.
Argonne, IL 60439

papka@ci.uchicago.edu

ABSTRACT
Science Gateways have emerged as a valuable solution for
providing large numbers of users with access to advanced
computing resources. Additionally, they can hide many of the
complexities often associated with using such resources
effectively. Many gateways make use of a community account,
which is shared by all gateway users on the backend compute
resource. In some cases this can lead to problems when it comes
to segregation of user data. To address this issue we have
investigated the use of dynamic accounts, where each gateway
user is dynamically allocated their own account on the backend
resource. We will describe some of the features of the Dynamic
Account service and explain how it has been integrated into the
TeraGrid Visualization Gateway. We will also discuss problems
encountered, identify remaining open issues, and conclude with
directions for future work.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based services

General Terms
Documentation, Design, Security.

Keywords
Science Gateways, Dynamic Accounts, Community Access.

1. INTRODUCTION
An increasing number of scientific disciplines can benefit from
the use of advanced computing resources. However, the process
for gaining access to such resources can often be a lengthy and
competitive process, posing a barrier to many researchers. The
National Science Foundation’s TeraGrid project [1] has greatly
simplified this process through its start-up allocations, allowing
researchers to easily request up to 200,000 service units (a service
unit being approximately one CPU hour). However, such

allocations can still take up to several weeks to process.
Additionally, once an allocation is awarded there are many
complexities associated with using such resources efficiently. In
recent years the concept of science gateways has been
increasingly used to remove this barrier to access, as well as hide
many complications often encountered with using the resources.
Typically focused on a specific scientific domain, science
gateways are aimed at enabling entire communities of users,
providing access to common applications and services through a
simplified interface. In many cases, users of the gateway are not
even aware that such high-end resources are being used behind the
scenes.

2. MOTIVATION
Our work has been largely motivated by the need for simplified
access to visualization and data analysis resources and services.
Consider, for example, the following scenario. A computational
astrophysicist conducts large-scale calculations that simulate the
evolution of the universe. As the simulation advances it is
important that he monitor its progress. As each time step of the
simulation completes, the resulting data is moved to a resource
equipped with specialized graphics hardware and large amounts of
memory, which is required for processing the complex data. Here
images of the data are produced, using predefined viewpoints and
transfer functions that highlight anticipated regions of interest in
the data. Images are also combined with renderings from
previous time steps and made into animations showing the
evolution thus far. As the renderings are completed the images
and animations are posted to the researcher’s gallery within a
gateway. Along with the renderings statistical graphs produced
from the data are generated and posted. Information about the
initial conditions and variables used in the calculations, as well as
how the renderings were produced are also stored here. At any
time he can visit the gateway to see the latest data. Because of the
large amounts of compute power required to do the computation,
the simulation progresses slowly, producing one time step of data
every few hours. For this reason he may additionally want register
to be notified via email or other communication mechanism (e.g.
RSS, Twitter, SMS, Jabber, etc.) when new data becomes
available. He can set personal preferences to dictate when and
how often notifications should be sent. He may choose to keep all
of this information private, or share it with collaborators, allowing
them to view the gallery and register for notifications as well.

While viewing one of the images the scientist may notice a feature
that he hadn’t expected, and would like to investigate in more

detail. At this point he launches an interactive visualization
session from within the gateway, starting with the same view that
was used to generate the image. He interactively explores the
data, revealing a new region of interest. From here he can save
new images, and create camera paths for generating additional
renderings from this newly found perspective.

3. SCIENTIFIC GATEWAY WITH
DYNAMIC ACCOUNTS
There are several basic functionalities required to facilitate the
preceding scenario. The first is simple access to resources. Many
science gateways enable access to advanced backend resources
through the use of a community account. Users have individual
accounts on the gateway itself, and when advanced computational
resources are required the gateway will use a single community
account, shared by all gateway users, to access and utilize that
resource. This can be an effective method for providing such
resources to a large number of users. Another core capability that
is required is that of data management, both within the gateway,
and on the backend resource. One important aspect that the
community account method lacks is that of data segregation.
Individual gateway users may each have their own data, but
because all users access the backend resource as the community
user, the community user owns all of this data on the backend
resource. This means that any gateway user can read and write
any other gateway user’s data. While in many instances it is
possible for the gateway to avoid complications that this can pose
by managing all user data on the backend resource, this is not
always the case. In particular, this can be problematic for third-
party interactive applications, such as the ones used in our
example above, where the user can browse directories and read
and write data. To address this issue we have explored the use of
dynamic accounts, where each gateway user is dynamically
allocated an individual Unix account on the backend resource. In
the remainder of this paper we will describe features of the
Dynamic Account service, and detail how this service has been
integrated into the TeraGrid Visualization Gateway. We will also
discuss issues encountered, identify remaining open issues, and
conclude with directions for future work.

3.1 Dynamic Account Service
The Dynamic Account (DA) service [2] is an Incubator Project of
the Globus Toolkit [3] that can be used to provision Unix
accounts on a Grid resource. These accounts can then be utilized
through other Grid services. The DA service can allocate accounts
based on a number of different configuration options. It can
dynamically create each Unix account on the fly as it is requested,
or can draw from a pool of previously created accounts. When the
pool of accounts method is used, each time an account is
requested the next available account in the pool is used. The DA
service then checks the number of available accounts remaining in
the pool, and sends a notification to service administrators if that
number has fallen below the configured threshold.

The DA service gives the option of recycling accounts, or
allowing them to be assigned to just a single user and never
reused. There are cases when it would be beneficial to recycle
accounts. For instance, it is possible to use the DA service as part
of a workflow in which a gateway may manage a large throughput
of jobs. Part of the workflow may include requesting an account
from the DA service that can then be used to run the job, in effect,
using a different user account for each job submission. This, in

fact, is one of the use scenarios for which the DA service was
initially implemented. In such a case, one would clearly want to
reuse accounts, returning them to the pool of available accounts
after each use.

The DA service provides a capability for handling inactive
accounts. When the account is initially created, a time to live
(TTL) can be set for that account. The DA service can then be
configured to disable the account and run a clean up script once
that TTL has expired. Once the account has been disabled, if the
service has been configured to reuse accounts, the account is
returned to the pool of available accounts.

The DA service uses Grid credentials for authentication and
authorization of users that are allowed to request, and
subsequently utilize, accounts through the service. Once an
account has been provisioned, the service keeps a list of
credentials that are allowed to use the account to interact with
other Grid services. For example, the GRAM service [4] is used
for remote job submission on a compute resource. Typically when
a job request is submitted GRAM consults a local grid-mapfile to
map the credential that was used to make the request to an end
user account on the resource. Additionally it can make use of an
authorization plug-in that interfaces to the DA service. If no
match is found in the grid-mapfile, it then contacts the DA
service, asking it for the correct mapping. Once this is done, the
service can continue processing the request as it normally would.
The GridFTP [5] service can similarly consult the DA service
when processing data transfer requests.

3.2 TeraGrid Visualization Gateway
The TeraGrid Visualization Gateway [6] provides users with
access to advanced visualization resources and services through a
Web-based portal interface. Users in need of such resources can
take advantage of community access by creating an account on the
gateway. Gateway users can then run interactive applications on
the University of Chicago/Argonne National Laboratory
(UChicago/Argonne) TeraGrid Visualization resource, which is
available exclusively through the Gateway. As described
previously, the use of interactive applications makes data
segregation for community accounts essential. To enable this, we
have integrated the Dynamic Account service into the
Visualization Gateway, using it to provision local Unix accounts
on the UChicago/Argonne resource for each Gateway user. The
process for creating these accounts is completely automated,
making it painless for users, and requiring human intervention by
administrators only for periodic maintenance.

3.2.1 Configuration Considerations
In order to integrate the DA service into the Visualization
Gateway a number of configuration and implementation decisions
needed to be made. The first of these is related to credentials.
Each community user would need an individual Grid credential.
To provide these, the gateway runs a local MyProxy [7] server
coupled with its own Kerberos Certificate Authority (KCA) [8].
This MyProxy server runs on a virtual host on the same machine
that serves the gateway, and is accessible only from this machine.
This enabled us to keep the service secure while at the same time
remove the human from the loop, streamlining this process.

Next, we needed to decide how accounts would be allocated and
later disabled. For this we wanted to take somewhat of a hybrid
approach. We wanted a persistent, one-to-one mapping of
gateway account to backend Unix account. This would allow for

simplified usage accounting. All usage by an individual backend
account could be attributed to a single gateway user. If accounts
were recycled, the gateway would need to keep track of what user
was assigned to a particular backend account at a particular time,
complicating this accounting process. Because we disable inactive
accounts, should a user later return to the gateway we want to
reactivate the same backend account that they were previously
assigned.

To do this we use the pool of accounts method. We initially
created a modest number of accounts and, later, added additional
accounts as those were used up. When a user’s TTL expires, the
DA service is configured to purge any of that user’s data and
deactivate the backend account but not return the account back to
the pool of available accounts. If the user returns to the portal at
some later date, the DA service re-enables the mapping to the
same backend account automatically. The TTL for the user’s
account is reset each time the user logs into the gateway. This
means that as long as the user frequently visits the gateway, his or
her data will remain in place.

Because there is limited vetting of user information when the
user’s gateway account is created, the backend accounts allocated
by the DA service have restricted access. First, they have no
access to a login shell; this has been disabled for these accounts
on the backend resource. So, users cannot login to the backend
resource directly and run arbitrary commands. Similarly, from the
gateway side they are also limited to using the specific
applications and services exposed by the gateway, and cannot
submit jobs to the resource to run arbitrary commands.

When it comes to recording usage for these community users of
the gateway, it is charged against a community visualization
allocation. All job submissions by each unique gateway user are
recorded in a local database, and can be used to audit each user’s
individual usage.

3.2.2 Account Creation Process
Figure 1 shows the steps taken when a user creates an account on
the TeraGrid Visualization Gateway. The user first visits the
gateway and fills out a short form, including their choice of
password. When that form is submitted the gateway stores this
account request information in a local database, identifying it is a
‘new’ request. It then uses the Kerberos key distribution center
(KDC) to create an identity for this user (step 2). A cron job
periodically runs on the gateway host, processing requests in the
database. It first checks for any ‘new’ requests. If any are found,
it checks to see the whether the user’s identify has been
propagated throughout the system. If it has not, the request is left
marked as ‘new’. If the identity has been propagated, the gateway
then sends an email message to the user to verify the user’s email
account (step3), and the status of the request in the database is
updated to ‘verifying’. Users have a limited time to verify their
email account, in our case this is set to two days. When it is done
with ‘new’ requests, the cron job that is processing requests looks
for any marked as ‘verifying’. If any of these requests are more
than two days old, they are removed from the database, and the
user would need to submit another request in order to obtain an
account.

When the user returns to the gateway by following the link
provided in the email message (step 4), the gateway updates the
status of the user’s request in the database to ‘active’ then contacts
the DA service to request an account on the backend resource for
this user, as shown in step 5. Once this account has been allocated
the process is complete. At this point the user can login using the
password they provided when they requested the account. This
password is used to authenticate the user with the MyProxy server
(step 6), which in turn verifies the user’s identify with the KDC
(step 7). If successful (step 8) the MyProxy server checks to see if
this is the first time that this user has accessed the gateway. If so,
the MyProxy server’s Certificate Authority (CA) is used to
generate a credential for this user (step 9). MyProxy then creates
a proxy credential for this user (step 10) and it is loaded into the

Figure 1. User account creation process on the TeraGrid Visualization Gateway using the Dynamic Account service.

gateway (step 11). The user can now make use of the services
exposed through the gateway, which contacts the appropriate
Globus service on the UChicago/Argonne resource, GRAM for
job submission and GridFTP for data transfer (step 12). As
described earlier, these services then contact the DA service to
map this user’s credential to the appropriate account on the back
end (step 13).

3.2.3 Issues Encountered
One issue that was encountered involved reactivating a disabled
user account. The DA service supports this, but does so based on
the credential that was used to request the account. Initially, the
gateway credential was used to request all backend accounts from
the DA service. The credential for the individual gateway user
was then added to that account. Since the same gateway credential
was always used to make the request, a new user may be assigned
to an account that was previously marked as disabled, rather than
to the next available, unused account. For example, a user creates
an account on the gateway, and the gateway credential is used to
request an account from the DA service. The user is assigned to
account user00001. The user stays away from the gateway for too
long, and the account is inactivated. A different user then requests
a new account on the gateway. The gateway again uses its
credential to request an account. The DA service recognizes it as
the credential used to request account user00001, so instead of
taking the next unused account from the pool, this user is assigned
to user00001. Clearly this is not the desired result. To resolve this
problem, the gateway-supplied credential for the individual
gateway user must be used to request the backend account from
the DA service. This process was somewhat complicated by the
fact that this request happens when the user returns to the gateway
after confirming their email address, but before actually logging
into the gateway. At this point, the user’s credential has not yet
been retrieved from the MyProxy server. Therefore, we must
temporarily store the user’s MyProxy passphrase in the gateway
account activation request, and use it to retrieve their credential
for them, and request the backend account from the DA service.
Once the user’s account has been activated, the passphrase is
removed from the database.

Another difficulty that was encountered was with login shell
access. For security purposes, this was originally disabled on all
nodes of the cluster. However, this caused problems when trying
to run parallel jobs. The head node of the job logs in to each of the
other nodes to run the job executable. With login access to all
nodes disabled, this was failing. To remedy this situation, login
access was re-enabled on the compute nodes, which are only
accessible from within the cluster and not from the outside world,
and kept disabled on all publicly accessible hosts.

3.3 File Transfer Service
Another core functionality required to enable the scenario outlined
in section 2 is data management. Users need to be able to move
data onto and off of the visualization resource. There are a
number of file management portlets available from the Open Grid
Computing Environments (OGCE) collaboration [9] that could be
used for this purpose. Using the user’s proxy certificate for
authentication and authorization they enable users to transfer data
to and from GridFTP servers on various resources. However,
using the Dynamic Account service to provision the backend
accounts on the UChicago/Argonne resource complicates this
process a bit. Because there is limited vetting of users’ identity
before the gateway issues users a certificate, other resource

providers may be hesitant to accept certificates issued by the
gateway’s CA. To get past this limitation users need to be able to
use their gateway-issued certificate on the gateway side of a
transfer, and a different identity on the other side. To enable this
we augmented the Comprehensive File Management portlet
available from OGCE.

The Proxy Management portlet, also from OGCE, enables users to
load proxy credentials into the portal from a MyProxy server. The
user then designates one credential to be the default. The file
management portlet then uses the current default credential when
a transfer is initiated. We extended this capability by presenting
the user with a list of all of the credentials that have been loaded,
if more than one, and allowing them to choose the desired identity
to use for both the source and destination of the transfer.

4. CASE STUDY
In addition to the scenario outlined in the introduction, another
environment that can benefit from the use of dynamic accounts
within science gateways is that of classrooms and educational
settings. For example, we are working with a professor at the
University of Chicago who uses volume rendering visualizations
to replace cadaver dissection in his undergraduate anatomy class.
However, the visualization resources used by the professor during
class for instruction and demonstration are the same resources that
are used by faculty and staff to conduct their research. Thus,
these resources are not available to students outside of class time.
To enable students in the anatomy class to explore datasets made
available to them by the instructor on their own outside of class,
an existing volume rendering service on the Visualization
Gateway was expanded to include controls specifically targeted
for use with medical data (see Figure 2). Students will now be

Figure 2. View of the vl3 portlet on the TeraGrid
Visualization Gateway being used to investigate anatomical
data sets.

able to create an account on the Visualization Gateway and make
use of TeraGrid resources to do this investigation.

5. FUTURE WORK
As mentioned in section 3.3, some resource providers may be
reluctant to accept certificates issued by the gateway CA because
of its lack of vetting of user identity. One possible way to remedy
this situation, while maintaining minimal human in the loop effort
on the part of the gateway, is through the use of federated identity,
such as InCommon [10]. The gateway could enable a user
requesting a new account on the gateway to present their campus-
issued InCommon ID, which likely leverages a strong identity
vetting process. Once verified, the gateway CA would issue the
user’s certificate, augmented with an attribute that indicates that
the user’s identity was verified via the campus InCommon
identity provider. Knowing that the user’s identity had been vetted
by the campus issuing the InCommon identity may increase the
resource provider’s trust in the gateway’s CA, such that it would
accept the certificates that it issues.

A gateway could leverage the resources at a large number of
resource provider sites, as long as those sites trust the gateway
CA. Each resource provider could run its own dynamic account
service to provision local accounts on its resources. Once the
gateway validates the user’s identity, either by simply verifying
their email address or through the federated identity management
described above, the gateway could request accounts from all of
the DA services using a single credential. Users could then use
that same credential to move data between such resources, and
continue to use the multi-credential GridFTP portlet for those
resources that do not accept the gateway’s credentials. Access to
the gateway’s MyProxy server could remain limited to the
gateway host, since the other resources would simply need to trust
the credentials it served, and would not need to access it directly.

Currently data movement on the gateway is manual. The
researcher must login to the gateway to initiate data transfers.
However, the Gateway could be enhanced to provide an interface
that utilizes a data movement service. Here the researcher could
configure transfers to happen at regularly scheduled intervals, or
construct a pipeline where his simulation would send a
notification to the gateway when the next time step is complete,
triggering the data transfer.

The OpenSocial framework [11] enables Web 2.0 applications to
be easily embedded into social networking sites such as iGoogle
and MySpace. OAuth [12] security handling enables users to give
such applications access to their credentials without sharing their
password with the application. An OAuth interface to MyProxy
allows users to talk directly to a MyProxy server, and delegate his
proxy credential to an OpenSocial gadget, without sharing his
proxy passphrase with the gadget. Since the credentials for
accessing dynamic accounts on advanced resources are stored in
MyProxy, OpenSocial gadgets could then potentially be
configured to take advantage of those resources. In order to enable
this however, access to the gateway’s MyProxy server would need
to be allowed from hosts other than just the gateway host.

6. CONCLUSIONS
Science Gateways have become an important vehicle for

enabling communities of users to leverage the power of advanced
computing resources. We have illustrated the case where data
segregation among community users is required on these

advanced resources. The Dynamic Account service has been
identified as a mechanism for providing this capability. Features
of the Dynamic Account service have been highlighted, and
details of how it was integrated into the TeraGrid Visualization
Gateway have been described. Problem areas that were
encountered along the way were discussed, as well as areas for
future investigation.

7. ACKNOWLEDGMENTS
The authors wish to thank the Dynamic Account service
developers from the Globus project for their invaluable help with
incorporating the service into the gateway, and for providing
requested enhancements to the service. This work was supported
in part by the National Science Foundation under Grants OCI-
0504086 and OCI-0503697, and in part by the Office of
Advanced Scientific Computing Research, Office of Science, U.S.
Department of Energy, under Contract DE-AC02-06CH11357.

8. REFERENCES
[1] Catlett, C. et al. "TeraGrid: Analysis of Organization, System

Architecture, and Middleware Enabling New Types of
Applications," HPC and Grids in Action, Ed. Lucio
Grandinetti, IOS Press 'Advances in Parallel Computing'
series, Amsterdam, 2007.

[2] K. Keahey, M. Ripeanu, and K. Doering, "Dynamic Creation
and Management of Runtime Environments in the Grid," in
Workshop on Designing and Building Web Services (GGF
9). Chicago, IL, 2003

[3] I. Foster and C. Kesselman, “Globus: A metacomputing
infrastructure toolkit,” International Journal of
Supercomputer Applications, 11(2):115-128, 1997.

[4] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S.
Martin, W. Smith, and S. Tuecke, “A Resource Management
Architecture for Metacomputing Systems”. Proc.
IPPS/SPDP '98 Workshop on Job Scheduling Strategies for
Parallel Processing, pg. 62-82, 1998.

[5] GridFTP Data Management,
www.globus.org/toolkit/data/gridftp.

[6] M. Dahan, J. A. Insley, M. E. Papka, T. Uram, and K. P.
Gaither, “Enabling Science through the TeraGrid
Visualization Gateway” TeraGrid ’07 Conference, Madison,
WI, June 14 - 18, 2007.

[7] MyProxy, grid.ncsa.uiuc.edu/myproxy.

[8] J. T. Kohl, B. C. Neuman, and T. Y. T'so, "The Evolution of
the Kerberos Authentication System," in Distributed Open
Systems: IEEE Computer Society Press, 1994, pp. 78-94

[9] M. Pierce, J. Alameda, M. Christie, G. Fox, J. Futrelle, D.
Gannon, M. Hategan, G. v. Laszewski, M. A. Nacar, E.
Roberts, C. Severance, and M. Thomas, "The Open Grid
Computing Environments Collaboration: Portlets and
Services for Science Gateways," Spec. Edtn, Concurrency &
Computation: Practice & Experience, 2005.

[10] InCommon Federation, www.incomonfederation.org.
[11] OpenSocial, www.opensocial.org.
[12] OAuth, www.oauth.net.

