Scalable Parallel Scripting for Scientific Computing

Contributors: Dr. Pete Beckman, Dr. lan Foster, and Michael Wilde, Argonne
National Laboratory and The University of Chicago; Dr. loan Raicu, Northwestern
University.

Researchers at the University of Chicago and Argonne National Laboratory have
been extending the time-tested programming technique of scripting into new
realms of performance. Through the Swift parallel scripting language, they aim to
enhance scientific productivity by enabling scripts to execute many copies of
ordinary application programs at very high degrees of parallelism. Parallel Swift
scripts can run with little or no change across a range of platforms from multicore
desktops to the largest petascale systems available. Scientists are using Swift in
a broad range of disciplines to productively leverage highly parallel resources
such as the Blue Gene/P in the Argonne Leadership Computing Facility.

Many scientists, particularly those who use rather than write computational codes,
find that the challenges involved in executing large-scale computing tasks consume
tremendous amounts of time and intellectual focus—precious commodities that
they would prefer to apply to their core science rather than to the mechanics of
computing.

Some of these programs—certainly applications developed through SciDAC—are
large parallel codes that can take up a whole machine for a single run. Others are
serial codes, or modestly parallel codes that can efficiently utilize a few thousand
CPU cores. But regardless of their scale, these codes often need to be run repeatedly
to pursue a given inquiry—on diverse datasets, in various parameter sweeps, to
process large datasets, to explore multiple hypotheses or parameter spaces, or to
evaluate new codes and algorithms. To automate such repetitive execution,
scientists typically turn to the technique of scripting.

John Ousterhout, the computer scientist who developed the Tcl scripting
language, in an article in IEEE Computer in 1998 described scripting as “higher-level
programming for the 21st century.” But since that time, little work has been done on
the scaling of scripting languages to utilize the increasingly parallel nature of
available computing resources. Is it possible to take that next step—to develop
simple and automatic parallel scripting methods so that more applications can be
run efficiently, even on petascale computers?

Researchers at Argonne National Laboratory and the University of Chicago—
along with a growing user community—believe so, and to this end they have been
exploring a dataflow-driven parallel programming model that treats applications as
functions and datasets as structured objects. The new model has been implemented
in a parallel scripting language called Swift and has been run successfully on
advanced computers, including the 160K-core Blue Gene/P in the Argonne

Leadership Computing Facility (ALCF), NSF supercomputers on TeraGrid, the Linux
clusters of the Open Science Grid, and Amazon EC2 systems \(figure 1, p. 00).\

Scientists are using Swift on a range of projects that include protein folding;
molecular dynamics; modeling the interactions of climate, energy, and economics;
exploring the language functions of the human brain; predicting the structure of
proteins and hunting for the posttranslational modifications that explain their
behaviors; creating general statistical frameworks for powerful techniques such as
structural equation modeling; and performing image processing for applications
ranging from probing the neurobiology of tiny model-organism worms to planning
for human neurosurgery.

Challenges and Requirements for Parallel Scripting
With traditional serial scripting languages, writing a small script that performs the
nested loops of a parameter sweep can be fairly simple. A more difficult challenge is
mastering the complex scripts needed to distribute tasks and data to multiple
remote systems, gather results, and record the provenance of these derived results.
And the mechanisms to keep a petascale machine efficiently utilized using such
scripts have not previously existed. Consider the following problem scenarios that
illustrate the needs for parallel scripting, expressed in English-like pseudocode.
Many genomics communities need to perform “all by all” runs of BLAST, in which
every sequence in a database is compared against every other sequence. These runs
have the following simple form.

For each batch of sequences in the genome database
results = blast(genome-database, query, parameters)

This simple workload can demand vast amounts of computing and can generate a
huge demand for Grid, cloud, and petascale resources.
Another scientist, examining drug targets, may need to do the following.

For each target protein in a set of 20 targets
For each candidate drug compound in a set of 500,000 candidates
(score, energy) = dock(target, drug, docking parameters)

Here “dock” is an application that simulates the interaction (docking) of small
molecular compounds (“ligands”) with large target biomolecules such as proteins.
Once the initial results are available, the top-scoring 1 percent of the candidates for
each target must be screened in a similar manner but with a more computationally
demanding simulation involving higher-fidelity molecular dynamics.

And a climate scientist may want to execute a parameter sweep such as the
following, for each of thousands of perturbations of the input parameters, to model
the effects of uncertainty on predictions of emissions and energy demand.

For each of 15 geographic regions
For each of 20 commodities

Michael Wilde 12/7/09 11:45 PM
Comment: Using Swift.

For each of 4 energy sources
Initial conditions = perturb(input parameters)
Energy demand = model(initial conditions)

Each of these example scripts specifies a large number of (sequential or parallel)
simulation or data analysis application program invocations that are independent of
each other and can be run in parallel. Those program invocations can run for
significant amounts of time—typically from minutes to hours—before they need to
pass data from one program to another. Thus, these scripts all exhibit considerable
opportunities for coarse-grained parallel execution. This simplicity has led to such
applications to be termed pleasingly, or, more often, embarrassingly parallel.

But while these problems have clear and explicit parallelism, writing scripts in a
traditional scripting language to explicitly perform all the aspects of parallel
scheduling, data passing, file management, error recovery, and logging is anything
but simple. Scripting such coordination has proven to be a labor-intensive, error-
prone, and time-consuming endeavor for many scientists. For others, the complexity
of this endeavor has been a barrier to even trying parallel execution of their
computing tasks. And when the execution pattern of a script involves multiple
applications and many stages of execution, as is frequently the case, managing the
parallelism and moving data efficiently from one program to the next are no longer
a trivial problem.

Parallel Scripting with Swift

To solve problems like the ones just cited, the Argonne-University of Chicago
research team has developed Swift, a new scripting language that enables ordinary
application programs that read and write files to be executed, at a high degree of
parallelism. Swift can execute application programs many thousands at a time, on a
wide range of computing platforms, and can chain different programs together in
the myriad patterns needed to perform the work of scientific computing.

A Taste of Parallel Scripting

The following example illustrates the power of Swift. Drs. Karl Freed and Tobin
Sosnick at the University of Chicago use “Open Protein Simulator” software to
perform protein structure prediction simulations \[figure 2, p00). H‘he structure
predictor’s main application program, “predict,” simulates the folding of a protein’s
sequence of amino acid molecules into its unique three-dimensional (3D) shape that
determines much of the protein’s functional behavior. The predict program uses
simulated annealing to explore three-dimensional movements of the protein’s
amino acids, repeatedly changing angles within the protein’s internal bonds in
search of shapes having the minimal-energy configurations that protein molecules
seek in nature.

In order to perform a complete structure prediction for a single protein sequence,
hundreds to thousands of copies of the predict program are run in each of multiple
parallel rounds. Each run of the predict program computes an independent,
randomly seeded prediction. When a round of predictions is completed, an analysis

Michael Wilde 12/7/09 11:46 PM

Comment: Structure prediction with the
Open Protein Simulator,

program determines the best prediction and uses that configuration of protein
shapes (the secondary structure of coils, strands, helices, etc.) as the starting
configuration of another round. This process of repeated parallel rounds, called
iterative fixing, can be expressed clearly and concisely in Swift, which automates the
parallel execution and the management of files within the algorithm, thus allowing
the process to be conducted on a wide range of computing systems and at very high
degrees of parallelism.

At the heart of the scripts, a round of parallel structure prediction simulation can
be expressed in Swift as follows.

(ProtSim psim[]) doRound (Protein p, int n, PSimConfig cf)
{

foreach sim in [1:n] {
psim[sim] = predict(p, cf);
}
}

This function invokes n copies of predict, each taking the same protein and
configuration file as inputs, and each computing with a different random seed. The
results are returned in an array, psim.

With this core parallel function, the iterative fixing algorthm can be expressed
compactly in a short Swift script as a higher-level function, for example, ItFix ().
Then, researchers can use ItFix as a computational laboratory to explore protein
structures in a variety of applications. Thus, users with little programming
experience can easily perform large-scale parallel simulation experiments with a
simple high-level script. For example, they can explore the effects of varying two
parameters of the simulation, on multiple proteins, by using Swift scripting code like
the following.

foreach protein, i in proteins {
foreach s in seeds {
foreach c¢ in coeff {
results[i] = ItFix(protein, nSim, nRounds, s, c);

}
}

In this example, for each protein, initial seed, and temperature coefficient in the
arrays proteins, seeds, and coef £, the Swift program runs an entire simulation.

Swift is a data flow language, meaning that programs are scheduled for execution
when the data that they consume become available (often when produced by a prior
program in a processing chain). Its functional programming model (sidebar “Swift
Execution Semantics” p00) encapsulates implementation details within application
programs and enables users to create libraries that provide a functional abstraction
of the program tools of an application domain, such as predict and ItFix.

Swift includes a powerful data model that permits individual files and directories
to be mapped into Swift language variables. Thus, users can describe and access

nested on-disk directories as simple structures and arrays within Swift programs,
specifying, for example, that a particular program should be invoked on every file in
a directory. Swift then handles the details of packaging the specified files for
dispatch to a remote execution site.

Swift automatically performs the following actions for the user, moving the
problem of orchestrating parallel program execution to a higher level.

¢ (Calls mapping scripts (either built-in or provided by the user) to determine
the names of input files and to assign names to output files

* Determines what resources to run on and how many jobs to run in parallel at
once on each site (through configurable “throttle” settings)

* Moves input data from persistent locations on shared file systems to
temporary (and often faster, local) working directories

* Moves result data back to the output files designated by the user’s mapping
request

* Generates a log of activities in the run, including details of what applications
were called with what arguments

* Determines when subsequent tasks that depend on the output of a prior task
can execute

* Automatically retries failing jobs a specified number of times, and can even
replicate tasks to multiple sites to increase their chance of completing
successfully, sooner

* Remembers the state of a script’s execution, so that the script can be
resumed from the point of failure if the Swift command terminates or fails for
any reason

The Swift runtime system uses a two-level scheduling method to manage the
scheduling of tasks for execution and the dispatch of executable tasks to parallel
computers. First, task executors are deployed onto nodes; then tasks are streamed
to those executors. To handle diverse authentication and job submission systems,
Swift can use Globus or other distributed computing systems to access remote sites.

Roots in Scripting Languages
Scripting is not new. As far back as the dawn of commercial mainframes, scripts in
the form of operating system command languages were used to automate repetitive
tasks and group together sequences of program executions. The UNIX shell and its
use of text files as a universal interchange format improved on prior command
scripting approaches by making it easier to pipe, or redirect, data from one
application to another and to store collections of data in hierarchical file systems.

Shell scripts were created in response to the needs of computer users to avoid
the tedious re-entering of repeated sequences of commands. The design of many
scripting languages soon followed, led by languages such as Perl, which facilitates
manipulation of text files, and then tcl, Python, Ruby, Visual Basic, Java scripting
classes, and many more.

Scripting languages have greatly simplified programming: by focusing on the
composition of existing programs, they enable users to assemble sophisticated

application logic quickly. Application developers today utilize scripting on their
workstations and servers to explore parameters and test hypotheses, before
running simulations on larger computer platforms. Researchers use scripting to
assemble more powerful applications from existing sequential or parallel programs.

Based on this lineage, Swift provides a unique blend of prior capabilities that is
kept deliberately simple and minimalist, while providing new capabilities not found
in any other scripting language: (1) treating file data and in-memory data in a
uniform way, with a data typing and mapping model; (2) associating interface
definitions with scripts and their internal functions, based on the data model—a
degree of modularity not present in other scripting languages; (3) supporting
location-independent execution across diverse runtime environments (workstation,
cluster, Grid, cloud, and petascale) through a generalized driver interface for
execution and data management functions; and (4) enabling integrated, transparent
provenance tracking. The first two features above—data typing and functional
interfaces based on these data types—are the mechanisms that make the latter two
features possible.

The nature of Swift’s encapsulation of application programs, as well as the
manner in which it imparts a location-independent data model and interface
definition to Swift functions, is illustrated in figure 3, p00.

Using Swift with Other Scripting Languages

Swift is by intention a minimal scripting language. The definition of a new
programming language is a risky business, raising issues of community adoption.
We define Swift as a language rather than as a library because its model of
parallelism and of data abstraction can be expressed far more cleanly within a
special-purpose language. Its functional programming data flow model, its model of
datatypes and mapping, and its inherent parallelism yield a nice, compact
expression of the backbone of scientific computations.

Other scripting languages integrate easily with Swift scripts. Since scripts in any
language are executed by the operating system as if they were ordinary programs,
such scripts are simply described as “app()” functions and called from Swift. In fact,
a library of useful Swift utility functions is evolving to perform tasks such as string
manipulation and format conversions, so that the Swift language can have the
necessary expressive power while remaining small, compact, and concise.

Users are also using Swift to run complete applications in the form of Python,
Octave, and compiled MATLAB® codes. As an example of such language
interoperability, Swift is frequently used with the popular “R” data analysis
framework. For example, Swift+R are used to achieve distributed parallel execution
on Grid and petascale systems for the OpenMx R package for structural equation
modeling (SEM) developed by a team led by Dr. Steven Boker (University of
Virginia) and Dr. Michael Neale (Virginia Commonwealth University). R users use
Swift to perform large OpenMx SEM runs in parallel to analyze neuroscience data.

Michael Wilde 12/7/09 11:47 PM

Comment: Encapsulation of application
programs as Swift functions,

Extending the Parallel Scripting Model to Petascale Systems

Over the past several years, the Swift research group has been successful in making
Swift run efficiently on emerging petascale computing systems such as the ALCF
IBM Blue Gene/P “Intrepid” and the Sun Constellation “Ranger” at the University of
Texas at Austin—validating the belief that scripting at this level is feasible, useful,
and in fact necessary. The motivation to elevate scripting to the level of petascale
computing is both to solve new types of problems on leadership-class machines and
to provide a solution for scientists who need to run their already highly-parallel
applications in a hybrid manner, by creating scripts to perform many parallel runs
of a large-scale parallel application.

To extend the parallel scripting architecture to petascale systems, the Argonne
and Chicago researchers had to overcome three challenges: provisioning compute
nodes and efficiently dispatching task executions to them, reducing the overhead of
linking parallel computations by file exchange, and providing a compute node
operating system that efficiently supports these two activities (figure 4, pOO).\

Provisioning

When running parallel jobs on today’s high-performance computers, the same
application program code is typically executed on all compute nodes allocated to a
job. But parallel scripting requires that many parallel instances of independent and
possibly different application programs be executed on any compute node..

Thus, to run efficiently on the Blue Gene/P, the Argonne and University of
Chicago researchers had to devise a new scheduling approach, which they dubbed
Falkon, the Fast and Lightweight Task Execution Framework. Falkon uses multilevel
scheduling to separate resource provisioning from the dispatching of user tasks to
those resources \(figure 5, p00). Its streamlined task dispatcher can achieve order-

Michael Wilde 12/7/09 11:48 PM

Comment: Architectural layers for
petascale scripting on the BG/P,

of-magnitude higher task dispatch rates than can conventional schedulers. On the
BG/P, Falkon has achieved rates of over 1,000 tasks per second.

Provisioning resources for parallel computing is the process of allocating
compute nodes that will be used for the duration of a script’s execution. As is typical
for scripting languages like Perl and Python, each invocation of the Swift command
runs one script. Each script can involve the execution of many—in some cases
hundreds of thousands—of program invocations. On a typical cluster, each job is
submitted to the cluster scheduler’s batch queue. Running a single program through
the batch queue has high overhead, in terms of both processing overhead and time
spent waiting in the queue alongside other jobs that are typically waiting for many
processors and a much longer allocation of processor time.

The Falkon provisioner requests resources in quantities of time and number of
processors similar to those of typical parallel jobs: thousands of CPUs for many
hours, rather than single CPUs for a few minutes. Once resources are allocated,
Falkon launches a task execution agent on each compute node. This agent remains
active for the duration of the resource allocation, and can rapidly and efficiently
dispatch a program to run on each core as soon as that core is free. Thus, a script
execution manager like Swift can efficiently utilize cores even for extremely short
tasks. Provisioning is often called “multilevel scheduling” because the provisioner

Michael Wilde 12/7/09 11:48 PM

Comment: Architecture of the Falkon
provisioner, on the BG/P

acts as a fast, simple, and low-latency scheduler running under the main job
scheduler of the cluster.

The Falkon provisioner has been used in diverse environments, including local
clusters; multisite Grids (e.g, Open Science Grid, TeraGrid); specialized parallel
clusters (e.g., the SiCortex 5832); and large supercomputers (e.g., Blue Gene/P,
Ranger). Tests by the designer of Falkon, Dr. Ioan Raicu (then a University of
Chicago graduate student, now a researcher at Northwestern University) have
verified that Falkon can execute tasks efficiently at the full scale of the ALCF Blue
Gene/P—160K processor cores. The largest science application benchmarks of
Falkon have run over 900K molecular dynamics application tasks on 116K cores in
two hours, totaling 21.4 CPU-years. This experiment was a key proof of concept for
utilizing petascale machines with a scripted model of execution.

The Falkon research code has recently been reimplemented as a production Swift
resource provisioner named Coasters. The name refers to the heritage of this form of
provisioning, which originated with the “Glide-in” concept of the Condor high-
throughput computing system. The Coasters provisioner enhances Falkon
functionality with extensions for automatic deployment on petascale and
distributed environments and for dynamic block allocation. Automatic deployment
fully automates the mechanics of starting the provisioner’s service processes and
worker agents. Dynamic block allocation enables the scheduler to organize requests
for required compute resources into units of varying size that can then be presented
to the local resource management scheduler. This approach permits the provisioner
to efficiently support the execution of scripts with fluctuating CPU demands.
Coasters have made it possible to obtain increased scalability on shared petascale
machines. The Coasters provisioner has been used on Ranger to run Swift scripts
with nearly a million neuroscience analysis tasks in a single invocation—and this
number is growing rapidly as the Coasters implementation is tuned and improved.

Collective Data Management

In the basic scripting model, programs invoked by scripts communicate by reading
and writing files from a shared file system. For small scripts, it can be sufficient to
allow such data interchange via whatever shared global file system is provided on
the target computer: for example, on the Argonne BG/P, the General Parallel File
System. For larger scripts, however, this approach rapidly becomes prohibitively
slow. Instead, alternative implementation methods must be pursued. For example,
one can leverage the large overall internal memory and high-performance internal
interconnects of the Blue Gene/P by mapping files into RAM disk and using
broadcasts to distribute files with many readers.

The development of file management methods to make scripting efficient at the
petascale and beyond is a current computer science research thrust of the Swift
project. Collective data management (CDM) is a prototype 1/0 model for file-based
many-task computing. The model, inspired by collective 1/0 primitives from the
Message Passing Interface, differs from MPI in that it operates at the file level rather
than at the I/0 level.

CDM uses a broadcast approach to enable efficient distribution of input data files
to computing nodes and uses scatter/gather and caching methods to gather the

output results from these nodes (sidebar “Collective data management for petascale
scripting performance”). It thus eliminates the need for tedious and error-prone
manual tuning and makes the programming of large-scale clusters using a loosely
coupled model easier. The design has been prototyped for performance evaluation
using simple scripts to coordinate off-the-shelf data management components. Early
results indicate that such a file-based collective I/0 model can handle on the order
of 100K BG/P processors. The next major focus will be to integrate the model into
the Swift parallel programming environment so that petascale users can benefit
from this higher-level programming model without explicitly specifying the
collective data management operations.

A Compute Node Kernel for Petascale Scripting

Implementing Swift scripts on the Blue Gene/P confronted the challenge of how to
provide the POSIX interface that most off-the-shelf scientific applications require.
(POSIX is the IEEE standard for “open” operating systems such as UNIX and Linux.)
In particular, the Swift programming model of executing independent programs on
each CPU core requires two critical operating system kernel services: fork, which
creates a new independently executing process, and exec, which enables a process to
execute a new application program. The standard Linux shell programs (e.g., bash
and tcsh) depend on variations of these two services for many of their capabilities,
as does Swift for executing independent application programs on distributed and
remote computing nodes as part of script execution.

While some systems, such as the Ranger supercomputer, provide a full POSIX
operating system on compute nodes, the native Blue Gene/P compute node kernel
does not. The solution to this problem was provided by the ZeptoOS compute node
Linux kernel. ZeptoOS, the “small Linux for big computers,” is a research project at
Argonne seeking ways to improve the usability of Linux kernel in high-performance
computing (http://www.mcs.anl.gov/research/projects/zeptoos/).

The ZeptoOS compute node kernel provides system services for efficiently
executing POSIX-compliant application programs, as well as I/0 services and access
to petascale architecture capabilities such as broadcast networks, IP access to high-
performance cluster interconnects, access to high-performance services for MPI
communication, and enhanced memory management for large-memory tasks.

Parallel Scripting and Other Parallel Programming Models

While parallel programming models—both old and new—abound, a few models are
particularly relevant to compare to the parallel scripting model: tightly coupled
parallel programming, including both message-passing and shared-memory
multiprocessing; service-oriented computing; and the map-reduce programming
model.

Loosely Coupled vs. Tightly Coupled Programming Models

Swift often is called a “loosely coupled” programming model, whereas other parallel
programming approaches, such as message passing and shared-memory
multiprocessing are “tightly coupled.” This concept of coupling specifically refers to
two aspects of program execution: the granularity of the independent unit of

parallel execution and the manner in which these independent units of execution
exchange data.

In tightly coupled parallel programs, independent streams of instructions
(typically, independent statements in a program) execute in parallel and, on
occasion, (at various rates) pause to exchange data with another stream of
execution. This exchange takes place by sending messages in the case of the
message-passing model or by synchronized access to shared data objects in the case
of the shared-memory model. In contrast, in loosely coupled parallelism, both the
units of execution and of data passing are larger and more coarse-grained. The unit
of parallel execution in the loosely coupled model is a complete program, and the
units of data exchange are complete and typically larger files, compared to shorter
messages or objects. Furthermore, files are exchanged by reading and writing them
from a file system, compared to operating solely in memory. (Other persistent
storage services, such as databases, can also be used for passing data between
loosely coupled parallel programs.) As message-passing programs typically
exchange data between independent address spaces using operating system kernel
interfaces, often to access a network interconnect, and as file systems are becoming
increasingly RAM-based, these differences can tend to blur; but, in general, loosely
coupled programming involves coarser-grained units of both parallelism and data
exchange.

Another point of comparison between programming models can be seen in their
differing task structures. While message-passing parallel programs typically map
their parallel tasks statically to a finite number of processor cores, loosely coupled
programs are more likely to have a varying number of tasks at any given point in
execution and are often based on a graph-structured model of execution, where the
nodes of the graph represent tasks and the edges of the graph represent data objects
passed between nodes. Each parallel task receives its inputs, processes to
completion, and produces outputs, which can then be passed to a new task. Loosely
coupled programs are frequently composed in a structured manner, with a
hierarchical “input-process-output” model, meaning that tasks can themselves be
composed of graphs of subtasks, each with a similar processing model.

The Message Passing Interface is an example of a tightly coupled programming
model. Most of today’s applications that run on high-end computers use MPI to
achieve the needed interprocess communication. MPI has been an enormously
popular and successful programming model. It has been the workhorse and the
mainstay of parallel programming for the past two decades. The relationship
between Swift and MPI is explored in the sidebar “Comparing and Connecting Swift
and MPI” (p. 00).

Service-Oriented Model

Services—more precisely, web services—are network-accessible data processing
functions that follow a coarse-grained functional programming model similar to that
used in parallel scripting. Rather than consuming and producing files, however, web
services consume and produce XML documents, which can be small and simple or
large and complex. Individual web service functions are bundled into services that,
once deployed, have a network address and, during a typically long lifetime, handle

10

many service function invocations. Several scripting languages, usually called
“workflow” or “orchestration” languages, execute programs that consist of multiple
web service invocations. The services themselves are responsible for mapping
invocation requests to the processors on which the service has been “provisioned.”
Web services are heavily used in commercial applications, for e-commerce, social
networking, supply chain management, and myriad business applications. They are
finding increasing use in scientific computing, primarily in applications where the
arguments and results of a scientific function can be conveniently expressed as an
XML document. There is much interest in blending the data models of parallel
scripting and web services to provide powerful interoperability between these
complementary programming models.

Functional Models vs. Map-Reduce

Another parallel and distributed programming model that has been gaining
significant interest is “map-reduce.” This model has its origins in functional
programming, dating back to early LISP implementations that implemented in a
programming language the concepts of mapping a function to a set of arguments
and of reducing a set of independent results back into a single answer. The force
behind map-reduce has been Google, which utilizes it heavily to perform myriad
aspects of the vast internal data processing behind its search and information
services. In Google’s map-reduce programming model, information is represented as
pairs of textual keys and their associated arbitrary data values. Computation is
performed by breaking a large dataset into key-value pairs, applying a processing
function to each pair through the map() operation, and then gathering and reducing
all the results with a distributed sort-and-merge mechanism that utilizes the fact
that all data objects have keys.

The map stage of map-reduce is similar to the processing model of parallel
scripting in that functions are applied to arguments in parallel. In most usage, map-
reduce functions are more like in-memory application functions, since map-reduce
views functions and data more as in-memory objects. The reduce stage takes unique
advantage of this simple data model to perform reduction as a highly parallel
operation. In parallel scripting, applications that require such a parallel reduction
implement it explicitly within the programming model, whereas in map-reduce the
reduction is a built-in part of the framework.

Applications Leveraging Parallel Scripting at the Petascale

The number of applications to which parallel scripting has been applied is growing
rapidly (sidebar “Parallel Scripting Applications,” p. 00). Swift users have run
applications in biochemistry, bioinformatics, economics, neuroscience, and
radiology, with an increasing number of users executing on two petascale machines:
the Intrepid Blue Gene/P at Argonne and the Ranger Constellation at the University
of Texas at Austin.

Case Study: Protein Structure Prediction

11

University of Chicago researchers under Drs. Karl Freed and Tobin Sosnick use Swift
to run the Open Protein Simulator (OOPS) to predict 3D protein structure for which
little or no similar structure information is known. OOPS comprises a set of open
source applications for fast simulation of protein folding, docking, and refinement. It
runs an iterative fixing algorithm called ItFix \(figure 2,p00) \that consists of multiple

rounds of many parallel simulations. At each round ItFix carries out between 100
and 1,000 Monte Carlo simulated annealing computations. The statistical data from
that round includes the average origins of the secondary structures at each position
in a genome sequence. Additionally, at each analysis step, ItFix creates plots from
the output data, including average 3D contact maps. One of the limiting factors in
widely applying ItFix, however, is that that the algorithm requires approximately
1,000 CPU-hours on a modern microprocessor for a medium-sized protein.

Swift was first applied to this problem by Glen Hocky, then a University of
Chicago undergraduate Chemistry student, now pursuing his Ph.D. at Columbia.
Using Swift on thousands of processors. Hocky was able to rapidly improve on the
accuracy of prior prediction results done on a smaller departmental cluster. By
using the Swift parallel scripting system within OOPS, the Chicago protein
researchers have been able to realize several benefits: concise, readable
specification of high-level structure that exposes opportunities for parallel
execution; robust, fault-tolerant management of large numbers of tasks; and
convenient dispatch of computation to multiple parallel computers, both local and
remote, without modification to their science scripts.

The OOPS framework fit into Swift in a natural and straightforward manner. Swift
data typing and mapping were leveraged to abstract input and output, detect type
errors, and map the simple logical structure to the specific data layout desired in the
archival storage repository. Atomic Swift dataset types were declared to represent
the files used by the OOPS application programs (e.g., Fasta for the sequence being
folded and “PDB” for files in the standard set by the Protein Data Bank for
representing 3D protein structure). New Swift compound dataset types were
declared to organize multiple related values for program inputs and output. Swift
procedures were used to define interfaces to application codes and, in some cases,
to define interfaces to small utility functions. Parallel application logic to specify
how a single ItFix round is performed was defined as Swift functions. The main
program then was coded, in which ItFix is called to predict the structure of a single
protein, or to express much more complex science tasks such as parameter sweeps,
structure comparisons, or explorations involving an entire genome.

The new Swift-based approach was used to test prediction capabilities for the
structure of specific o, a/f, and p proteins. Because the structure of these proteins
was well known, they provided excellent test cases. For the a-protein investigation,
the University of Chicago-Argonne team ran approximately 5,000 simulations using
TeraGrid resources. The structures predicted were comparable to or better than the
best published results and—most significant—used two orders of magnitude less
computation time. For the a/f3- and B-protein investigations, since a large amount of
in-simulation sampling was required, the researchers ran their tests on the Blue
Gene/P. Even though the per task runtimes were longer on the slower BG/P CPUs than

12

Michael Wilde 12/7/09 11:50 PM
Comment: Open Protein Simulator

on modern stock processors, the results confirmed that petascale systems such as Blue
Gene will be useful in folding investigations using the ItFix algorithm with Swift.

Case Study: Protein-Ligand Docking

A good example of the value of parallel scripting on petascale machines is virtual
drug screening. One of the first applications was to screen core metabolic targets
against drug-candidate compounds from the ligand database of KEGG, the Kyoto
Encyclopedia of Genes and Genomes. Argonne biochemists have applied parallel
scripting to simulate the docking of small ligand molecules to the active sites of
macromolecules. The application is of interest to the pharmaceutical industry in that
compounds that interact strongly with a macromolecule associated with a particular
disease may inhibit its function. This application is being run on up to 64,000 cores
of Argonne’s Blue Gene/P ‘(figure 6, p00). |

Development of antibiotic and anticancer drugs is a process fraught with dead
ends. Each dead end costs potentially millions of dollars, as well as wasted years and
lives. Computational screening of protein drug targets helps researchers prioritize
targets and determine leads for drug candidates. While computational screening,
which is relatively inexpensive, cannot replace wet lab assays, it can significantly
reduce the number of dead ends by providing more qualified protein targets and
leads.

In one typical computational screen, nine proteins that perform key enzymatic
functions in the core metabolism of bacteria and humans were selected for
screening using the DOCK6 molecular docking simulator from the University of
California - San Francisco against a database of 15,351 natural compounds and
existing drugs in KEGG’s ligand database. The goal of this project was to validate the
ability to approximate the binding mechanism of the protein’s natural ligand, to
determine key interaction pairings of chemical functional groups from different
compounds with the protein’s amino acid residues, and to study the correlation
between a natural ligand that is similar to other compounds and its binding affinity
with the protein’s binding pocket. As part of the process, the scientists sought to
prioritize the proteins for further study.

The computation of the binding affinity between each compound in the database
and each protein was performed with 138,159 runs of DOCK6 on the ALCF’s BG/P.
On a single 2 GHz machine this run would have taken approximately 48 days. Using
two racks (8,192 cores) on BG/P these runs took three hours. This computation is,
however, just the beginning of a much larger computational pipeline that will screen
millions of compounds and tens of thousands of proteins. The downstream stages
use even more computationally intensive and sophisticated programs that provide
for more accurate binding affinities by allowing for the protein residues to be
flexible and the water molecules to be explicitly modeled.

This computation was easy to perform and yielded fast and useful results. The
natural compound for six of the targets scored reasonably well in terms of
interaction energy and ranking (2 in the top 2%, 2 in the top 10%, 2 in the top 16%),
especially considering these are natural compounds that rely on higher
concentration levels for enzyme interaction compared to optimized inhibitors that
rely on higher binding affinities. Reviewing the 3D structures of the compound-

13

Michael Wilde 12/7/09 11:51 PM

Comment: Molecular docking simulations,

protein complexes generated by DOCK6 provided insight into the hydrogen bonding
and chemical functional group placement within the pocket required for tight
binding. For seven of the proteins targets, existing drug compounds were the top hit.
These included an antiplatelet agent, an antihypertensive agent, a treatment for
chronic dry eye, a vitamin precursor, and an opthalmic agent. Since these
compounds have already undergone some degree of testing for human use,
performing follow-up wet lab assays for inhibition could accelerate the discovery of
a novel application for an existing drug.

Case Study: Proteomics Research

Drs. Yingming Zhao and Yue Chen, researchers at the University of Chicago Ben May
Department for Cancer Research, are applying parallel scripting to the analysis of
posttranslational protein modifications, or PTMs. Such modifications play essential
roles in living cells, dynamically regulating physiological processes by fine-tuning
protein functions. Despite the importance of PTMs in cellular processes, however,
accurate identification of PTMs has been a challenging task.

Over the past decade, mass spectrometry has become an indispensable tool for
accurate and sensitive identification of PTMs. Mass spectrometry is capable of
experimentally measuring both the precursor mass and fragmentation patterns of
all the peptides in a protein. Using such information, scientists can predict the
theoretical mass and fragmentation pattern of the peptides in each protein.

Nevertheless, while commercial software tools have been widely applied in large-
scale protein identification, they are incapable of the identification of unexpected or
unknown protein modifications. To rectify this situation, Drs. Zhao and Chen
developed PTMap, a tool for genome-wide characterization of protein
posttranslational modifications.

PTMap works as follows. The data from a mass spectrometer run on samples
from a single organism is grouped into fifty or more “fractions,” each on the order of
100-200 megabytes. Once a dataset is captured, analysis consists of executing a run
of the PTMap workflow script—a set of parallel invocations of the PTMap
application that search for PTMs by analyzing each mass-spec fraction against a
number of FASTA protein sequences, from one to hundreds of the tens of thousands
of proteins in most organisms of interest. Then the entire process is repeated,
comparing against the FASTA sequences in reversed and permuted order to
eliminate matches that are due to chance. The number of proteins compared in each
invocation of PTMap can be used to control the overall degree of parallelism of the
overall workflow run. Each such run may need to be repeated many times, for new
datasets, new organisms, or newly improved versions of code or to explore the
effects of varying parameters. The software also uses unmatched peaks to remove
false positive identification. Compared with other software tools for PTM
identification, PTMap shows higher accuracy and sensitivity and has been applied to
successfully characterize novel lysine propionylation and butyrylation sites in yeast
core histones.

Since each analysis requires the same input of mass spectrometry data and
differs only in the candidate protein sequence, theoretically all the analysis can be
performed in parallel to achieve high speed, and the final result can be integrated

14

from all analysis results. Based on this principle, Drs. Zhao and Chen have developed
PTMap2 to extend the capability of PTM analysis on a single protein to genome-wide
analysis on a protein database. Tests show that PTMap2 can identify all types of
PTMs in the E. coli protein database from a single mass spectrometry data file. Using
petascale computing resources, the researchers currently are extending the
application of PTMap2 to identify unknown PTMs in diverse cellular organisms.

Case Study: Economics, Environment, and Energy
Drs. Joshua Elliott and Meredith Franklin are collaborating on two University of
Chicago-Argonne projects: “Social, Economic, and Environmental Modeling” and
“Community Integrated Model of Economic and Resource Trajectories for
Humankind.” Using Swift on large Grid clusters, the researchers have conducted
parameter sweeps of economic models of energy use. Recently they and their
colleagues analyzed more than 10,000 models from a perturbed input dataset in
parallel on TeraGrid and Open Science Grid resources \(figure 7, pOO).\

Dr. Tiberiu Stef-Praun of the University of Chicago/Argonne Computation
Institute uses Swift to run parallel economic modeling tasks in MATLAB, Octave, and
Python. Working with Dr. Robert Townsend of MIT, he integrates macroeconomic
and microeconomic models of developing economies, focusing on entrepreneurship,
access to the financial system, and individual choices. The models, run on a variety
of computing resources including TeraGrid and the ALCF Blue Gene/P, have been
used to explore topics such as evaluating choices of group organization for risk
sharing purposes, linking growth to financial deepening and inequality, and
borrowing choices.

Case Study: Neuroscience
Researchers in the University of Chicago Human Neuroscience Laboratory led by Dr.
Steven Small use Swift to analyze data from functional magnetic resonance imaging
(MRI) experiments. Dr. Small’s laboratory makes extensive use of the R data analysis
language and has leveraged the power of relational databases for the storage of time
series signals of brain activity during cognitive experiments extracted from
functional MRI images. The researchers benefit from the ability to run their data
processing and analysis tools on a range of computing resources, from a local
Condor pool that aggregates their lab’s workstations into a fast but limited local
cluster, to the resources of TeraGrid. Recently, they have started to use the ALCF
Blue Gene/P for their structural equation modeling data analysis procedures.
Students in the laboratory of Dr. David Biron of the University of Chicago
Department of Physics are applying Swift to analyze high-volume image data from
biophysics experiments in which the behavior of large arrays of the model organism
Caenorhabditis elegans are recorded with high-speed digital cameras. The
researchers anticipate ultimately producing close to a terabyte a day of image data
that will be analyzed using the MATLAB ™ image-processing toolbox. Swift is able to
call compiled MATLAB analysis scripts that can execute on a variety of parallel
clusters and Grid resources available to Dr. Biron’s lab and to handle all the data
transfer between the data capture system and the analysis computers in a seamless
and transparent fashion.

15

Michael Wilde 12/7/09 11:52 PM
Comment: CIM-EARTH simulations,

What’s Next?
The development and usage of Swift are proceeding in many new directions.
Interesting challenges remain, in terms of not only engineering and productization
but also open research questions in parallel programming methodology, systems
architecture, and performance.

One effort focuses on platform support. Most Swift supercomputer studies have
been performed on the IBM BG/P and Ranger. The Swift team members plan to
explore the use of Swift on other petascale systems such as the Cray XT5.

Another effort involves ease of use. Argonne researchers Wenjun Wu, Tom Uram,
and Dr. Mark Hereld have created a flexible portal framework that uses Web 2.0
interfaces to create a customized online interface for executing parallel scripts and
organizing, visualizing, and sharing results. With this new framework, scripts can be
added to the repertoire of computational tools without manually creating a new
web page for each script. The portal mechanism will soon automate the translation
of a Swift script’s functional interface—created by members of a science team that
are proficient in scripting—to a web task-submission form that can be readily used
by nonprogramming science users. An example of a portal interface created for the
Open Protein Simulator is shown in figure 8, p.00.

One broad area of Swift usability concerns expressivity. Swift researchers are
exploring how best to express problems that lend themselves to map-reduce
solutions and how to unify the notions of data typing and data passing so that web
services and databases can be readily integrated into Swift scripts in a seamless
manner with file-based application programs. Swift researchers are also exploring
how best to integrate the Swift data typing and access model with structured
storage methods such as HDF5 and NetCDF and how to integrate Swift file passing
with the message-passing model. These structured storage mechanisms are playing
an increasingly vital role in scientific data management. Research that can reduce
the differences between such structured storage and hierarchical filesystems can
enable applications to achieve scalability at the petascale and beyond, without
sacrificing the flexible exploration, management and exchange of data made
possible by modern filesystems.

Another area of interest is to make the Swift data management, program
execution, and data-passing semantics available as native libraries for popular
scripting systems—languages such as Perl, Python, and Ruby, as well as the various
Java-based scripting languages such as Groovy. While these serial languages do not
have the innate parallelism and simplicity of the Swift language, they do have vast
user communities who could benefit from the parallel execution and data
management support provided by the Swift runtime system, while continuing to
express their scripts in a language with which they are already familiar.

As the high-performance community turns its attention to the daunting problems
of exascale computing, Swift is expected to prove a valuable technology and
paradigm in the programming model toolkit. Increasingly, Swift will be called on to
serve as the “outer loop” for running large numbers of applications in parallel, each
of which is using a large number of CPUs in a tightly coupled manner. Swift’s ability
to re-execute the work from any number of failing CPUs is well suited for the

16

Michael Wilde 12/7/09 11:58 PM

Comment: Science portal for parallel
script execution

exascale world where the processor failure counts within a large computing
complex may rise over today’s level. Swift's data dependency graph can be used to
determine what needs to be re-executed when complex failures make previously
computed data objects unavailable. And, as every desktop workstation and mobile
device becomes an N-way multicore system, Swift will provide a uniquely scalable
solution to a broad range of problems for an expanding community of users.

Further Reading:

J. Ousterhout, Scripting: Higher-Level Programming for the 21st Century. I[EEE
Computer 31, no. 3 (1998) 23-30.

Swift website. http://www.ci.uchicago.edu/swift/

M. Wilde, Z. Zhang, B. Clifford, M. Hategan, S. Kenny, K. Iskra, P. Beckman, I. Foster, I.
Raicu, and A. Espinosa, Parallel Scripting for Applications at the Petascale and
Beyond, IEEE Computer 42, no. 11 (2009) 50-60.

17

Figure Captions

Obtain figure captions and credits, as well as pointers to hi-resolution image files, from the
Powerpoint file provided.

18

Sidebar: Parallel Scripting Applications

Parallel scripting as described here is being applied in many different disciplines.
The applications include the sciences and computational economics, and the
characteristics range from hundreds to 1 million one-core simulations. Some of the
applications listed here are already operational; others are in development; and a
few were experimental efforts. Those in italics have been run on petascale
computers.

Operational
Biology Analysis of mass-spectrometry data for posttranslational protein modifications
Protein structure prediction using iterative fixing; exploring other large-biomolecule interactions
Identification of drug targets via computational docking/screening
Economics Generation of response surfaces for various economic models
Analysis of uncertainly in large-scale economic models of climate and energy-related factors.
Neuroscience Analysis of functional MRI datasets for studies in language and stroke recovery

In development

Biology Protein structure prediction using Raptor threading algorithm with linear programming
Metagenome modeling with integer programming
Metagenome analysis with large-scale BLAST and phylogenetic applications.

Mining of large text corpora to study media bias

Cardiology Chesnokov analysis of ECG datasets for the Cardiovascular research grid
Earth systems Analysis of NASA MODIS satellite data using R

Neuroscience Analysis of large-scale image data from C.elegans experiments
Radiology Training of computer-aided diagnosis algorithms

Image processing and brain mapping for neurosurgical planning research

Experimental

Astronomy Creation of montages from large sets of digital images
Stacking of cutouts from digital sky surveys

Earth systems Ensemble climate model runs and analysis of output data

19

Sidebar: Comparing and connecting Swift and MPI

While MPI and Swift are complementary programming models (in that Swift can be
used to run parallel MPI programs in the same manner as it runs serial programs),
its instructive to compare the two models in more detail.

MPI is an in-memory programming model. While MPI programs certainly read
and write files, they compute on data structures in main memory. Swift on the other
hand is a file-processing scripting language: rather than applying functions to in-
memory data structures, it applies entire application programs to datasets
composed of one or more files. These application programs can, themselves, be MPI
codes, or codes written in any other parallel or serial language.

MPI programs typically (but not always) involve a static number of tasks. In
Swift, the number of tasks running concurrently varies dynamically, based on the
parallelism of the script at any given point in its execution and then often “throttled
back” by parameters and algorithms, and finally subject to the number of CPU cores
that are dynamically available at any given time on the collected set of resources
available to the running Swift program.

In Swift, unlike MPI, failure of a single node (or program) affects only the
program(s) running on that node at the time of the failure. Swift maintains the state
of each running script in a log file, which allows it to restart a parallel script from the
point of failure. Only uncompleted tasks are re-executed upon a restart. And since
each unit of execution is a complete program, these programs can be re-executed
when they fail.

Swift is complementary to, and not a replacement for, shared memory or
message-passing multiprocessing. Swift has been and will increasingly be used to
coordinate the execution of MPI applications, creating a loosely coupled ensemble of
tightly coupled programs.

20

Sidebar: Swift Execution Semantics

Task synchronization in Swift (i.e., determining when each given task can execute) is
based on data availability. For example, in a Swift procedure, all the statements in
each block of the procedure are conceptually started in parallel. The order in which
the statements execute is determined by any data dependencies between the
statements. For example, if two statements depend only on the variable g, then both
statements are executed in parallel as soon as another statement sets the value of a.
In addition, the swift foreach statement executes all instances of the statements in
the body of the foreach in parallel. These two constructs provide the inherent
parallelism of the Swift language.

Because every “atomic” Swift data element (i.e., each simple scalar variable, array
element, and structure field) has these same “write once, read when set”
synchronization semantics, all computations in the execution of a Swift script are
implicitly pipelined. For example, if one foreach loop is computing a set of values
and storing the results in an output array, another foreach that reads the elements
of the array will progress in parallel, with each member of the dependent foreach
loop running as soon as the corresponding foreach loop has set the dependent array
element. This approach enables Swift programs to execute with a much higher
degree of overall parallelism than would be possible with a less fine-grained model
of concurrency.

21

Sidebar: Collective data management for petascale scripting performance.

Collective data management research for Swift - which will be of use to any similar
style of “many task” computation - is focused on the design and implementation of a
set of operations for exchanging files within scripts in a manner that can leverage
the unique characteristics of diverse petascale systems. On the BG/P, for example,
which has both a torus for point-to-point interconnects and a tree network for
broadcasting data to all the nodes connected to a given input/output (I/0)
processor, the Swift researchers are exploring the following approaches for
collective data management.

Files and data that are read in common by all parallel instances of an application
are ideally read once and are broadcast in parallel over the tree network. Such
common datasets are read from their global file system location once and sent to all
compute nodes, which will consume the data in parallel.

Files that are unique to each processor are “pulled” by the processor and its I/0
node to the local RAM filesystem. This reduces 1/0 load by spreading the work
among all participating I/O nodes (64 compute nodes per I/0 node) and leverages
the massive parallel 1/0 capability of the BG/P’s shared file system. It also allows
I/0 to be read in efficient block sizes (e.g, 256 kilobytes or more) rather than
depending on the application to read efficiently, which many legacy applications
cannot do and which swamps the 10 subsystem if not optimized.

Files too large to fit on RAM filesystems are pulled to an aggregated
“intermediate” file system, which is composed of striped RAM filesystems and is
accessed over the torus, again eliminating I/0 from the application back to the
global file system.

Output data is aggregated on the local RAM filesystems, either on the compute
nodes or on an “intermediate” striped RAM filesystem, and collected into sufficiently
large batches to be written back to the global file system efficiently.

1/0 between the global GPFS file system and the compute nodes can be done at
high rates—over 60 gigabytes per second on the ALCF Blue Gene/P—since the
system has 128 file servers serving GPFS. Accessing this system efficiently to
achieve this rate, however, requires the optimizations above.

The CDM mechanism is still in the research phase, and not yet in the released
version of Swift. But it is already possible to code Swift scripts to explicitly do their
data management in the manner described above and to thereby significantly
reduce the bottlenecks of shared I/0 resources.

22

