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Abstract— A large number of real-world scientific applications system would not be efficient, yet due to the complexity of

can be characterized as loosely coupled: the communication the applications, it is not immediately obvious how to img¥o
among tasks is infrequent and can be performed using file the situation in the general case

operations. While these applications may be ported to largscale

machines designed for tightly coupled, massively parallejobs, ; ; ;
direct implementations do not perform well due to the large We propose that aggregating case studies will help to

number of small, latency-bound file accesses. This problem ay formulate _a Many'_TaSk !/O (MTIO) strategy _that Car? l?e
be overcome through the use of a variety of custom, hand-code Parameterized to aid a wider range of applications. Bugdin
strategies applied at various subsystems of modern near-fgscale this strategy involves multiple overlapping steps. Fitisg set
computers- but is a labor intensive process that will become of primitive characteristics must be determined. This inge
increasingly difficult at the petascale and beyond. This wdt  c4n4ring essential filesystem operations and use cases tha
profiles the essential operations in the I/O workload for five . . -

loosely coupled scientific applications. We characterizehe 1/0 |mpaf:t performance, suclh a_s number of file and dlrectory
workload induced by these app"cations and offer an ana|ysi creations a.nd accesses, f||e sSize, the balance Of read alﬂ!ii Wri

to motivate and aid the development of programming tools, 0  operations on files, the size of those accesses, the segjitgnti

subsystems, and filesystems. of those accesses, and the long-term disk usage patterns for
resulting output data. Next, a set of potential optimizadio
. INTRODUCTION may be captured and categorized. These steps invalaesful

Many modern scientific applications are structured as Iar&épk atreal apphcaﬂopsperformed herein. Future Wprk could
arrangements of software units glued together by scriptiHﬁ’OI\’e the construc'uon of _ger_leral-purpose solutlons_kte t
languages such as Perl, Python, Tcl, or shell scripts [1is TIF allenges_of scrlpte_d applications. The output of _th_lslwor
framework allows developers to quickly combine multipl&Culd also improve filesystems themselves by providing new
tools together. For example, a simple case might invoh}}gatures such as perf_ormance op'g|m|zat|ons for thg small
performing a computation on a high performance clusteh-gaft¢c®SS patterns d(_escrlbed her.e. Finally, a”‘?' most likely, a
ering the output and passing it through a plotting package fyybrid approach will result, yvh|ch could provide the MTIQ
data visualization. More complex constructions perforntane strategyand a small set of _f|Iesystem _e_nhance_ments, which
computations, such as selecting input parameters for gutyyould work together to provide high efficiency with respect to
computations or obtaining resources. Scripting has becoRfgdware limits as well as retain the ease of development and
a prevalent model for scientific application developmentt bROTt@bility offered by scripting

fgces particular challenges posed by the I_/O mechanisms a_lnqo has been identified as a component of the petascale
filesystems on petascale computers. In this paper, we FHOVlﬂlwaIIenge [7] since it was on the distant horizon. Many
a coarse characterization of the I/O workload produced &y ¥4\ ances have been made in the development of parallel

diverse scripted applications. _ . _ 110 [8] for monolithic, tightly coupled applications, buhe

A feature of software produced with scripting toolkits igy,qy of I1/0 performed by large batches of small independent
that it is highly portable, promoting code reuse and prowddi (55y< s relatively new. Additionally, the breadth of apption
erX|b|I_|ty_ of choice for resources. The portab|I|t)_/ strehg patterns for MTIO has not been fully explored. With this
of scripting have brought it to the recently available neaf, . e describe the 1/0 patterns of five applications that
petascale and petascale machines. Scripting languages %Ry consume the computing power of petascale machines. Our
cally provide an interprocess communication (IPC) mechgpiactive is to characterize important application feesuthat

nism for communication less complex [2] than provided by, jmprove the development of scripting tools, /O systems
MPI [3]. While such scripted programs can achieve the magq 4 filesystems.

sive parallelism available on these machines, portatibtyes

by performing IPC through the filesystem. The filesystem The remainder of this work is organized as follows. In the
thus becomes a bottleneck. For example, the 160,000-coext section, we provide a background on loosely coupled
BlueGene/P at ANL offers a GPFS [4] filesystem with totahpplications and describe relevant I/O and storage teohnol
bandwidth of 65 GB/s, yet only 400KB/s is available pegies. In Section IIl, we describe the applications studieteh
core [5], and a file creation rate within a single directorin detail and extract their performance-critical data asce
of 40/s gives about 1/hour per core [6]. Clearly, a simpleperations. Section IV contains our analysis of the apfitioa
application consisting of many small accesses to the fidaracteristics, and we conclude in Section V.



II. RELATED WORK Ill. CASE STUDIES

Scientific applications which are composed of large nund. Applications

bers of 'Fasks coupled by filesystem operations have peerl) OOPS: Open Protein Simulato®OPS [26] is a protein
well-studied [9]. Such workflows have proven to be quitgyding software package based around the Protein Library
portable [10], running on opportunistic systems [11] sush @p) a protein structure toolkit. Employing a model that
desktop grids, and scaling up to large production systemgjyces interactions through a coarse-grained statigiiza
such as the TeraGrid [12]. Parallel scripting has been BTOugential, OOPS-based simulated annealing produces reliabl
to large scale job submission systems through the Swdfiryctures with minimal side-chain and nearest neighbor-co
language [13], and the use of massively parallel machinggyities. Our OOPS script evaluates many potential protei
has been aided by the efficiency brought by the Falkagctures in parallel, then performs post-processing and

scheduler [14]. sualization on the resulting output: a process which repeat

Once a user has issued hundreds of thousands of tagk§| an acceptable structure has been detected, signaling
communicating through the filesystem, one must consider t@@nvergence.
effect (_)f thg large number of smalll, latency-bound filesyste 2) DOCK: DOCK [27] is a molecular program to quickly
operations involved, or the re-reading of the same datasetsynalyze the docking potential of large numbers of molecules
large numbers of apparently independent processes. Mecagainst a set of target sites. The model employed by this
/O operations were proposed [15] to aggregate aggreggiitware places each molecule in the binding site at theetarg
many relatively small reads and writes into larger operetio 4nd evaluates the conformational space at that interacdion
This met_hod relies on an intermediate .cac_he to perform thigHcK script pairs large numbers of target sites against a
aggregation. BAD-FS [16] and data diffusion [S] proposegatapase of ligand molecules, selecting those which fit.
data-aware scheduling and caching on large scale pronucti03) BLAST: Basic Local Alignment Search Tool:
systems to increase data locality. BLAST [28] is a DNA and amino acid search tool to

Enhanced filesystem features have been proposed to addgegsct alignments of two sequences that are minimal in
the problem at file server component or filesystem cliegfyiation. BLAST uses a heuristic method to assign mutation
component. Small file and metadata operations were improvgdyres to sequence pairs to quickly obtain probable segquenc
in the Chirp file system [17] by hybridizing the protocokimilarities. Our BLAST script performs large numbers of
between RPC and streaming techniques, as well as addigguence analysis computations in parallel, and reduees th
new non-traditional filesystem calls for commonly-perf@mn regyits into output indicating the matches.
operations. Similarly, small file and metadata operatioasew 4) PTMap: PTMap [29] is a software package designed to
improved for the Parallel Virtual Filesystem (PVFS) [18] bynatch mass spectroscopy data against a database of protein
pre-creating data objects for files, utilizing locality femall  gjtes. To avoid the generation of large numbers of false
file data and metadata, and using eager messages for sipgdiitives, PTMap uses several algorithmic enhancemeats th
data movement. New technologies such as object storag@uce false positives, extracting relevant signal peats f
devices (OSDs) may be tapped to improve the performancerRfise. Our script scores PTMap results for pairs of spec-
directory operations [19]. Contrarily, the BlueFS syst&0][ troscopy data sets against proteins in parallel, followgd b
increases performance for applications with Iatency-hloura,«]auysis and summarization.
operations by performing speculative execution in thentlie 5) fMRI: The fMRI application [30] considered here an-
kernel, drastically reducing latency for predictable fimws.  ajyzes brain regions for response to experimental stinuli.

Augmenting established standards is another route to iRfational database of responses for a given subject may be
proving performance for the applications studied here. Equeried for analysis, providing statistical connectioasbe
tending the commonly implemented POSIX operating systefiade between MRI data and brain function. Our fMRI script
interface for high end computing (HEC) systems has been pgqyiis records from the MRI database, performing statibtica

posed [21] to improve performance for a wide range of hightgsts on each brain region using the statistical analysis la

concurrent applications. For example, theaddi r pl us()  guage R, then writes the result.

extension has already been implemented in the Chirp and

PVFS systems mentioned above, and its use could be \(I]%rySystem Architecture

beneficial to applications that perform large numbers of di- ) o

rectory queries. Additionally, NFSv4 [22] extends NFS in AS diagrammed in Figure 1, our target petascale system

ways that could improve the scalability of metadata-intens architecture consists of several components of mt_eresh’ail

applications, including the use of compound operations. ~ task /0. The infrastructure consists of three major haréwa
The application script itself may contain information thag€ctions, the file servers (FS), the intermediate servap (|

can be tapped to improve the application-visible perfom’.ﬂanand the application compute nod_es (APP). Compute nqdes are

of the 1/O system. Job submission scripts may be annotaftsumed to be connected by a high-performance (possibly spe

with directions to the storage system regarding intend&élized) interconnect, ideal for low-latency, high-bandth

file accesses [23]. MapReduce [24] and All-Pairs [25] af@essages required by typical high-performance computing

programming models in themselves that provide compled@Plications. Compute nodes are connected to intermediate
information about the application data access pattern. services, which are connected to each other and to file ssrvic

via a commodity network. File servers are assumed to be



D. Application Scale

o =
* T “Fompute m ‘ucompme m “FomPUte m ‘ucompme m Each script consists of a variable number of sequentiastask
QL symbolized byN and M. An invocation of each application
) [ Uonode | | WOnode | [ WOnode | [ 1O node | is capable of consuming much or all of the parallelism on a
o near-petascale machine, i.e., 50,000 concurrent task®;m
= [fesver| [fesser] [fserver | individual task run times are short (5-10 minutes).
(2] 2
© OOPS: PTMap:
N=~5-10 N =~ 50
M ~ 10,000 M =~ 1000
Fig. 1. Coarse schematic of typical petascale architecture DOCK: MR
N < 1,000, 000 N ~ 100, 000
S . . M =~ 20
participating in a large-scale deployment of a parallel file BLAST:
system. Intermediate nodes cache and aggregate I/O aperati ' N ~ 1.000.000

to reduce the impact of small, latency-bound file operatams
the file system.
IV. ANALYSIS

C. Application Profiles A. Reducing I/O and Application Patterns

Table | profiles the five applications covered in this report The results from Table | indicate most importantly that a
by diagramming the essential operations performed by tdEeat deal of the I/0 workload may be reduced by applying the
workflow model, as well as quantifies essential usage statist MTIO strategies. In the first four cases, the I/O seen by the FS
Additionally, certain easily optimized data (file) moverhenMay be reduced by more than 99%. The actual result requested
operations may be characterized by one of the followirfdy the user |s_often relauvely small; thetal I/O is primarily
patterns: these operations may be optimized through dpe&iged to pass intermediate results from one component task to

uses of the network such as multicast, or by using tree-bagdtpther. In an MPI application, this would not be described a
I/O at all, however, when scripting, the application writkres

algorithms. ] :
® Broadcast: The same data set is obtained by multipnlttf.*)t spec!fy t_he nature of the /0 operation. Tools to autemat
receivers. the application of MTIO strategies must be developed to

(S Scatter: A collection of data sets is split up and sent @aintain the ease of scripting while ensuring efficiency.
multiple receivers Each application gains a significant I/O reduction through

© Gather: A distributed data set is aggregated by a sin chlng. ’A.‘n ex.ample is shown in the OOPS d|a_graml, vvhere a
receiver. A typical use case of a gather operation is a d MB file is written and then re-read at the.next iterationisTh
reduction or selection, which could involve performin ata should be cached to prevent accessing the FS, however,

an operation on a set of results, aggregating results fsge runs could excee(_j_the size of the IS, and if the IS is used
a compact data set, or culling unnecessary results, as an LRU cache, additional FS accesses could be necessary.

. . . _Thus, to ensure the locality of the intermediate data sets, a
Data objects are represented by cylinders. Non-persist

. . Ata-aware scheduler must be employed.
data objects are represented by dashed cylinders; theae gali’wo applications, BLAST and fMRI, show the MapReduce
sets are not required by the user in the final output. ! '

_ . . .. pattern of data distribution, computation, and output ctidu.
These two_notanons |nd|cate_the potential for Opt'm'Mt'ONotably, a straight-forward MapReduce port would still not

by t.ransforr.nlng the portab!e file system calls used b_y tkbee efficient if it did not recognize the large broadcast in the

application into message-oriented operations. For exanifpl ELAST case. (The MapReduce pattern in BLAST workflows

multiple application invocations read the same data set, as previously noted [2].) The DOCK and PTMap applica-
load on the file system can be reduced by performing a singignS use the All-Pairs [25] pattern

read and employing an efficient broadcast. Similarly, data

written by a process and re-read by a successive, dependent

process may avoid using the filesystem altogether by forwa. Parallelism and Contention

ing the data set directly from the writer to the reader. As is typical in scripted workflows, all application data
The remaining table columns are as followStatistics gperations read or write whole files. This eliminates thednee

indicates thetotal I/O as performed by the application tasksfor the FS to manage write consistency under contention

In most cases, the vast majority of this I/O is hidden frofyithin a file or manage shared file pointers. Contention for

the underlying FS through the use of MTIO strategies. Agnodifying a directory, however, is a constraint. Addititipa

ditionally, some application characteristics are dend@d npone of the component application tasks are parallel applic

discussion belowl/O Reduction indicates the fraction of tions' (o) they cannot benefit from MPI-10 [31] Optimizations

/O that may be eliminated through the application of MTIQ\s noted in the introduction, modifying a directory intrahs

strategies. write contention in the FS. Currently, the cost is reduced by

manually distributing file creation across multiple di@igs.



pplication iagram tatistics eduction
Applicati Di Statisti I/O Reducti
Mx
& ->‘ simulate ‘ analyze ‘ ‘visualize )-@ E}nalyze
< read: 5.7TB input: 99%
write: 1TB output: 99%
OOPS @
iteration (§ 1V-A)
overwrites(§ IV-B)
: e
NxMx NxMx20%
o ‘ simulate ‘ anaIyS|s
<
T read: 3.2PB input: 99%
B e e I write: 2PB output: 99%
DOCK @
all-pairs (§ IV-A)
70Nx
o
<
read: 3.5PB input: 99%
write: 150GB output: 99%
BLAST @
map-reducgs§ 1V-A)
w —— ¥
NxMx Mx NxMx20%
& “‘computem “ select H “compute ‘ analysis ‘ read: 11TB input: 99%
< ‘ P write: 6GB output: 99%
PTMap 2 i 2 directory ops(§ IV-B)
9 B all-pairs (§ IV-A)
. __N-@m,, e
small results
& [analyis | read: 18MB input: 66%
< write: 1GB output: 17%
fMRI 2 map-reducg§ IV-A)
(2]
[T

TABLE |
APPLICATION PROFILES

All file sizes represent one of many possible use cases angpgreximations.
Task dependencies are denoted with arrows; execution ggn#ows from left to right.



The PTMap application generates an index of Unix linkg9]
to structure the selected data sets, this is made tolerable 1bO
limiting the concurrency of directory accesses. [10]

lan Taylor, Ewa Deelman, Dennis Gannon, and Matthew I8&jeEds.,
Workflows for e-SciengeSpringer, 2007.

Yolanda Gil, Pedro A. Gonzlez-Calero, and Ewa Deelmd®n the

black art of designing computational workflows,” Rroc. Workshop on
Workflows in Support of Large-Scale Scien2807.

Douglas Thain, Todd Tannenbaum, and Miron Livny, “Cmtted

computing in practice: The Condor experienceConcurrency and
Computation: Practice and Experienc2004.

P. A. Cheeseman, M. W. Deem, D. J. Earl, , and William I. it&tn,

“Adapting an application for use in a Condor based paransteep on
TeraGrid,” in Proc. TeraGrid 2007 Conferenc@007.

Yong Zhao, Mihael Hategan, Ben Clifford, lan Foster,eGar von

C. Post-petascale Developments (11

The road ahead for post-petascale parallel scripting appli2
cations is promising. We assume near-term machines in {#3d
20-100 petaflop/s range will contain 1-2 million processor
core, with 1/O subsystems similar to those found on currefiél ! e b 4 Mike Wildwit

. . . P . asZzewskl, loan Raicu, liberiu er-rFraun, an IKe | WITL
machines. The run t'.me of individual taSk_S IS not eXpECted Fast, reliable, loosely coupled parallel computation,Pioc. Workshop
to decrease substantially as MIPS rate gains are expected to on Scientific Workflows2007.
be modest. Additionally, memory per node is not expected ffgt] loan Raicu, Yong Zhao, Catalin Dumitrescu, lan Fosied Mike Wilde,

. . . ] P “Falkon: A Fast and Light-weight tasK executiON framewbriq Proc
increase substantially. This has two implications for MTIO g7 5007,

strategies. First, the number of files will increase with [15] Zhao Zhang, Allan Espinosa, Kamil Iskra, loan Raicty Foster, and
and M as used in Table | increasing the stress on directory Michael Wilde, “Design and evaluation of a collective 1/O deb for

. I ly- led petascal ing,” Rmoc. MTAGS Worksh
operations and necessitating automated methods to manage 4y esyc%osug(fo&pe ascale programming.” Hroc Orkshop
directory hierarchies to maintain the ease of scriptingo8d, [16] John Bent, Douglas Thain, Andrea C. Arpaci-Dusseam®Rél. Arpaci-
caching will become more complex as the number of cores Dusseau, and Miron Livny, “Explicit control in a batch-awatistributed

; ] file system,” inProc. USENIX Symposium on Networked Systems Design
may grow faster than size of the available IS cache space

L : ' and Implementation2004.
necessitating data-aware scheduling. [17] Douglas Thain and Chris Moretti, “Efficient access tonyasmall

files in a filesystem for grid computing,” iRroc. Conference on Grid

V. SUMMARY 18]

In this report we have provided a coarse-grained descniptio
of the data access workloads produced by five scripted sci
tific applications. We have identified common 1/O patterrat th
may be captured and exploited to improve the performance of
the I/O system as well as to reduce the responsibilities ®f !
script writer. Looking forward, we intend that the contriioun
of this work will enhance the usability and efficiency of21l
petascale computers.
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