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Abstract— A large number of real-world scientific applications
can be characterized as loosely coupled: the communication
among tasks is infrequent and can be performed using file
operations. While these applications may be ported to largescale
machines designed for tightly coupled, massively paralleljobs,
direct implementations do not perform well due to the large
number of small, latency-bound file accesses. This problem may
be overcome through the use of a variety of custom, hand-coded
strategies applied at various subsystems of modern near-petascale
computers- but is a labor intensive process that will become
increasingly difficult at the petascale and beyond. This work
profiles the essential operations in the I/O workload for five
loosely coupled scientific applications. We characterize the I/O
workload induced by these applications and offer an analysis
to motivate and aid the development of programming tools, I/O
subsystems, and filesystems.

I. I NTRODUCTION

Many modern scientific applications are structured as large
arrangements of software units glued together by scripting
languages such as Perl, Python, Tcl, or shell scripts [1]. This
framework allows developers to quickly combine multiple
tools together. For example, a simple case might involve
performing a computation on a high performance cluster, gath-
ering the output and passing it through a plotting package for
data visualization. More complex constructions perform meta-
computations, such as selecting input parameters for future
computations or obtaining resources. Scripting has become
a prevalent model for scientific application development but
faces particular challenges posed by the I/O mechanisms and
filesystems on petascale computers. In this paper, we provide
a coarse characterization of the I/O workload produced by five
diverse scripted applications.

A feature of software produced with scripting toolkits is
that it is highly portable, promoting code reuse and providing
flexibility of choice for resources. The portability strengths
of scripting have brought it to the recently available near-
petascale and petascale machines. Scripting languages typi-
cally provide an interprocess communication (IPC) mecha-
nism for communication less complex [2] than provided by
MPI [3]. While such scripted programs can achieve the mas-
sive parallelism available on these machines, portabilitycomes
by performing IPC through the filesystem. The filesystem
thus becomes a bottleneck. For example, the 160,000-core
BlueGene/P at ANL offers a GPFS [4] filesystem with total
bandwidth of 65 GB/s, yet only 400KB/s is available per
core [5], and a file creation rate within a single directory
of 40/s gives about 1/hour per core [6]. Clearly, a simple
application consisting of many small accesses to the file

system would not be efficient, yet due to the complexity of
the applications, it is not immediately obvious how to improve
the situation in the general case.

We propose that aggregating case studies will help to
formulate a Many-Task I/O (MTIO) strategy that can be
parameterized to aid a wider range of applications. Building
this strategy involves multiple overlapping steps. First,the set
of primitive characteristics must be determined. This involves
capturing essential filesystem operations and use cases that
impact performance, such as number of file and directory
creations and accesses, file size, the balance of read and write
operations on files, the size of those accesses, the sequentiality
of those accesses, and the long-term disk usage patterns for
resulting output data. Next, a set of potential optimizations
may be captured and categorized. These steps involve acareful
look at real applications, performed herein. Future work could
involve the construction of general-purpose solutions to the
challenges of scripted applications. The output of this work
could also improve filesystems themselves by providing new
features such as performance optimizations for the small
access patterns described here. Finally, and most likely, a
hybrid approach will result, which could provide the MTIO
strategyand a small set of filesystem enhancements, which
would work together to provide high efficiency with respect to
hardware limits as well as retain the ease of development and
portability offered by scripting.

I/O has been identified as a component of the petascale
challenge [7] since it was on the distant horizon. Many
advances have been made in the development of parallel
I/O [8] for monolithic, tightly coupled applications, but the
study of I/O performed by large batches of small independent
tasks is relatively new. Additionally, the breadth of application
patterns for MTIO has not been fully explored. With this
work, we describe the I/O patterns of five applications that
can consume the computing power of petascale machines. Our
objective is to characterize important application features that
can improve the development of scripting tools, I/O systems,
and filesystems.

The remainder of this work is organized as follows. In the
next section, we provide a background on loosely coupled
applications and describe relevant I/O and storage technolo-
gies. In Section III, we describe the applications studied here
in detail and extract their performance-critical data access
operations. Section IV contains our analysis of the application
characteristics, and we conclude in Section V.
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II. RELATED WORK

Scientific applications which are composed of large num-
bers of tasks coupled by filesystem operations have been
well-studied [9]. Such workflows have proven to be quite
portable [10], running on opportunistic systems [11] such as
desktop grids, and scaling up to large production systems
such as the TeraGrid [12]. Parallel scripting has been brought
to large scale job submission systems through the Swift
language [13], and the use of massively parallel machines
has been aided by the efficiency brought by the Falkon
scheduler [14].

Once a user has issued hundreds of thousands of tasks
communicating through the filesystem, one must consider the
effect of the large number of small, latency-bound filesystem
operations involved, or the re-reading of the same data setsby
large numbers of apparently independent processes. Collective
I/O operations were proposed [15] to aggregate aggregate
many relatively small reads and writes into larger operations.
This method relies on an intermediate cache to perform this
aggregation. BAD-FS [16] and data diffusion [5] proposed
data-aware scheduling and caching on large scale production
systems to increase data locality.

Enhanced filesystem features have been proposed to address
the problem at file server component or filesystem client
component. Small file and metadata operations were improved
in the Chirp file system [17] by hybridizing the protocol
between RPC and streaming techniques, as well as adding
new non-traditional filesystem calls for commonly-performed
operations. Similarly, small file and metadata operations were
improved for the Parallel Virtual Filesystem (PVFS) [18] by
pre-creating data objects for files, utilizing locality forsmall
file data and metadata, and using eager messages for small
data movement. New technologies such as object storage
devices (OSDs) may be tapped to improve the performance of
directory operations [19]. Contrarily, the BlueFS system [20]
increases performance for applications with latency-bound
operations by performing speculative execution in the client
kernel, drastically reducing latency for predictable functions.

Augmenting established standards is another route to im-
proving performance for the applications studied here. Ex-
tending the commonly implemented POSIX operating system
interface for high end computing (HEC) systems has been pro-
posed [21] to improve performance for a wide range of highly
concurrent applications. For example, thereaddirplus()
extension has already been implemented in the Chirp and
PVFS systems mentioned above, and its use could be very
beneficial to applications that perform large numbers of di-
rectory queries. Additionally, NFSv4 [22] extends NFS in
ways that could improve the scalability of metadata-intensive
applications, including the use of compound operations.

The application script itself may contain information that
can be tapped to improve the application-visible performance
of the I/O system. Job submission scripts may be annotated
with directions to the storage system regarding intended
file accesses [23]. MapReduce [24] and All-Pairs [25] are
programming models in themselves that provide complete
information about the application data access pattern.

III. C ASE STUDIES

A. Applications

1) OOPS: Open Protein Simulator:OOPS [26] is a protein
folding software package based around the Protein Library
(PL), a protein structure toolkit. Employing a model that
reduces interactions through a coarse-grained statistical po-
tential, OOPS-based simulated annealing produces reliable
structures with minimal side-chain and nearest neighbor com-
plexities. Our OOPS script evaluates many potential protein
structures in parallel, then performs post-processing andvi-
sualization on the resulting output: a process which repeats
until an acceptable structure has been detected, signaling
convergence.

2) DOCK: DOCK [27] is a molecular program to quickly
analyze the docking potential of large numbers of molecules
against a set of target sites. The model employed by this
software places each molecule in the binding site at the target
and evaluates the conformational space at that interaction. Our
DOCK script pairs large numbers of target sites against a
database of ligand molecules, selecting those which fit.

3) BLAST: Basic Local Alignment Search Tool:
BLAST [28] is a DNA and amino acid search tool to
detect alignments of two sequences that are minimal in
variation. BLAST uses a heuristic method to assign mutation
scores to sequence pairs to quickly obtain probable sequence
similarities. Our BLAST script performs large numbers of
sequence analysis computations in parallel, and reduces the
results into output indicating the matches.

4) PTMap: PTMap [29] is a software package designed to
match mass spectroscopy data against a database of protein
sites. To avoid the generation of large numbers of false
positives, PTMap uses several algorithmic enhancements that
reduce false positives, extracting relevant signal peaks from
noise. Our script scores PTMap results for pairs of spec-
troscopy data sets against proteins in parallel, followed by
analysis and summarization.

5) fMRI: The fMRI application [30] considered here an-
alyzes brain regions for response to experimental stimuli.A
relational database of responses for a given subject may be
queried for analysis, providing statistical connections to be
made between MRI data and brain function. Our fMRI script
pulls records from the MRI database, performing statistical
tests on each brain region using the statistical analysis lan-
guage R, then writes the result.

B. System Architecture

As diagrammed in Figure 1, our target petascale system
architecture consists of several components of interest tosmall
task I/O. The infrastructure consists of three major hardware
sections, the file servers (FS), the intermediate servers (IS),
and the application compute nodes (APP). Compute nodes are
assumed to be connected by a high-performance (possibly spe-
cialized) interconnect, ideal for low-latency, high-bandwidth
messages required by typical high-performance computing
applications. Compute nodes are connected to intermediate
services, which are connected to each other and to file services
via a commodity network. File servers are assumed to be
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Fig. 1. Coarse schematic of typical petascale architecture.

participating in a large-scale deployment of a parallel file
system. Intermediate nodes cache and aggregate I/O operations
to reduce the impact of small, latency-bound file operationson
the file system.

C. Application Profiles

Table I profiles the five applications covered in this report
by diagramming the essential operations performed by the
workflow model, as well as quantifies essential usage statistics.
Additionally, certain easily optimized data (file) movement
operations may be characterized by one of the following
patterns: these operations may be optimized through special
uses of the network such as multicast, or by using tree-based
algorithms.

B© Broadcast: The same data set is obtained by multiple
receivers.

S© Scatter: A collection of data sets is split up and sent to
multiple receivers.

G© Gather: A distributed data set is aggregated by a single
receiver. A typical use case of a gather operation is a data
reduction or selection, which could involve performing
an operation on a set of results, aggregating results into
a compact data set, or culling unnecessary results.

Data objects are represented by cylinders. Non-persistent
data objects are represented by dashed cylinders; these data
sets are not required by the user in the final output.

These two notations indicate the potential for optimization
by transforming the portable file system calls used by the
application into message-oriented operations. For example, if
multiple application invocations read the same data set, the
load on the file system can be reduced by performing a single
read and employing an efficient broadcast. Similarly, data
written by a process and re-read by a successive, dependent
process may avoid using the filesystem altogether by forward-
ing the data set directly from the writer to the reader.

The remaining table columns are as follows.Statistics
indicates thetotal I/O as performed by the application tasks.
In most cases, the vast majority of this I/O is hidden from
the underlying FS through the use of MTIO strategies. Ad-
ditionally, some application characteristics are denotedfor
discussion below.I/O Reduction indicates the fraction of
I/O that may be eliminated through the application of MTIO
strategies.

D. Application Scale

Each script consists of a variable number of sequential tasks,
symbolized byN andM . An invocation of each application
is capable of consuming much or all of the parallelism on a
near-petascale machine, i.e., 50,000 concurrent tasks or more;
individual task run times are short (5-10 minutes).

OOPS: PTMap:
N ≈ 5 − 10 N ≈ 50

M ≈ 10, 000 M ≈ 1000

DOCK: fMRI:
N ≤ 1, 000, 000 N ≈ 100, 000

M ≈ 20

BLAST:
N ≈ 1, 000, 000

IV. A NALYSIS

A. Reducing I/O and Application Patterns

The results from Table I indicate most importantly that a
great deal of the I/O workload may be reduced by applying the
MTIO strategies. In the first four cases, the I/O seen by the FS
may be reduced by more than 99%. The actual result requested
by the user is often relatively small; thetotal I/O is primarily
used to pass intermediate results from one component task to
another. In an MPI application, this would not be described as
I/O at all, however, when scripting, the application writerdoes
not specify the nature of the I/O operation. Tools to automate
the application of MTIO strategies must be developed to
maintain the ease of scripting while ensuring efficiency.

Each application gains a significant I/O reduction through
caching. An example is shown in the OOPS diagram, where a
10MB file is written and then re-read at the next iteration. This
data should be cached to prevent accessing the FS, however,
large runs could exceed the size of the IS, and if the IS is used
as an LRU cache, additional FS accesses could be necessary.
Thus, to ensure the locality of the intermediate data sets, a
data-aware scheduler must be employed.

Two applications, BLAST and fMRI, show the MapReduce
pattern of data distribution, computation, and output reduction.
Notably, a straight-forward MapReduce port would still not
be efficient if it did not recognize the large broadcast in the
BLAST case. (The MapReduce pattern in BLAST workflows
was previously noted [2].) The DOCK and PTMap applica-
tions use the All-Pairs [25] pattern.

B. Parallelism and Contention

As is typical in scripted workflows, all application data
operations read or write whole files. This eliminates the need
for the FS to manage write consistency under contention
within a file or manage shared file pointers. Contention for
modifying a directory, however, is a constraint. Additionally,
none of the component application tasks are parallel applica-
tions, so they cannot benefit from MPI-IO [31] optimizations.
As noted in the introduction, modifying a directory introduces
write contention in the FS. Currently, the cost is reduced by
manually distributing file creation across multiple directories.
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Application Diagram Statistics I/O Reduction

OOPS

read: 5.7TB input: 99%
write: 1TB output: 99%

iteration (§ IV-A)
overwrites(§ IV-B)

DOCK

read: 3.2PB input: 99%
write: 2PB output: 99%

all-pairs (§ IV-A)

BLAST

read: 3.5PB input: 99%
write: 150GB output: 99%

map-reduce(§ IV-A)

PTMap

read: 1.1TB input: 99%
write: 6GB output: 99%

directory ops(§ IV-B)
all-pairs (§ IV-A)

fMRI

read: 18MB input: 66%
write: 1GB output: 17%

map-reduce(§ IV-A)

TABLE I

APPLICATION PROFILES.

All file sizes represent one of many possible use cases and areapproximations.
Task dependencies are denoted with arrows; execution generally flows from left to right.
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The PTMap application generates an index of Unix links
to structure the selected data sets, this is made tolerable by
limiting the concurrency of directory accesses.

C. Post-petascale Developments

The road ahead for post-petascale parallel scripting appli-
cations is promising. We assume near-term machines in the
20-100 petaflop/s range will contain 1-2 million processor
core, with I/O subsystems similar to those found on current
machines. The run time of individual tasks is not expected
to decrease substantially as MIPS rate gains are expected to
be modest. Additionally, memory per node is not expected to
increase substantially. This has two implications for MTIO
strategies. First, the number of files will increase withN

and M as used in Table I, increasing the stress on directory
operations and necessitating automated methods to manage
directory hierarchies to maintain the ease of scripting. Second,
caching will become more complex as the number of cores
may grow faster than size of the available IS cache space,
necessitating data-aware scheduling.

V. SUMMARY

In this report we have provided a coarse-grained description
of the data access workloads produced by five scripted scien-
tific applications. We have identified common I/O patterns that
may be captured and exploited to improve the performance of
the I/O system as well as to reduce the responsibilities of the
script writer. Looking forward, we intend that the contribution
of this work will enhance the usability and efficiency of
petascale computers.
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