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COMPUTING f(A)b VIA LEAST SQUARES POLYNOMIAL
APPROXIMATIONS

JIE CHEN*, MIHAI ANITESCU', AND YOUSEF SAAD*

Abstract. Given a certain function f, various methods have been proposed in the past for
addressing the important problem of computing the matrix-vector product f(A)b without explicitly
computing the matrix f(A). Such methods were typically developed for a specific function f, a
common case being that of the exponential. This paper discusses a procedure based on least squares
polynomials that can, in principle, be applied to any (continuous) function f. The idea is to start
by approximating the function by a spline of a desired accuracy. Then, a particular definition of the
function inner product is invoked that facilitates the computation of the least squares polynomial to
this spline function. Since the function is approximated by a polynomial, the matrix A is referenced
only through a matrix-vector multiplication. In addition, the choice of the inner product makes it
possible to avoid numerical integration. As an important application, we consider the case when
f(t) = vt and A is a sparse, symmetric positive-definite matrix, which arises in sampling from
a Gaussian process distribution. The covariance matrix of the distribution is defined by using a
covariance function that has a compact support, at a very large number of sites that are on a regular
or irregular grid. We derive error bounds and show extensive numerical results to illustrate the
effectiveness of the proposed technique.
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1. Introduction. It is often necessary to compute a matrix-vector product of
the form f(A)b, where f(A) is a matrix function well defined for the matrix A and b
is a column vector. Examples of such functions f include the sign function sgn(A),
the exponential exp(A), the logarithm log(A), and the square root A'/2. We restrict
our study to the case where A is symmetric real (or Hermitian complex), or more
generally, when A is diagonalizable and has real eigenvalues. In this paper we address
the case when A is a large sparse matrix and f is any (continuous) function. This
situation precludes a full-fledged diagonalization of A, which may not be practically
feasible and numerically viable [27, 28, 21]. A common approach advocated in the
literature is to exploit the fact that there is no need to compute the matrix function
f(A) if our goal is to compute f(A)b. The situation is similar to that of solving linear
systems which corresponds to the case when f(t) = 1/¢t. In such situations there is
no need to invert A, and efficient methods (e.g., based on Krylov subspaces) can be
designed to solve the problem.

The case f(A) = exp(A) was extensively studied (see, e.g., [36, 16, 22, 23, 4]).
Some approaches have also been considered in the literature for a general f, most
notably with the use of Krylov subspaces (see, e.g., [44, 45]). In these methods, an
Arnoldi process (a Lanczos process in the symmetric case) with an initial vector b/ |||,
yields in k steps a matrix @ with k£ orthonormal columns and a k x k Hessenberg
matrix Hy (tridiagonal in the symmetric case). Then,

fe = |0l Qrf (Hy)ea
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is a progressive approximation to f(A)b as k increases. It remains to compute
f(Hg)er. Special techniques can be invoked for a few specific cases for f(Hy) [21],
Otherwise, for any f, when a diagonalization of Hy, is feasible, the matrix function
can be computed via this diagonalization.

The related problem of computing the quadratic form b7 f(A)b was given special
attention, see, e.g., [3, 17, 18]. Here, the Lanczos process is often applied to the sym-
metric positive A. The product b7 f(A)b can written in a Riemann-Stieltjes integral
form, and because of the orthogonality of the Lanczos vectors (or the associated poly-
nomials), the Lanczos procedure applied to this problem will yield an approximation
that can be viewed as an estimate of the integral via a quadrature rule.

It is to be noted that for some particularly challenging problems, an unacceptably
large Krylov subspace may be required to obtain a satisfactory approximation. This
poses difficulties on issues such as storage, computational time, and reorthogonaliza-
tion costs.! For this reason several alternative approaches have also been proposed.
The restarted Krylov subspace method [11] restarts the Arnoldi process periodically,
to avoid storing large sets of basis vectors which are no longer orthogonal. The ap-
proximation [|b||, Qr f(Hy)er is shown to converge [11, 1], and the block bidiagonal
structure of Hj can be exploited to efficiently update f(Hy)e; [2]. This method
requires predetermining the restart length, which is crucial for the practical perfor-
mance. The use of standard Krylov subspaces also gave rise to extensions such as
shift-and-invert Krylov subspaces [43, 30] and extended Krylov subspaces [10, 25].
The former builds a subspace for the matrix (I + vA)~!, where the convergence is
mesh independent for A arising from a discretization of differential operators, but
the performance is sensitive to the choice of the scaling factor v (or equivalently the
shift —1/7). The latter builds a subspace for both A and A~!. It is shown in [10],
that to get an equal approximation quality, one needs to take roughly a square root
number of iterations as for the standard Lanczos approximation. Both of these vari-
ants of Krylov subspace methods require to solve a linear system (I +~vA or A) at
each iteration, with a different right-hand vector. This can poses a major drawback
for situations such as those when the systems are indefinite and/or originate from 3D
meshes. These two methods are special cases of the broad class of rational approrima-
tion methods which approximate the function f by the rational function p/q, where
p and ¢ are two polynomials. A common treatment [14] is to approximate f(t) by
>, wi/(t —0;), and therefore

FAD~ Y wi(A—oD)™'b. (1.1)

Explicit formulas of such approximations in the optimal uniform norm for a few special
functions, such as the sign function and the inverse square root, are known due to
Zolotarjov (see e.g., [32]). For a general function f, Padé approximations can be
carried out by considering f’s formal power series, or in other cases Remez algorithm
can be used with a higher computational cost. This rational approximation framework
also requires to solve a number of linear systems (with different shifts o;). One possible
approach to reduce the cost is to simultaneously solve all the shifted systems by using
a single Krylov subspace (one that is constructed for A) [14]. Empirical results show
that the convergence may sometimes be very slow for indefinite systems with complex

n general, these issues are related to the Arnoldi/Lanczos process, and are irrelevant to the
matrix function. Remedies of tackling these difficulties are not discussed here.
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shifts. Further, by considering the contour integral
£ = 5 [ T - 4) s
o 271 T * ’

the vector f(A)b can be directly computed by performing a quadrature integration,
yieling yet another technique based on rational approximation (1.1) [20]. Conformal
mappings of the contour I" have been investigated to obtain good convergence proper-
ties of the quadrature and to reduce the number of linear solves with zI — A [20]. For
more comparisons of advantages and disadvantages of the above methods, see [40].

A class of methods that avoid solving linear systems are polynomial approxima-
tion approaches [9, 29, 31], i.e., to approximate f(A)b by p(A)b, where p denotes a
polynomial that approximates f in some optimal sense. A common approach is to
expand f in a basis of orthogonal polynomials, such as Chebyshev (see, e.g., [4, 9]).
Since these expansions are not explicitly known for an arbitrary function, this ap-
proach is limited to very specific functions, for example, the exponential. There have
been extensions of this basic idea, specifically for the nonsymmetric case, by exploit-
ing asymptotically optimal approximations, using, for example, Faber polynomials or
Fejér polynomials, (see, e.g., [29, 31]). There are advantages and disadvantages to
these approaches when compared with Krylov methods. Krylov methods are general
purpose and require no estimates of eigenvalues. In contrast, methods based on ap-
proximation theory usually require determining a set in the real or complex space
that contains the spectrum of A. On the other hand, approximation theory methods
tend to be effective for certain functions [4] and they are often easier to analyze the-
oretically. Despite these conceptual differences, we point out that Krylov methods
can indeed also be viewed as a form of polynomial approximation, where the approx-
imant polynomial p is one that interpolates the Ritz values (eigenvalues of Hy in the
Hermitian case). This viewpoint bridges the connections between the two methods.
In a recent article [37] a conjugate residual-type technique was proposed for approx-
imating f(A)b, addressing mostly the case when f is an approximate step function.
The method can be viewed as a modification of the traditional conjugate residual
method for solving linear systems to compute an optimal residual polynomial. It can
be adapted to any function f with a finite value at the origin. For a brief discussion
of this approach, see Section 6.4.

In this paper, we consider approximating f by a least squares polynomial, based
on an idea originating from an unpublished technical report [12]. The proposed
method computes an approximant polynomial ¢y41 that is close to f with respect
to some weighted L? norm. Determining the least squares polynomial approximation
to f would normally entail computing expansion coefficients that require numerical
integration. To avoid this, we first approximate f by a spline function s, which is ap-
proximated, in place of f, by the polynomial ¢;1. Then, the expansion coeflicients
are easy to extract without numerical quadrature, provided appropriate weights of
the spline approximation are used in each interval. This paper was initially moti-
vated by a statistical sampling problem (see Section 5.1), that leads to a situation
where f(t) = v/t and A is symmetric positive (semi)-definite. It turns out that a
simple technique, possibly one of the best approaches in this case, is to expand f in
Legendre polynomials. The coefficients are then known explicitly; see, for example,
[26, p. 59]. Here, we do not consider the Legendre polynomials approach because we
want to emphasize generality. The method we propose is applicable to any function,
not only those that happen to have a known expansion in some orthogonal basis of
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polynomials. Indeed, the only requirement for our technique to work well is that the
function f be well approximated by a spline.

Error bounds will be established for the proposed method, which suggest that
functions that are not differentiable or have large derivatives in the interval will be
difficult to approximate by polynomials. This is the case for f(t) = /¢, which causes
difficulties near the origin. FExperimental tests demonstrate the capability of the
proposed method for this case for large-scale problems. Numerical results indicate
promising performance when this problem goes to extreme scales. We also show
experimental results for other functions, such as the logarithm and the exponential,
demonstrating the wide applicability of the proposed method.

2. Approximating f(A)b. A conceptual framework for computing the matrix-
vector product f(A)b for a diagonalizable A with real eigenvalues and an arbitrary
well-defined function f is to approximate f by a polynomial. Assume that A(A), the
spectrum of A, is included in some interval [I, u] and that f is defined and continuous
on [l,u]. Then, f can be approximated to arbitrary accuracy by a polynomial (of
large enough degree). In particular, we can readily compute an approximation that
is optimal, in the least squares sense, over any polynomial subspace. If an orthonor-
mal basis {P;(t) | j = 1,2,...,k + 1} for the subspace is given, then this optimal
approximation is

k+1

f(t) ~ Z%‘Pj(t)’ with ;= (f(t), P;(1)),

where (g, h) represents the function inner product between g and h associated with a
weight w:

(. = [ ahuio . (2.1)

We will defer the discussion of the choice of the weight function w to the next sec-
tion. Here, we simply note that, with a proper choice, numerical integration (e.g., by
quadrature) can be avoided. The norm of a function g is correspondingly defined as
the induced norm from the inner product:

lg@®)ll = (g(t), g(t))"/*. (2.2)

The Stieltjes procedure generates the required basis. Let 1 denote the constant
function with value 1. With the initial condition Py(t) = 0 and Pi(t) = 1/||1],
the Stieltjes procedure computes a sequence of polynomials P;(t) with the help of a
three-term recurrence of the form

Bij+1Pj41(t) = tP;(t) — a; P;(t) — B Pj-1(t), J=1,..k, (2.3)

where ¢ is the inner product between tP;(t) and P;(t) and where (11 is a normal-
ization coefficient that ensures that P;j11(t), a polynomial of degree j, has unit norm.
The resulting polynomials {P;(t)} form an orthonormal basis of the space Py of all
polynomials of degree not exceeding k.

Define v; to be P;(A)b. We can approximate f(A)b as follows:

k+1 k+1

FAD =D Pi(A)b = Y 0. (2.4)
j=1 j=1
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Relation (2.3) induces the following three-term recurrence relation for the v;’s:
Bit1vj+1 = Avj — ajvj = Bjvj1. (2.5)

Formula (2.5) resembles the three-term recurrence of the Lanczos process for gener-
ating an orthonormal basis of a Krylov subspace related to a symmetric matrix A.
This resemblance is not surprising because the Lanczos algorithm is nothing but a
Stieltjes procedure for computing orthogonal polynomials with respect to a discrete
inner product over the space of polynomials [18]. In this paper a continuous inner
product is used in the Stieljes procedure; see the next section.

Algorithm 1 shows a detailed procedure for approximating f(A)b via a sequence
of vectors z; := 377, vjv; based on relations (2.4) and (2.5). The initial basis
polynomial P (¢) is computed in line 2, and the initial vectors vy and v are computed
in line 3. Then, the first approximant z; is computed in lines 4 and 5. In the loop,
lines 7 to 10 compute a new basis polynomial P;q(t) via the three term recurrence,
and line 11 computes the corresponding vector v;41. Then, lines 12 and 13 update
the approximant z;; and, after k steps, the algorithm returns the vector zp41.

Algorithm 1 Approximating f(A)b, initial version
Po(t) = 0

So(t) =1, 1 = [|So(t)[l, Pr(t) = So(t)/ B

vo =0, vy = b/

71 = (f(t), Pr(t))

21 = "Mu

for j=1,...,k do

P;(t))

—a;P(t) — B Pj-1(t)

Pja(t) = S;(t)/ B
Vjy1 = (Avj — QU5 — 5jvj71)/ﬁj+1
Yi+1 = (f(t), Pj41(1))
Zj+1 = Zj + Yj+105+1
end for
: return zp1 ~ f(A)b

= e
A

3. Definition and computation of the inner products. Several points re-
main to be addressed to bring Algorithm 1 into a workable procedure. First, to
compute the coefficients «;, 341 and 7,41, we need to define an appropriate weight
function w for the inner product (2.1). In addition, it is unlikely that numerical in-
tegration can be avoided if f is a truly arbitrary function. Therefore, the idea is to
replace f by a spline. The following highlights the strategy proposed in this paper for
computing f(A)b:

First, approzimate the function f(t) by a spline s(t). Then, use s(t)
in place of f(t) in Algorithm 1 to compute the vector zi41 =~ s(A)b,
which in turn approximates f(A)b.

Using splines in place of the original f yields many benefits. Since a spline is noth-
ing but a piecewise polynomial, inner products need to be computed on each subinter-
val only for polynomials. For this, a form of (exact) Gauss-Chebyshev quadrature will
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allow us to completely bypass numerical integration. In addition, splines can easily be
adjusted to handle the problematic situation where the function f has “stiff” regions
(see an illustration in Figure 3.1). This section provides the necessary implementation
details of an algorithm based on this approach.

15 15 1.5

1 1 1

0.5 0.5 0.5
0 0 0
-0.5] -0.5] -0.5]

-1 -05 0 05 1 -1 -05 0 0.5 1 =1 -0.5 0 0.5 1

(a) (b) (c)

Fic. 3.1. Polynomial approzimation to the sign function sgn(t) and the “spline-smoothed”
version of sgn(t). (a) Polynomial approximation to sgn(t), using degree 300. (b) Spline approxi-
mation to sgn(t). The —1 piece and the 1 piece are bridged by a cubic polynomial on the interval
[-0.015,0.015]. (c) Polynomial approximation to the spline in (b), using degree 300. Note the Gibbs
phenomenon exhibited in (a) and how it is alleviated in (c).

In the sequel we consider cubic splines s(¢) defined based on the knots 5 < t1 <
SR A 7%

s(t) == s;:(t), t e l,ul,
with [ =ty and ¢,, = u, where for each i, the polynomial piece is

. (3.1)
0 otherwise.

o) = {ai et —t) et — )2 +di(t—t;)3 if t € [t tiga],

3.1. Inner product and orthogonal basis. Consider the Chebyshev polyno-
mials of the first kind defined for |z| < 1, by T),(z) = cos(pcos™' z). As is well known,
these polynomials satisfy the three-term recurrence Tpyq(z) = 22T, (x) — Tp—1(z),
starting with Ty(x) = 1 and T3 (x) = z. They are also known to constitute a sequence
of orthogonal polynomials on the interval [—1, 1] with respect to the weight function
1/v/1 — 22, If we denote by §; the Dirac function 6; = 1 iff j = 0, then we can write?

! Tp(‘r)Tq(l’) _
/4 Vi1-a? du = 2 [0p—q + Op+al -

For an interval [t;,t;11], we perform the change of variable

2 t_ti+1+ti

x(i)(t): — =
t7,+1 tz tz+1 tz

and define the polynomials
CPO@) = Tp@V (1), te [t tinl, (3.2)

2The extra term Jp44 takes care of the special situation p = ¢ = 0, so the integral is 7 in this
case instead of 7/2. It is not relevant otherwise.
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and the inner product

fi g(t)h(t)
ti (t —ti)(tiv1 — 1)

CONIO) IR dt. (3.3)

This change of variable has a significant implication: The C’,(,i) (t)’s are orthogonal on
the interval [t;,¢;+1] with respect to the inner product defined above, namely,

™

(CO®.C0) =T g+ Opral - (3.4)

[tistit1]

With (3.3), we define the inner product of g and h on the whole interval [I, u] as
follows

|
—

n

ORI RS S ONIONINE

9

Il
o

The subscript [I, u] will be dropped in the rest of the paper in order to conform with
the notation in (2.1); that is, when we use the notation (-,-), we always mean the
inner product on the whole interval [I,u]. The corresponding norm of a function g on
the interval [t;, tis1] is [|g(O)l, 1,0 = (g(t),g(t))?t/ftiﬁ] , and the overall norm ||| on

the interval [I,u] as defined in (2.2) satisfies

n—1
lg@OI* =D 9@,y
=0

3.2. Computing «;j, 341, and ;1. With the definition of an inner product
on each interval, we can exploit the orthogonality of the basis (cf. Equation (3.4))
to efficiently compute the inner products in Algorithm 1 by expanding the involved
functions using the basis in each interval. This redundancy allows to bypass numer-
ical integration by using what amounts to a Gauss-Chebyshev quadrature on each
interval. The three-term recurrence (2.3) along with the standard relations of Cheby-
shev polynomials allows us to update the required expansions. This approach was
described in [35] for the case of two intervals. For completeness, we briefly discuss the
derivation of the formulas to compute o, B;41, and ;41 for the general case.

First we consider the computation of «;. Let P;(t) be expressed in [¢;,t;41] as

j—1
Pty =Y ullCOw),  j>1.
p=0

For now we assume that the coefficients ;sz) are known; an update formula will be

derived later. We need to compute (tP;, P;), and we start by noting that tP;(t) =

Z;;é u;?tC’,(,i) (t). The usual recurrence relation of the Chebyshev polynomials shows

that, in the interval [t;, t;41],

; tig1 —ti ti1 +ti tig1 —ti

e R R U
(i) tiv1 — ti (i) tiv1 i i) (3:5)

1057 (1) = =500 () + =0 ),
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With the conventions that u =0 and ,u = 0 for all p > 7, this leads to

tivi —ti () (i it — i i tiv1+ti @ ;
B0 = S e +Z( * () )

We define
OIS Sl N0 (i) tiy1 1t PO _ ,
Ipj "= T4 (Mpfl-,j + l’ép+17j) T 5 Hpj» p=0,..,J. (3.6)

Then a; = (tP;(t), Py(t)) = S0~ (tP;(t), Pi(t), 1., Pecomes

n—1
tivi —ti (i) G i
o= 5 (SO0 + a0 S e )
i=0 [ti tita]

(i) i+1 — g
= WZ <0’0J ZT + Zam ”m) . (3.7

We now consider the computation of ;4 starting with the case j = 0. Recall
that in Algorithm 1 we define S;(t) = tP;(t) — o; P;(t) — 5;Pj—1(t). It is easy to see
from (2.3) that 87 = ||So(t)[|* = X1 [ICo(t)lI;, ¢, = nr- For j > 1, we have

T = 18I @17 = ([P (t) — i Pi() = B Pi-a ()1

n—1

tiv1 — b () G ) (i
= | e+ Y e ) -
i=0 p=0
j=1 j=2 2
o gy O (8 = B~ il 2 O ()
p=0 p=0 [tistita]
n—1 " 7 2
i+1 7 i 7 i
= +4 g)])cl()(t)—’—z( ;()j) _aJ'u’pj 6]/’[’p] 1) C()(t)
=0 p:() [ti;ti+1]
We define
77;] . ;[(jl]) O[j/,ij ﬂ],up,j 1 p: Oaa] (38)

Then

n)? (§j>+”14 ) Zn 1 (3.9)

Furthermore, since Pjy1(t) = S;(t)/Bj+1, we have the following update formula for

(1)
Hp i1t

Bit1 = Z
—0

) 771()3,)/5]‘-&-1 ifp=20,2,3,...,4,

My iv1 = ; _ (3.10)
P ) )] By ifp =1
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The initial condition is ,u01 = 1/p for all i, since P;(t) = Co(t)/ 5.
Now consider y;4+1. Since we use s(t) in place of f(t) in Algorithm 1, we have

Yi+1 = (s(t), Pj41(t)) = i:< ZHWH - >
[

=0 tiytit]

Note that s;(t) is a cubic polynomial; therefore, we have the expansion

sit) = €05 () + €D (1) + €00 (1) + €0 ),
where h; = (t;41 —t;)/2, and

& = gdihi’ + gcih? +eihi +ai, &) = gdihf’ + %cl-hf,
¢l = %dih? +2¢:h2 + e;hi, el = %dih;”. (3.11)
Thus,
n—1 min{j,3}
Yipr =7 3| & uS) 0+ % SToeul . (3.12)
1=0 p=1

3.3. The final algorithm. Algorithm 2 is the final algorithm that incorporates
the details just discussed. The orthogonal polynomials P;(t) do not appear explicitly.
They are represented by their expansion coefficients in each interval. The scalars oy,
Bj+1 and ;41 are now computed via the expansion coefficients O'z();), p] , ﬁp , and
ng)~ This approach avoids numerical integration, and the updates of the coefficients
are simple. The only operation with the matrix A takes place in line 14 and involves
the product of A with the vector v;. Also, the function f is used only at the beginning
of the algorithm, when an interpolating spline s(¢) is computed.

Let us analyze the computational costs of Algorithm 2, assuming that A is a sparse
matrix of size mxm. The time cost includes the time to perform a spline interpolation,
which is linear in the number of knots n. The main body of the algorithm starting
from line 2 has a cost of O(k(kn + m + T4)), where T4 is the time for computing
a matrix-vector product between A and any right-hand vector. For each iteration,
the portion £n comes from computing o, Bj4+1, 7j+1, and other coefficients, and the
portion m comes from the length-m vector operations in lines 14 and 16.

Memory costs are likely to be dominated by the storage of the matrix A, although
there are applications where the matrix is used only in operator form. For the storage
of other variables in the algorithm, note that only three m-dimensional vectors are

needed for the v;’s and one vector for the latest z;, leading to a total of 4m storage
(4) @ .
pj p,j—1
). We also need 4n locations to

locations. In addition, (v;re need to use 3kn locations ’Eo store “z(jz 11 M

and p

kn 1ocat10ns to store 0, 7; and kn locations to store 7,,;

store fp and n locatlons to store h;. These costs are summarized as 5kn + 5n + 4m
locations.

So far, we have not discussed how to set ¢; (which also determines the size of n).
The choice of the knots is experimental and dependent on the function. A general
guideline is that when the function derivative is large, we use short subintervals. This
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Algorithm 2 Approximating f(A)b, final version

Input: tg,t1,...,t,, where to =1, t, = v and t; < t;11 for all i
Input: number of steps k
1: Compute a cubic spline s(t) which interpolates points (¢;, f(¢;)) for i = 0,...,n,
i.e., compute the coefficients a;, e;, ¢;, d; in (3.1).

2 B =/nm

3 v = b/ﬂl

4: Compute 51(,i) fori=0,...,n—1and p=0,...,3 using (3.11)

5: u01:1/ﬁ1f0r1—0 ,n—1

6: 1 =T, 50 01

721 =711

8 for j =1,. k do

9: Compute am fori=0,...,n—1and p=0,...,J using (3.6)
10: Compute «; using (3.7)

11: Compute 77](9? fori=0,...,n—1and p=0,...,J using (3.8)
12: Compute 8;41 using (3.9)

13: Compute 'ul(j,)j-‘rl fori=0,...,n—1land p=0,...,Jj using (3.10)
14: Vi1 = (A?)j — QU5 — ﬁjvj,l)/ﬁj+1

15: Compute 7,11 using (3.12)

16: Zjp1 = Zj + V410541

17: end for

18: return z;11 =~ f(A)b

is important in order to obtain an accurate spline and a good least squares polynomial
approximation to it. In Section 5, we propose a scheme that empirically works well
for functions such as the square root and the logarithm. Also in Section 6.5 we briefly
mention a scheme for the exponential function.

4. Convergence analysis. In Algorithm 2, we approximate f(t) on the interval
[, u] by a cubic spline s(t), and we project s(t) onto the polynomial space Py, which
consists of polynomials of degree not exceeding k:

k+1

Z% = Gry1(t), (4.1)

where {P;(t)} is an orthonormal basis of Pyq, with

i = (s(), P;(t)) -

The approximant is

Zk+1 = ¢k+l (A)b

By way of introduction we present the following easy-to-prove or well-known
results.

PROPOSITION 4.1. For the norm ||-|| defined earlier (cf. Equation (2.2) and
Section 3.1),

r1(t) =arg min [lo(t) —s(t)]]. (4.2)

Py
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In addition, if A is symmetric and its spectrum is included in [l,u], then

k1 = FAYbl, < max [0 (1) = F(O) 1], (43)

Proof. The first result is well known for least squares approximations; see e.g., [34].
The second comes from the fact that A can be written as A = VDV, where V is
unitary, and follows trivially by expanding zx+1 — f(A)b = (¢r+1(A) — f(A))b in the
eigenbasis. O

To bound the difference between ¢1(t) and f(¢) on the interval [I, u], note that

|Pk41(t) = f(O] < Pry1(t) — s(B)] + |s(t) = F(2)].

Hence, we need to estimate the two terms on the right-hand side of the above in-
equality separately. For the second term, many known error bounds for splines can
be exploited. The following presents a standard result for clamped cubic splines,
which indicates a fourth-order accuracy.

THEOREM 4.2 ([39, pp. 57-58]). If f(t) is fourth-order differentiable on the
interval [I,u] and if s(t) is the unique cubic spline that interpolates f(t) on the knots
=ty <ty <--- <t, =u with the boundary condition

s'(to) = f'(to)  and  §'(tn) = f'(tn),

then

(tis1 — )",

t)— f(t)] < —
205190~ F01 < gy
where M = max,ep,. | f@(1)].
To bound the difference |@r11(t) — s(t)|, we need the following two lemmas. They
are extensions of similar results given in [35], and hence the proofs are omitted.
LEMMA 4.3. Using the notation of a function norm ||-|| in this paper, we have

lg@® < vnm- o lg(t)]-

LEMMA 4.4. Let gp1(t) € Prr1 be any polynomial of degree not exceeding k.
Then, using the notation of a function norm ||-|| in this paper, we have

2(k + 1)

max |gi41(t)] < lgr+1(E)]] -

te(l,u]

By a property of the uniform norm, for any continuous function g(t), there exists
a degree-k polynomial g;_ ,(t) such that

=) — ()] < ) — gt Pry.
tgl[%]\gkﬂ() 9()|ftrg[%>;}l¢() g, Vo EPLy,

The modulus of continuity of a function g(¢) on the interval [I,u] is defined for all
6 >0,

w(g; [l,ul;6) == sup |g(t1) —g(t2)|.
t1,t2€[lu]
[t1—t2|<O
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We use the shorthand notation w(d) when the context is clear. We also use w, to
denote the modulus of continuity of the r-th derivative of g:

wr (g3 [1,ul; 6) = w(g™s 1, ul; 6).

The following is a corollary of Jackson’s theorem for bounding the uniform approxi-
mation of a function g.

LEMMA 4.5 ([34, Theorem 1.5, p. 23]). If g has an r-th derivative on [l,u|, then
fork>r,

max | (1) —g(t)] < Cr “7_1
telu) s = \etk—n )

where C,. = 6" e (14 r)~!

The above lemmas lead to the following theorem, which gives an upper bound for
the convergence rate of ¢p11(t) to s(t).

THEOREM 4.6. Forr =0,1,...,3, the uniform norm of the residual polynomial
admits the following bounds:

sy < & ani]f+ D+, (2UZ > : (4.4)

(k—r)

max |¢p1(t) —
te(l,u]

where C,. = 6™ e (1 +7)71 and k > 7.
Proof. We have

max |fr1(8) — s(f)] < max |Brr1(t) = sip1 (8)] + max |si1(t) = s(t)|.  (4.5)

From Lemma 4.4,

max |Prr1(t) = sip1 (8)] < ( H¢k+1 —sp (0] - (4.6)
Since
[ér41(t) = sia (D] < ||¢k+1( ) = s+ [[s(t) = sia (D))
(t) = s)|| + ||st) — skea(®)| (by Eqn. (4.2))
— 9 st (1) — s(0)] (4.7)
the inequality (4.6) becomes
. 2k+1) , ,
i [0 () = st (0] <20 2 s ) = s00)
Recall from Lemma 4.3 that ||s},; (£) — s(¢)|| < v/nm maxgeq o |s51(t) — s(t)| . There-

fore,

mact [ 01 (t) = sty (8] < 2v/2n(k+ 1) mase [si (1) = ()]

Thus, (4.5) becomes

max |dp+1(t) —s(t)| < (2v/2n(k+1)+ 1) max|sk+1 —s(t ‘

te(l,u]
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The theorem is established by applying Lemma 4.5. O
A function g(t) defined on [l,u] is v-Lipschitz with constant K if

lg(t1) — g(t2)| < K |t1 — ta]”, Vi, to € [1,ul.

We have the following corollary for Theorem 4.6.
COROLLARY 4.7. Let the r-th derivative of s(t) be v-Lipschitz with constant K,
forr=20,...,3. Then, fork >r,

SCTKT(Q\/WH)W—I)”:O( 1 ) (4.8)

kr+1/71/2

trél[laif] |¢k+1(t) - S(t)| 2”kr(k — 7,)1,
where C,. = 6" e (1 4+ 7)1,

The sub-linear convergence O(1/k"t*~1/2) given by (4.8) results from Jackson’s
theorem which shows a C,./k" factor on the convergence of polynomial approximation
in the uniform norm (Lemma 4.5). When the function is infinitely differentiable on
the interval, r can be any positive integer, thus by putting £ = r + 1, we have

C, 1( 6e '™

kEr e (7" + 1) '
When r is large enough such that 6e/(r + 1) is less than some predefined constant
¢, then C,./k" < e~'c™*1, which effectively indicates a linear convergence (assuming
that K, is uniformly bounded or increases no faster than exponentially with r). In
our situation, the function is a cubic spline, which does not have a 4-th or higher
order derivative. This unfortunately restricts the value of r not being larger than 3.

The bound (4.8) suggests that the conditioning of the matrix will affect the ap-

proximation for some functions such as the square root. This makes scaling of the
matrix not viable—either close to or far away from the origin is the smallest eigenvalue
of the matrix, the factor K, (u — 1) will be large if the matrix is ill-conditioned. The
asymptotic behavior of the bound also fits most of the observed situations—in the
log-log scale, the uniform norm decays like a straight line. In other words, empirically,
we can fit some constants ¢; > 0 and ¢ such that

log (max |dr11(t) — s(t)|) = —c1 logk + ca.

Experiments in Section 6.2 yield 1 < ¢; < 2, which relates to probably r = 1.
Nevertheless, the bound (4.8) may not be tight enough in some cases. In Section 6.6,
we show that for a covariance matrix resulting from a statistical application, the
uniform norm converges linearly, much faster than the sub-linear rate indicated by
the bound. This may be because of the good conditioning of the involved matrix, and
the interesting fact will be a topic of future investigation.

The sub-linear convergence O(k~"~*+1/2) might make the proposed method ap-
pear inferior to other methods such as those based on extended Krylov subspaces and
contour integrals, which show at least a linear convergence. However, this convergence
rate does not take into account the efforts for solving a linear system at each step,
which is much harder and much more expensive than performing one matrix-vector
multiplication. As mentioned in the introduction, solving linear systems related to A
or shifted systems can be a major hurdle. For example for problems originating from
large 3D meshes, direct solvers may not even be feasible due to prohibitive mem-
ory requirements. If iterative methods are used then one must remember that the
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matrices are shifted and can be indefinite, making the systems harder to solve by
iterative solvers. In contrast, the method proposed in this paper requires only one
matrix-vector multiplication per iteration.

Apart from the above result for the uniform norm of ¢x11(t) — s(t), we can also
give a bound for its norm.

THEOREM 4.8. Forr = 0,1,...,3, the norm of the residual polynomial admits
the following bounds:

3C.\/nT u—1
o 0) - o)l < 25 (521,

where C,. = 6" e (1 +7)~ and k > 7.
Proof. This follows from

¢rr1(t) = s < [|@rr1(t) = sk 2 ()] + [[s542 () = s@)]|

< 3[skya(t) = s(0)]] (by (4.7))
< 3v/nm m[?x] |sp(t) — s(t)] (by Lemma 4.3)
tell,u
3C,+\/nm u—1
< . .
S e <2(k—r)> (by Lemma 4.5)

0

From the above result one can trivially obtain a bound analogous to that of
Corollary 4.7 for the case when the r-th derivative of s(t) is v-Lipschitz with constant
K,

umﬂw—dm§3ﬁﬁvmw‘wzo(l ) (4.9)

Wk (k — 1) v

5. Application: computing A'/2b. We consider a case where f(t) is the square
root function and A is symmetric positive definite. We note that the symmetry
requirement of A is not necessary; A only needs to be diagonalizable with all its
eigenvalues real and positive. Further, the positive definiteness requirement of A can
be relaxed to positive semi-definiteness. This will affect only the choice of the interval
[, u] (cf. Section 5.2), which needs to contain only the nonzero eigenvalues of A.

5.1. Background and challenge. Sampling from a multivariate Gaussian dis-
tribution with a positive definite covariance matrix K € R™*™ is one of the most com-
mon endeavors in statistics. The most common approach is to compute the Cholesky
factorization K = LL”, where L is a lower triangular matrix. If = is a vector whose
entries are independent and are normally distributed with mean 0 and variance 1,
that is, x ~ N (0,,,1,,), then ( = m + Lz is a random variable whose distribution
is N (m, K). Many modern applications often require high-fidelity spatio temporal
sampling, which puts m in the range of 10'2-10'5. This results in the need to iden-
tify sampling approaches that have both O(m) complexity and high potential for
parallelism.

If the sample sites are on a regular grid and the covariance function is stationary,
then several techniques can be used to sample efficiently from the Gaussian distribu-
tion. One can use specialized linear algebra to carry out the Cholesky factorization,
at least for some one-dimensional problems for a number of sampling sites up to 10°
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[15]. Other possibilities are to use a multigrid-type sampling scheme, Galerkin multi-
grid Monte Carlo (MGMC) [19], or to embed the covariance matrix in a stationary
periodic process [8], followed by a fast Fourier transformation (FFT) technique.

Nevertheless, none of these approaches was demonstrated to work for the case
where the data points are not on a regular grid, or for nonstationary covariance func-
tions, or on the scale of problems that we aim to solve. In the case of the structured
Cholesky approach of [15], it is unclear whether an indexing can be found that will
result in sufficient sparsity of the factors for the non regular grid, nonstationary co-
variance function, or multiple dimensions. In addition, at extremely large numbers
of sites, Cholesky factorization cannot be expected to be as efficient to parallelize
as a matrix-free approach. The FFT approach may be difficult to parallelize be-
yond a thousand processors [5]. More important perhaps, even for small processor
counts, FFT cannot be applied when the sampling sites are not on a regular grid or
the Gaussian process is not stationary. For MGMC, the compact kernel has much
larger bandwidth than do the covariance matrices for which they are traditionally
applied, which are of the Laplace-matrix type [19]. This situation may result in rapid
densification and increase in storage requirements [13] [42, §7.7.5].

Many examples of interest need to sample the Gaussian process at points that
cannot be easily embedded in a regular grid. For example, the positions of windfarms
or their wind turbines cannot be easily approximated with a grid, unless the grid
cell is exceedingly small [6]. In geostationary applications, the spherical shape of the
Earth prevents most spatial grids of interest from being regular when projected on a
plane. Moreover, there are countless examples of nonstationary Gaussian processes
of interest [41, 33] for which FFT cannot work, and neither Cholesky nor MGMC
approaches were demonstrated.

We therefore turn to an entirely matrix-free approach for computing K'/2z. If
x ~ N (0,,,1,,) then n = m 4+ K'/2z is a random variable whose distribution is also
N (m, K). We thus achieve a matrix-free approach of sampling from an arbitrary
normal distribution, irrespective of the positions of the sampling sites or the lack of
stationarity in the covariance function that generates K.

Nevertheless, in order for the approach to have an O(m) behavior, the matrix-
vector multiplications must take O(m) themselves. Therefore the covariance matrix
K must be sparse. We will thus be interested primarily in covariance matrices origi-
nating in Gaussian processes with compact kernels. Such processes are widely used in
applications and result in sparse covariance matrices [33]. In addition, it is sometimes
possible to replace K by the covariance matrix obtained from a compact kernel with
little bias or loss of statistical efficiency compared to the original covariance function
[24, 15].

5.2. The interval [I,u]. We now consider further details to carry out Algo-
rithm 2 specifically for the square root function. One issue is the interval [I, u], which
needs to contain the spectrum of A. By Theorem 4.2, the subintervals [t;,t;11] should
be small enough to yield an accurate spline s(t). However, too many intervals will
impose a heavy computational burden, for both the spline approximation and the
computation of the coefficients «;, 541 and vj41. On the other hand, the closer
zero is to the interval, the harder it is to interpolate v/t, since the derivative tends
to infinity. A geometric progression of the spacing between the knots works well in
practice, so we opt to let

to = Amin/ (1 + a), ti = (14 a)'to, i=1,2,...,n,
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and to let t,, be some value such that ¢,, > Aax, Wwhere A, and A .y are the smallest
and the largest eigenvalue of A, respectively. From this we have

)\max

n = [logpra)\ _ -‘—I—l: ﬂogHa/ﬂ—i-l,

where k is the 2-norm condition number of A. We choose a = 0.01. Note that this
interval scheme requires an estimate of the two extreme eigenvalues of A. We avoid
using tp = Amin When the estimate is not accurate enough.

5.3. Convergence test. As shown in the analysis in Section 4, the convergence
of zk41 to f(A)b can be split in two parts: the convergence of the spline s(t) to f(¢)
and the convergence of the least squares approximation ¢y11(t) to s(t). The spline is
usually a sufficiently good approximation to f(t) if one uses the intervals designed in
Section 5.2. Therefore, we consider mainly the approximation quality of ¢g11(t).

As discussed after Corollary 4.7, the bound (4.8) is not useful for determining an
appropriate k. Instead, a natural heuristic is to consider the difference of consecutive
iterates

llzk41 — 2kll,

(5.1)
241l

and ensure that it falls below a certain tolerance e. Note it is possible that a small
difference might identify a stagnation of the approximation rather than actual con-
vergence (see, e.g., [14]).

Another possible criterion is to check the norm of the residual polynomial:

Ist) — s ()]
@)l
Lemmas 4.3 and 4.4 suggest that the norm of s(t) — ¢x1(¢) should decay similarly

to that of the uniform norm. Since ¢41(t) is a least squares approximation, we have

2 2 2
[s(t) = ok I = Is(®II” = [[dr+1 (D) -
Therefore, the relative difference (5.2) can be easily computed by noting that

n N2 N2 N 2 N2 k+1
|s<t>||2=z[(§é“) m+(67) 3+ () 5+ (&) ﬂ and [lga(8)]F = Y7
i=0 j=1

However, numerical experiments indicate that (5.1) is more appropriate than (5.2) as
a practical criterion for the convergence test; see Section 6.1.

We point out that for the problem of sampling from a Gaussian distribution as
discussed in Section 5.1, another possibility emerges for estimating the error. Since
n =m + K2z and the approximant 7 = m + ¢y (K)z, we have

ne=n—10= (K" - ¢pp1(K))z.

If z ~ N(0,,,L,,), then it is easy to see that n° is normally distributed with mean
0 and variance Var(n¢) = K — 2K'/2¢, 1 (K) + ¢%41(K). From inequality (4.3) it
follows that

(5.2)

[Var(re)l, < mas [661(1) = (). (53)
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The right-hand side of the above bound can then be used for statistical tests charac-
terizing the discrepancy between the approximant 7 and the variable n that has the
exact sought-after distribution. This uniform norm can be empirically estimated by
a large enough sampling {#;} of the interval [I,u]. (Note the #;’s are different from
the knots t;’s.) To compute ¢y 1(t), note that the vector [¢py1(f1),. .., drr1 ()" is
indeed the output 2,41 of Algorithm 2 from a diagonal matrix A = diag(fy,...,1,)
with the right-hand vector b, which is the vector of all 1’s. In other words, one needs
to replicate lines 14 and 16 with a second set of matrix A and vectors 0; and Z;.
When A is large, this additional computation might be expensive, although its cost is
independent of the size of the original matrix A and thus, on the number of sampling
sites, which tends to dominate all other sizes involved.

6. Numerical results. In this section, we show several numerical experiments
to demonstrate the effectiveness and scalability of Algorithm 2. Note an important
relation for a symmetric matrix A:

[6x1(A4)6 = F(AYblly = [[Voras DIV o= VIDIVTb]|, = 01 (D)b = £(DYB .
where VT AV = D is a diagonalization of A with a unitary V, and b = V7b. This
means that if the right-hand vector b is drawn from some distribution (such as uniform
or N (0, I,)), then the approximation error for computing f(A)b is equal to that for
computing f(D)b, where b can be considered a sample from the same distribution. In
other words, in a statistical sense, testing a matrix A is equivalent to testing a diagonal
matrix D, which has the same spectrum as A. An advantage of replacing A by D is
that the ground truth f(D)b is much easier to compute than f(A)b. Therefore, all the
experiments here were performed with the diagonal matrix D which is unitarily similar
to the original A unless otherwise noted. Also, except for the last two subsections, all
the experiments were performed for the square root function f(t) = t'/2.

6.1. Tests on matrices from the UF collection. We first tested the pro-
posed algorithm on a set of symmetric positive definite matrices from the UF sparse
matrix collection [7]. We chose these matrices with a moderate size m (in the order
of thousands) and from ten different application domains, including statistics, ma-
terials, power networks, and structural problems. Table 6.1 lists the matrices and
the numerical results. For convenience, we list the matrices in the increasing or-
der of their condition numbers k. The middle column shows the spline-fitting error,
maxyea(a) [s(t) — f(t)|, which indicates that the spline is in general a sufficiently good
approximation to the original function. In the experiment, we set the maximum num-
ber of iterations k to be 200 and the tolerance (cf. Equation (5.1)) to be 1076. The
final residual

k41 = AY2b]]
142720

is listed in the last column. We can see that as the condition number of the matrix
increases, the approximation in general becomes less accurate. In other words, the
polynomial approximation is affected by the conditioning of the matrix. We can also
see that the tolerance is within an order of magnitude difference from the residual,
which implies that it can serve as a suitable criterion of the convergence and a good
estimate of the actual residual.
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TABLE 6.1
Numerical results on the matrices from the UF' collection.

Group/Name K Spline Err. k Tolerance Residual
Boeing/crystm01 2.28x10% | 520x1071° | 52 9.60x10~7 1.28x10°°
Bates/Chem97ZtZ 2.47x10% | 8.35x107° 57 9.37x1077 4.07x1076

JGD/Trefethen_2000 1.55x10* | 3.43x10~% | 200 5.80x1076 4.41x10~6
TKK/plbuckle 1.28x10% | 3.53x1077 | 200 1.08x10~* 2.87x107*
Nasa/nasa1824 1.89x10% | 1.12x107% | 200 1.37x10~* 1.26x1073
HB/1138_bus 8.57x10% | 3.31x107% | 200 1.94x10~* 1.51x1073

Oberwolfach/t2dal_e 3.76x107 | 2.70x107'3 | 200 1.59x10~* 6.55x10~*
HB/bcsstk12 2.21x10% | 1.93x107% | 200 2.18x107% 1.24x1073

FIDAP/ex3 1.68x10%0 | 1.04x1076 | 200 1.88x10™* 1.06x1073
Bai/mhd3200b 1.60x10%3 | 3.54x1071° | 200 4.73x10™* 4.61x1073

We performed a further investigation on the matrices of the best (crystm01) and
the worst (mhd3200b) performance (see Figure 6.1). Plot (a) shows three curves as k
increases: the residual, the tolerance (Equation (5.1)), and the norm of the residual
polynomial (Equation (5.2)). This plot shows an advantage of using (5.1) rather
than (5.2) as the convergence criterion. It suggests that numerically the norm will
stop decreasing far before the uniform norm does. Of course, this may affect well-
conditioned matrices only, since for ill-conditioned matrices (cf. Plot (b)), within a
reasonable number of iterations, say 200, neither norm appears to stop decreasing.
To further expose the distribution of the errors, plots (b) and (d) show the value of
the residual polynomial |¢pg41(t) — s(t)] for ¢ equal to the eigenvalues. As expected,
the smallest eigenvalues do not seem to contribute in a major way to the residual.

6.2. Scalability. We tested the scalability performance of the algorithm on two
types of matrices: “uniform” and “lap2D” . A “uniform” matrix of size m x m is a
diagonal matrix with diagonal entries i/m, ¢ = 1,2,...,m. The condition number is
Kk =m. A “lap2D” matrix is the standard Laplacian on a uniform m; x mso grid. It
is of size m = my.my and is given by

A I 4 -1
-1 A -I -1 4 -1
-1 A -I -1 4 -1
- A -1
mxm miXmy

The eigenvalues of lap2D are known:

4 |sin? _m + sin® _ T , t=1,....my, j=1,...,ma.
2(m1 + 1) 2(m2 + 1)

Therefore, its condition number is
2 mim + -2 ma T
s (2(m1+1)) sin (2(m2+1)) ~ 8/m?
Ty . o ~q 21 1/m2°
sin (T(mzr_;_l)) +sin (2(m;r+1)) fmi - 1/m;

When my = mg = \/m, it follows that kK = O(m). Therefore, both types of matrices
have a condition number on the order of their matrix sizes. Note also that in this
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F1G. 6.1. Residual plots for two matrices: crystm01 and mhd3200b.

case the number of knots n is

O(logl-l—a K’) = O(logl-l—a m)

Figure 6.2 shows a residual plot, a plot of the uniform norm of the residual
polynomial as k increases, and a plot of the run time as m increases, for each type of
matrix. The final residual with k& = 100 iterations reached 107° to 10™*. The uniform
norm of the residual polynomial was empirically evaluated as

t) — s(t
tglA&%ff‘) |pri1(t) —s(t)],

for the largest matrix (i.e., m = 10%). A log-log plot of this uniform norm versus the
number of iterations shows a straight-line pattern. We fit a line to the plot, and the
slope was close to —1. This confirms the rate of convergence given in Corollary 4.7
for the uniform norm of ¢y (t) — s(t).

We also plotted the running time of the algorithm (see plots (e) and (f)), in log-
log scale. The time included all the computations except the estimation of A, and
Amax- Since the algorithm was implemented in Matlab as a serial program, we expect
that a more careful implementation in C and/or in a parallel fashion will yield several
folds or even magnitudes of time improvement. It can be seen from both plots that
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Fic. 6.2. Numerical results on “uniform” matrices and “lap2D” matrices.

the running time is linear as m increases, which is expected from the computational
cost analysis.

6.3. Tests on a Gaussian process sampling problem. We consider the co-
variance matrix K mentioned in Section 5.1, originating in covariance functions with
compact kernels described in [38, 33]. Such functions describe processes that can be
used in the study of vehicles moving on terrains with random slip coefficients. The
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covariance function has radial symmetry and rule

r\#B
Lr) = (1 - —) ,  where 1 =+/22+ 12
al+
The covariance matrix K therefore is defined on a 2D grid, with the (4,5) entry
K;; = ¢(d;;), where d;; is the Euclidean distance between two grid points.

To gauge the effects of the computations at sites that are not necessarily on a
regular grid, we also consider the covariance matrix over a deformed space. In this
case,

r =27 T w0y,

where w(zx) is a quadratic deforming function that is 2 in the middle of the range of
x and 1 at its extremes. With this new definition, ¢(r) can be looked at as either
a nonstationary covariance function or a stationary covariance function on the grid
shown in Figure 6.3. Neither case can be treated by the FFT approach [8].

50

a0f B

30 —

20;

10;

50 L L L I I I
=25 -20 -15 -10 -5 0 5 10 15 20 25

F1G. 6.3. Position of sampling points in the non uniform grid case.

We performed tests on the covariance matrices defined on both types of grids with
different parameters, as listed in Table 6.2. “Regular” means the grid is uniform, with
grid points separated with a spacing 1 unit; “deformed” means the grid is deformed as
in Figure 6.3. The middle column shows the condition number x, which suggests that a
smaller « and a larger 8 will make the matrix better conditioned, and correspondingly
the required vector K'/2b will be easier to compute. It also suggests that problems
without a regular grid structure can be as easy to solve as the problems on a regular
grid by our method. In general, within 100 iterations, the final residual has decreased
to 107101011,

We performed further tests on larger grids, which imposed a difficulty for com-
puting the ground truth K'/2b and the residual. We therefore presented only the
tolerance and the empirical uniform norm of ¢y11(t) — f(¢t). From Table 6.2 one sees
that the tolerance is a good indication of the residual, and (5.3) implies that the uni-
form norm bounds the variance. To make the computation more feasible, we did not
explicitly store the matrix; any matrix-vector multiplication was carried out by con-
sidering the special structure of K. Compared with Table 6.2, the results in Table 6.3
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TABLE 6.2
Numerical results on the covariance matrices.

Grid Grid Size «a I6) K k Tolerance Residual
Regular  100x100 6.5 3 | 35.10 | 49 8.0104x10~'' 1.2719x10~1'°
Regular  100x100 12.5 3 | 243.59 | 120 9.5001x10~''  4.2465x10~10
Regular ~ 100x100 6.5 5| 13.13 | 31 6.6332x107'! 5.6348x101!
Regular ~ 100x100 12.5 5 | 88.01 | 75 8.8254x107'1 2.3085x10~10
Deformed 100x100 6.5 3 | 15.95| 34 6.3934x107'"  6.9053x10~!!
Deformed 100x100 12.5 3 | 107.10 | 82 9.0078x10~'' 2.6602x10~1°
Deformed 100x100 6.5 5 6.20 | 21 9.2292x10~'"  4.9578x10~ !
Deformed 100x100 125 5| 38.65 | 51 9.2313x10~' 1.5885x10~10

suggest that the grid size has little impact on the conditioning of the matrices, and
therefore the approximation quality was as good as for smaller grids.

TABLE 6.3
Numerical results on the covariance matrices.

Grid Grid Size o K k Tolerance max |¢p+1 — f]
Regular  10°x10%° 6.5 3 | 35.14 | 48 9.5703x10~1% 1.2106x1077
Regular  10°x10% 12,5 3 | 244.47 | 122 7.9481x107'* 1.9733x107?
Regular  10°x10® 6.5 5| 13.14 | 32 5.6690x10711  4.2998x 1010
Regular  103x10% 125 5| 88.23 | 79 8.3043x10~'' 1.2952x107°

Deformed 10°x10® 6.5 3 | 15.96 | 34 4.5546x10711  4.0252x 1010
Deformed 10%x10% 125 3 | 107.36 | 87 8.7497x107'' 1.2524x107°
Deformed 10°x10® 6.5 5 6.30 | 22 5.3848x10'  3.2586x107'°
Deformed 10°x10% 125 5| 3873 | 54 6.4973x107'%  9.4807x1010

Sections 6.1-6.3 present attractive capabilities of the proposed method. We have
applied it on matrices with dimension up to m = 108 with good results: the residual
fell under 10~3. When the technique is used for sampling from a normal distribution
of a covariance matrix K, the discrepancy between our simulation and the sought-
after distribution is a normal multivariate distribution with at most 10~2 relative
variance. Moreover, for Gaussian processes with compact kernels, our error estimate
indicates that the discrepancy will be much smaller (107°-1071!). Extrapolation from
the 10* case and the 10° case (Tables 6.2 and 6.3) suggests that an error of 107 is
achievable virtually independent of dimension, by using about & = 100 matrix-vector
multiplications and thus including the extreme-scale cases that are our ultimate goal.

Of course, for assessing the sought-after 1012-10'° range for the number of sites, a
parallel program on a high-performance computer will be required. Nevertheless, our
approach is factorization-free and thus easily parallelizable. In addition, several effi-
cient ways of estimating the error were given that were demonstrated to be accurate
for a large class of matrices. It would be instructive to undertake more extensive com-
putational studies of the relationship between these error estimates and the number
k of matrix-vector evaluations.

6.4. Comparison with a related method. In [37], a conjugate residual-type
(CR-type) method was proposed which can be adapted for computing f(A)b = A'/2b.
Instead of computing a polynomial ¢x1(¢) to minimize ||s(t) — ¢(¢)|| among all the
polynomials ¢(t) of degree not exceeding k, the CR approach computes a different
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polynomial ¢y (¢) that minimizes Hs(t) — t&(t)H among all the polynomials ¢(t) of
degree not exceeding k — 1. In other words, to approximate the spline, the proposed
algorithm in this paper uses the polynomial ¢y1(t) € Pr41, whereas the CR approach
uses dpy1(t) = tor(t), where ¢p(t) € Pg. The approximation vector from the CR
approach algorithm in [37] is thus Agy, (A)b. From a conceptual point of view the only
difference between the two methods is that the CR approach constrains the sought
polynomial to have a value of zero at the origin. From a practical point of view the
two approaches differ significantly in their implementation. The CR approach draws
a parallel with the solution of linear systems and generates a solution polynomial
that can be viewed as a residual polynomial of the form 1 — t¢(t) (which therefore
approximates the function 1 — s(t)). Comparisons between the two approaches were
made and will not be reproduced here. In short, the two methods deliver similar
results, and this is not too surprising.

Note that in the CR approach the polynomial that approximates the spline, ¢y, (1),
has a zero at the origin so it cannot be directly applied as it can when the function/s-
pline s(t) is nonzero at the origin. However, as was seen above (see also [37]), one can
consider the “residual polynomial” 1 — tgz;k(t) as the approximating function <13k+1,
since this is known to approximate the function 1 — s(¢), which now has the value 1
(or indeed any other value by using scaling) at the origin. So, this approach forces
the polynomial and the function to have the same value at the origin (or some other
point).

6.5. Tests with other functions. We further tested the proposed algorithm
on two other functions, the natural logarithm and the exponential, using the same
set of matrices in Section 6.1. The logarithm has even larger derivatives than does
the square root for ¢ close to the origin; hence it is expected that log(A)b will be
much harder to compute. Since the shapes of log and square root look similar, we
used the same interval scheme as for the square root. On the other hand, a trick
to handling the exponential is to scale the matrix such that its spectral radius is
equal to 1, since the derivative of exp(t) on the interval [—1, 1] is bounded by a small
value e. By performing such a preprocessing, the conditioning of the matrix is no
longer a challenge, and therefore it is not necessary to use the same interval scheme
as described in Section 5.2 to perform the spline fitting. We simply used log(m) knots
that were evenly distributed on the spectrum of A.

TABLE 6.4
Numerical results for other functions.

log(A)b exp(A)b

Matrix K k Residual k Residual
Boeing/crystmO1 2.2831x10? 54 1.3587x107% [ 9 6.5177x107°
Bates/Chem97ZtZ 2.4721x10? 70 4.0998x107% | 9 9.3029x10°
JGD/Trefethen_2000 1.5518x10* | 200 1.8060x10~%* | 9 9.2387x10~6
TKK/plbuckle 1.2833x10° | 200 1.0433x1072 | 9 1.3273x107°
Nasa/nasa1824 1.8960x10% | 200 2.6332x1072 | 9 1.2317x107°
HB/1138_bus 8.5726x10% | 200 9.0505x1072 | 9 7.0982x1076
Oberwolfach/t2dal_e 3.7662x107 | 200 3.4874x1072 | 9 5.3765%x10~¢
HB/bcsstk12 2.2119%x10% | 200 5.2497x1072 | 9 1.5450x10~°
FIDAP/ex3 1.6838x10'0 | 200 1.5316x10~* | 9 7.9267x10~6
Bai/mhd3200b 1.6035x10™ | 200 1.5902x10~' | 11 2.4630x10~°
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The numerical results are listed in Table 6.4. Compared with Table 6.1, it is
clear, and expected, that log(A)b is harder to approximate than A'/2b. A fact not
shown in the table is that the approximation quality of log(K)b, for the covariance
matrix K of the test of Section 6.3, is appealing: We obtained an error estimate no
larger than 10710 for £ = 100 for both the deformed and undeformed mesh cases.
This is expected because these matrices are moderately conditioned. Moreover, the
results for exp(A)b indicate a quality of approximation that does not depend on the
condition number of the matrix.

6.6. Comparison with other methods on the log function. In this section,
we compare the performance of three methods: the method in paper, the restarted
Krylov subspace method [11, 2], and the contour integral method [20], on the co-
variance matrices K defined in Section 5.1 (same as the ones used in the experi-
ments in Section 6.3) and the matrix function log. The code used for the restarted
Krylov subspace method was obtained from http://www.mathe.tu-freiberg.de/
~guettels/funm_kryl/, while the one used for the contour integral method was
from [20] (method2.m). All the tolerances were set to 10710, In the restarted Krylov
subspace method, we used a restart length of 10. In the contour integral method, we
used GMRES(10) as the inner solver, with tolerance set to 107!°. Results are shown
in Figure 6.4.

10 :
—method this paper 100 x 100 grid
restart Krylov -
‘‘‘‘‘ contour integral Method Time (s)
. This paper 0.20
0 1 Krylov 0.90
E i Integral 37.56
o
k=) \
o '
107 | 1000 x 1000 grid
! Method Time (s)
This paper 88.83
Krylov 112.02
15 ‘ ‘ ‘ Int 1 fail
107 20 40 60 80 esta o
iterations

Fi1G. 6.4. Figure: Residual plots for computing log(K)b with the covariance matriz K defined
on a 100 x 100 grid. The number of iterations for the proposed method and the restart Krylov
method is equal to the number of matriz-vector multiplications, whereas “iteration” for the contour
integral method means the number of quadrature points. Tables: Computation times for computing
log(K)b with the covariance matriz K defined on different grids. All the timings exclude the time
for estimating the two extreme eigenvalues of K.

The residual plots show a linear convergence for all the three methods and this
might be a little surprising since the convergence analysis of the proposed method
indicates a slower rate theoretically. We conjecture that when the condition number
of the matrix is not high, the proposed method can indeed achieve a linear conver-
gence. Further, note that the convergence of the proposed method and the restarted
Krylov subspace method is with respect to the number of matrix-vector multiplica-
tions, whereas the convergence of the contour integral method is with respect to the
number of quadrature points (the number of linear solves). Therefore, this result
shows that the proposed method and the restarted Krylov subspace method are quite



COMPUTING f(A)b VIA LEAST SQUARES POLYNOMIAL APPROXIMATIONS 25

close in performance for this application. However, the much faster convergence of the
contour integral method may not necessarily mean a better performance. To under-
line this, we also show the actual run times of the three methods; see the two tables.
For the smaller grid, the contour integral method was two orders of magnitude slower
than the method presented in this paper, and for the larger grid, GMRES (10) failed to
solve many shifted linear systems. (Most often, GMRES (10) stagnated at a very large
relative residual, and the contour integrals did not converge. This also happened for
other parameters and solvers we tried, such as GMRES(50) and BICGSTAB.)

7. Concluding remarks. We have presented a least squares polynomial ap-
proximation method for computing a function of a matrix times a vector f(A)b. The
method first approximates the function f(¢) by a spline s(¢) and then projects s(t)
onto a polynomial subspace such that s(A)b can be (approximately) evaluated as a
polynomial of A times b. This technique avoids explicitly forming f(A); and the
matrix A is referenced only through k& matrix-vector multiplications, where k is the
degree of the polynomial.

The quality of the approximation obtained from the method depends on the
nature of the function f. Specific interval selection schemes for using a spline to fit
the function must be defined individually for each f. We discussed the case f(t) = v/t
in detail and briefly mentioned the case f(t) = log(t) and f(¢) = exp(t). Analysis
shows that in order to yield accurate approximations, it is mandatory to place enough
knots on the region where f/(t) is large. By following this guideline, effective interval
schemes for other functions can also be derived.

Experiments show that the proposed algorithm is efficient for a practical sta-
tistical sampling problem, which involves computing K'/2b for a covariance matrix
K € R™*™ with a stationary/nonstationary covariance function defined on regu-
lar/irregular grids. This application is an example where the matrix A need not be
explicitly stored. The algorithm was demonstrated on problems with m up to 106,
and current results point to promising performance for problems at extreme scales,
with m = 10'2 to 10'°.
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