
Procedia Computer Science 00 (2010) 1–10

Procedia Computer
Science

Randomized Heuristics for Exploiting Jacobian Scarcity!

Andrew Lyons1,2,∗, Ilya Safro2, Jean Utke1,2

Abstract

We describe a code transformation technique that, given code for a vector function F, pro-
duces code suitable for computing collections of Jacobian-vector products F′(x)ẋ or Jacobian-
transpose-vector products F′(x)T ȳ. Exploitation of scarcity — a measure of the degrees of free-
dom in the Jacobian matrix — means solving a combinatorial optimization problem that is be-
lieved to be hard. Our heuristics transform the computational graph for F, producing, in the form
of a transformed graph G′, a representation of the Jacobian F′(x) that is both concise and suitable
for the evaluation of large collections of Jacobian-vector products or Jacobian-transpose-vector
products. Our heuristics are randomized in nature and compare favorably in all cases with the
best known heuristics.

Keywords: Automatic Differentiation, Scarcity

1. Introduction

The computation of Jacobian-vector products is a fundamental step in the context of science
and engineering applications. Without loss of generality, Suppose a vector function F : Rn → Rm

is given as a straight-line evaluation procedure; real-life application codes often comprise such
straight-line procedures. Thus, F may not represent the entire function of interest, but rather a
small part that is executed many times. We are interested in algorithmically applying the chain
rule, a technique known as automatic differentiation (AD), in order to obtain a new program that
evaluates F along with some derivative information for F. Suppose, in particular, that we are
interested in computing either a collection of p Jacobian-vector products

(
F′(x)ẋi

)
i=1,...,p

, or a

!draft version hg:617fc2231dfd:142 compiled January 27, 2010
∗Corresponding author
Email addresses: lyonsam@gmail.com (Andrew Lyons), safro@mcs.anl.gov (Ilya Safro),

utke@mcs.anl.gov (Jean Utke)
URL: http://www.mcs.anl.gov/~lyonsam/ (Andrew Lyons), http://www.mcs.anl.gov/~safro/ (Ilya

Safro), http://www.mcs.anl.gov/~utke/ (Jean Utke)
1Computation Institute, University of Chicago
2Mathematics and Computer Science Division, Argonne National Laboratory

A. Lyons, I. Safro, and J. Utke / Procedia Computer Science 00 (2010) 1–10 2

y1 = x1 sin(x1 + x2), y2 = esin(x1+x2)
]

F : x ∈ R2 → y ∈ R2

z1 = x1 + x2; z2 = sin(z1); y1 = x1 ∗ z2; y2 = exp(z2);
]

Original code
︷!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!︷
c31 = 1; c32 = 1; c43 = cos(z1);

︷!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!︷
c51 = z2; c54 = x1; c64 = y2;

]
Linearization

1

2

5

6

3
1

1
4

+ sin

∗
exp

G

c51

c43
c54

c64

v̇3 = 1∗v̇1 + 1∗v̇2
v̇4 = c43∗v̇3
v̇5 = c51∗v̇1 + c54∗v̇4
v̇6 = c64∗v̇4




Propagation
(cost = 4p)

Figure 1: A function F (line 1) is given as a straight-line program (line 2). The edges of the computational graph
G represent the direct dependencies among the program variables (which correspond to the vertices). The process
of linearization (line 3), fundamental to AD, automatically produces code for evaluating the local partial derivatives
c ji ≡ ∂v j/∂vi at a small fixed cost.

collection of p Jacobian-transpose-vector products
(
F′(x)T ȳi

)
i=1,...,p

, where p is assumed to be
sufficiently large. The vectors ẋi are directions in the domain; the vectors ȳi may be interpreted
as weights. Due to symmetry, we are able to restrict our attention to the former without loss of
generality. Our goal, therefore, will be to approximate the most efficient program for computing
collections of Jacobian-vector products. The notion of Jacobian scarcity [1–3] generalizes the
properties of sparsity and rank to capture a deficiency in the degrees of freedom of the Jacobian
matrix. We describe new randomized heuristics that exploit scarcity for the optimized evaluation
of collections of Jacobian-vector or Jacobian-transpose-vector products.

In the remainder of this section, we introduce the necessary definitions and concepts. In
Section 3, we describe our heuristics. In Section 2, we provide experimental results.

Propagating derivatives. The basic concepts of AD are illustrated in Figure 1. Henceforth, we
will assume that the linearized computational graph G is given, where every edge (i, j) is associ-
ated with either a unique variable representing the local partial derivative c ji or a value in {1,−1}.
Note that G is a directed acyclic graph (DAG). Traditional AD [3] prescribes the forward mode
for evaluating Jacobian-vector products, whereby derivative values v̇ j are propagated through G
from the sources to the sinks by traversing the vertices in topological order. When a vertex j is
visited, we compute v̇ j =

∑
i∈Pj c ji ∗ v̇i, where Pj denotes the set of vertices that have outedges

to j. F′(x)Ẋ can be evaluated either by propagating p directions ẋ1, . . . , ẋp separately (scalar
mode), or by propagating Ẋ ∈ Rp×n in a single pass (vector mode). In terms of scalar multipli-
cations, the total computational cost associated with each edge (i, j) is p if c ji ! {1,−1} and 0
otherwise; this highlights the special significance of unit edges. Thus, in both scalar and vec-
tor modes, the cost of evaluating p Jacobian-vector products is p|E+(G)| scalar multiplications,
where E+(G) ≡ {(i, j) ∈ E | c ji ! {1,−1}} denotes the set of nonunit edges in G.

−−−→
(3,4)︷!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!︷

c53 = c43 ∗ c54
c63 = c43 ∗ c64︸!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!︸

Preaccumulation

1

2

5

6

3
1

c51

1

c51
c53

c63
G′

v̇3 = v̇1 + v̇2
v̇5= c51∗v̇1 + c53∗v̇3
v̇6= c63∗v̇3︸!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!︸

Propagation

Figure 2: Partially preaccumulated Jacobian.

A. Lyons, I. Safro, and J. Utke / Procedia Computer Science 00 (2010) 1–10 3

Graph transformations and preaccumulation. The essential property of G is that the entries of
the Jacobian F′(x) can be expressed as Baur’s formula

∂y j

∂xi
=
∑

P∈[xi!y j]

∏

(k,")∈P
c"k ,

where [xi ! y j] denotes the set of all paths from xi to y j in G. A sequence ρ of local graph
transformations called edge eliminations allow us to transform G into the remainder graph G′(ρ),
which retains this property. Note that we do not consider other known types of transformations
(normalizations, reroutings, etc. [4]) because of the caveats associated with them.

Front elimination of an edge (i, j), denoted
−−−→
(i, j), entails updating c"i+ = c ji ∗ c" j for all

successors " of j. Similarly, back elimination of an edge (i, j), denoted
←−−−
(i, j), entails updating

c jk+ = cik ∗ c ji for all predecessors k of i. If the elimination of an edge leaves an intermediate
vertex with either no inedges or no outedges, then the vertex and all incident edges are removed
from the graph. An edge elimination sequence ρ is full if G′(ρ) contains no intermediate vertices.
A full edge elimination sequence corresponds to fully accumulating F′(x) as a matrix. Any edge
elimination sequence that is not full is called partial.

For functions with scarce Jacobians, judicious choice of an edge elimination sequence can
yield a remainder graph that has significantly fewer nonunit edges than G. Propagation can then
be performed at a cost of p|E+(G′(ρ))| < p|E+(G)| scalar multiplications. We distinguish between
the propagation phase and the preaccumulation phase, which consists solely of edge eliminations
and has a cost independent of p.When p is sufficiently large, the cost of the propagation phase
dominates the computation. With this as our motivation, we focus on finding a sequence ρ of
edge eliminations such that |E+(G′(ρ))| is minimized.

2. Randomized heuristics

A simple variant of the greedy heuristics described in [4] (hereafter called Hg) exploits
scarcity by choosing the best possible edge elimination and keeping track of the best so far
obtained complexity of the DAG. Here, we describe our experiments with two basic types of ran-
domized local search methods, namely Metropolis [5] and Simulated Annealing (SA) [6]. Ran-
domized local search methods are especially useful for hard combinatorial optimization problems
about which little is known; successful use cases include problems such as TSP [7] VLSI design
[8] and vertex elimination in AD [9, 10]. Our new randomized heuristics are compared with
Hg when applied to the same set of sample codes and to a set of artificial DAGs. Among the
heuristics we tested, a hybrid version of Metropolis produced the best results.

The edge elimination meta-graph. Consider a directed, Markov chain based dynamic meta-
graph G = (V,E) of all possible states G attains as it undergoes sequences of edge eliminations
and their backtrackings along with a random walk process on G. Each node i ∈ V corresponds to
some state of G after a sequence of edge eliminations. The set E of directed edges is partitioned
into sets Es and Ed for static and dynamic directed edges, respectively. A static directed edge
i j ∈ Es corresponds to the legal edge elimination that produces state j from i. A dynamic di-
rected edge i j ∈ Ed represents a backward step (or backtracking) that is not an edge elimination.
At any moment Ed will contain only one edge. In other words, if at the kth step of a random
walk, elimination i j was accepted, then at the (k + 1)th step ji ∈ Ed will appear but the previous

A. Lyons, I. Safro, and J. Utke / Procedia Computer Science 00 (2010) 1–10 4

backward edge will be removed. Note that, theoretically, at any state j many backward edges
could be created since j can be reachable from more than one state. However, introduction of all
backward edges can significantly increase the complexity of traversing the meta-graph, creating
significant implementation difficulties. Thus, at any state (except the initial one) there will be
only one backward edge. We denote by bi the predecessor of i in the random walk over G.

Let Gi denote the DAG corresponding to state i, c(i) denote |E+(Gi)|, and Ni = N+i ∪N−i ∪N0
i

denote the set of neighbors of i in G, where

N+i = { j ∈ V | i j ∈ E and c(j) > c(i)} ;
N−i = { j ∈ V | i j ∈ E and c(j) < c(i)} ;

N0
i = { j ∈ V | i j ∈ E and c(j) = c(i)} .

The heuristics. We describe the classical version of Metropolis heuristic HM in Algorithm 1 that
we have started the computational experiments with.

Algorithm 1 Classical Metropolis algorithm
Require: initial graph G0

1: i← 0
2: for k = 1, 2, . . . do
3: while c(i) is sufficiently big do
4: choose a random edge elimination i j
5: if c(j) ≤ c(i) then
6: accept i j
7: else
8: accept i j with probability e−(c(j)−c(i))/T for fixed T
9: end if

10: if i j is accepted then
11: i← j
12: end if
13: end while
14: end for

The difference between classical Metropolis and SA lies in the choice of a temperature factor
T . Instead of choosing a fixed T , a graduate cooling scheme for T is employed in SA. Carefully
chosen (fixed and varying) schemes for T is a central issue of these algorithms. We refer the
reader to [6] for a comprehensive background on these methods and to [9, 10] for example of
using SA in automatic differentiation elimination problems. As discussed in [11], a Metropolis
algorithm with the best temperature can outperform SA. The third heuristic Hh that we used,
described in Algorithm 2, is a hybrid of Metropolis and a regular random walk.

3. Computational results

In this section, we describe numerical results obtained using Algorithm 2, which has been
implemented as part of OpenAD [12]. We designed our numerical experiments with three types
of computational graphs: (a) examples derived from applications; (b) a set of artificially gener-
ated single-expression-use (SEU) graphs [13]; and (c) random DAGs. We began with a series

A. Lyons, I. Safro, and J. Utke / Procedia Computer Science 00 (2010) 1–10 5

Algorithm 2 Hybrid algorithm
Require: initial graph G0, maximum number of steps K

1: i← 0
2: for k = 1, 2, . . . ,K do
3: if k is sufficiently big then
4: i← 0
5: end if
6: list all possible eliminations i j
7: if |N−i \ bi| > 0 then
8: accept j ∈ N+i with normalized probability pi j ∝ e−(c(j)−c(i))/T

9: else
10: accept j ∈ N+i ∪ N0

i with normalized probability pi j ∝ e(−(c(j)−c(i))+1)/T

11: end if
12: if i j is accepted then
13: i← j
14: end if
15: end for

of aggressive random walks over G on SEU graph instances and randomly generated instances.
After sufficiently many steps, the random walk is restarted, while keeping track of the best result
achieved so far. Surprisingly, this trivial algorithm resulted in an improvement of 5-10% over
Hg; This provided the first indication that randomized local search can improve on Hg. In the
real-life examples, however, this strategy was not able to beat Hg. The next stage of experi-
ments consisted of designing the classical versions of Metropolis and SA. Independent of the
aggressiveness of the gradual cooling scheme for T , both methods provided an improvement of
up to 20% on the real-life instances and 10-15% on the artificial instances. The distribution of
the results was proportional to the Gaussian which concentrated the most likely improvement on
12% over Hg on real-life instances. This series of experiments gave us an important observation
regarding the steps that improve the current state i: if there exist two eliminations i j and ik such
that i j, jk ∈ N−i and c(j) and c(k) are almost equal, the better of the two should not necessar-
ily be accepted. This observation guided the design of Hh which is the most successful of the
heuristics. Note this issue cannot be addressed by any classical gradual cooling scheme, as such
schemes work only on the elements of N+i . Thus, no significant difference was observed between
Metropolis and SA when different schemes were employed.

Our best computational results were obtained 2. The observed improvement on the real-life
graphs was up to 35%. Examples of two experimental series for real-life graphs are presented in
Figure 3. For every graph we ran 800 experiments. The results of Hg are 185 and 186 for the first
and second graphs, respectively. The most interesting example can be observed in Figure 3(a),
in which one can see that Hh almost separates two clusters of the solution quality. The maximum
number of steps (K) (see algorithm 2) was 20|V | with 5 restarts (line 3) when k was reaching
4|V |.

3.1. Interpretation of the Results
As is the case with other randomized heuristics one is curious if there is some structure

in the problem that is essential for the improvement in the cost function. If such a structure
could be found and characterized so that it may be recognized with relatively low computational

A. Lyons, I. Safro, and J. Utke / Procedia Computer Science 00 (2010) 1–10 6

0 100 200 300 400 500 600 700 800
Experiments

140

160

180

N
um

be
r o

f n
on

un
it

ed
ge

s

(a)

155 160 165 170 175 180 185
Number of nonunit edges

0

20

40

60

80

100

120

Ex
pe

rim
en

ts

(b)

Figure 3: Results for Hh on two real-life instances: An example derived from a code for fluid dynamics (a); and an
example from a complicated finite elements code.

complexity, then the heuristic could be modified to specifically search for and exploit it which
then in turn would improve the chances of the thus modified randomized heuristic to find a good
solution. The computational results show that (1) there can be a substantial improvement over Hg
and (2) there can be a separation of the cost function values. We followed two paths to analyze
the heuristic results.

One approach is to look at the energy difference δt of the t-th step of Hh relative to the step
Hg would have taken. In other words, if i is the current state at the t-th step, i j is a transition
accepted by Hh and i j∗ is a transition that should minimize c(k) over all possible transitions ik,

δt = c(j) − c(j∗) .

There are 4 cases:

1. if there are targets with an improvement to the cost function we look among those targets
for the energy δt of the randomized step vs. the deterministic step:

(a) if δt = 0 then we randomize over the artificial order within the graph representation
(b) if δt > 0 then we randomize wrt. the actual cost function

2. if there there are no targets with an improvement to the cost function we look among those
targets with the analogous sub cases as described above:

(a) if δt = 0 then we randomize over the artificial order within the graph representation
(b) if δt > 0 then we randomize with respect to the actual cost function

For each randomized elimination sequence ρ we can then observe how many steps fall into one
of the above four categories and also consider

δρ =

∑
δt∈ρ
δt

|ρ|

A. Lyons, I. Safro, and J. Utke / Procedia Computer Science 00 (2010) 1–10 7

as a (rough) measure of the distance of the given randomized heuristic from the deterministic
heuristic as far as the actual cost function is concerned, where |ρ| denotes the length of ρ. If we
can find ρ with a substantial improvement of the cost function but all steps fall into categories
1(a) and 2(a), then the conclusion to be drawn is that the artificial order in the graph determines
most of the cost, the suggested randomization over the energy would not be worth the effort, and
one should break ties randomly. On the other hand, if there are no such sequences or even if
there are only a few steps with a nonzero δt, then the suggested heuristic is justified.

(a)

 0

 0.05

 0.1

 0.15

 0.2

 130 150 170 190

(b)

 400

 450

 500

 550

 600

 650

 700

 130 150 170 190

(c)

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 130 150 170 190

(d)

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 130 150 170 190

Figure 4: Plotted over the cost function values are δρ in (a), |ρ| in (b), vertex counts in compressed accumulation circuits
in (c), edge counts in compressed accumulation circuits in (d).

The δρ values shown in Figure 4(a) indicate that the cases 1(b) and 2(b) play a substantial
role and therefore the suggested heuristic is effective. To gain insight into any structural prop-
erties, one will eventually have to look at the elimination sequences and compare them. This
comparison is nontrivial because, as shown in Figure 4(b), the length of the sequences varies
greatly. One might suspect that more elimination steps would be required to drive the cost down
and therefore the best sequences would likely be longer than the others. We would like to point
out that contrary to this plausible assumption, among the sequences with the lowest cost is also
one that is the shortest (see the lower left datapoint in Figure 4(b)). This gives another indication
that a structural property lies at the heart of the improvement.

The comparison of elimination sequences for the purpose of detecting structural properties is
difficult for at least two reasons. First, the random sequences are of different length and, second,
the sequences still embody a substantial artificial order that stems from tie breaking and is not at
all relevant to the the question for structural properties.

The accumulation circuit. For a given edge elimination sequence ρ, The essential structure of the
computation performed by the corresponding accumulation code is exhibited in the correspond-
ing accumulation circuit Φ(ρ) (or just Φ where there is no ambiguity). Φ(ρ) is an arithmetic
circuit whose leaves — the inputs to the circuit — correspond to the variables labeling the edges

A. Lyons, I. Safro, and J. Utke / Procedia Computer Science 00 (2010) 1–10 8

−−−→
(3,4)︷!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!︷

c53 = c43 ∗ c54
c63 = c43 ∗ c64

←−−−
(3,5)︷!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!︷

c51+= c31 ∗ c53
c52 = c31 ∗ c53

←−−−
(3,6)︷!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!︷

c61 = c31 ∗ c63
c62 = c32 ∗ c63︸!!︷︷!!︸

Preaccumulation

v̇5 = c51∗v̇1 + c52∗v̇2
v̇6 = c61∗v̇1 + c62∗v̇2︸!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!︸

Propagation

1 c51 c43 c54 c64

× ×
×
+ × × ×

Φ(ρ)
c51 c43 c54 c64

×
c52

×
c61 = c62+

c51

Ψ(ρ)

1

2

5

6

c51
c61

c52
c62

G′(ρ)

Figure 5: A full edge elimination sequence ρ =
(−−−−→
(3, 4),

←−−−−
(5, 3),

←−−−−
(6, 3)

)
is shown along with the corresponding accumulation

circuit Φ(ρ), compressed accumulation circuit Ψ(ρ), and remainder graph G′(ρ). Note the redundancy in the fully preac-
cumulated Jacobian. Any full edge elimination sequence will result in the same remainder graph G′, though different
sequences generally imply different computational costs for the preaccumulation phase. However, sequences that are
functionally identical may look quite different: For ρ̃ =

(←−−−−
(5, 4),

−−−−→
(3, 4),

−−−−→
(1, 2),

−−−−→
(2, 3)

)
, we have G′(ρ) = G′(ρ̃),Φ(ρ) = Φ(ρ̃),

and Ψ(ρ) = Ψ(ρ̃).

E(G). The internal nodes of Φ(ρ) all have exactly two predecessors and are labeled either +
(sum gates) or × (product gates), where the label for a gate α ∈ Φ is denoted oα. In general, an
accumulation circuit will have many outputs, each of which computes a value carried by an edge
in the remainder graph G′. (Note that, for edge elimination, this is also true of some nodes in the
accumulation circuit that are not maximal.) In general, the number of edge elimination sequences
(partial or full) is much bigger than the number of accumulation circuits that can result from an
edge elimination sequence. This gives us an equivalence relation where two edge elimination se-
quences ρ1 and ρ2 may satisfy Φ(ρ1) = Φ(ρ2) in addition to satisfying G′(ρ1) = G′(ρ2). Note that
having G′(ρ1) equal to G′(ρ2) is necessary but not sufficient for two edge elimination sequences
to be considered equivalent. Compression of the accumulation circuit, which establishes a kind
of canonical form, allows for an even coarser equivalence relation.

The hope is that one may find a pair of sequences that has a substantial difference in the cost
function yet the accumulation circuits are similar. The remaining difference then might point
to a particular structure that triggers the difference in the cost. The following properties of the
accumulation circuit guide the compression. All non-constant minimal vertices are distinct; all
constant minimal vertices have either identical values or else are considered distinct; there can
be non-maximal vertices referenced by the remainder graph; and all non-minimal vertices are
either multiplication or addition operations. The circuit compression consists of the following
steps. (1) collapse all vertices that are minimal, constant, and have identical values to a single
representer vertex; (2) replace any constant valued subgraphs S that evaluate to exactly 1.0 and
have a single outedge (S , j) by a new edge (1.0, j) from the constant 1.0 representer vertex;
(3) contract any edge (i, j) such that i is non-minimal, j is the only successor of i, oi = o j, and i
is not referenced by the remainder graph; (4) collapse to i all non-minimal vertices j, if i and j
have identical predecessor multi-sets3 and oi = o j.

The numbers shown in Figure 4(d) show that compression yields reductions between 611

3The accumulation circuit can have parallel paths; we must determine how often a given vertex is a predecessor.

A. Lyons, I. Safro, and J. Utke / Procedia Computer Science 00 (2010) 1–10 9

and 1130. On the compressed accumulation circuits we can recursively build a signature sv =
(ov, cv,Vv,Cv) for each vertex v by considering its optional operation ov or constant value cv,
a multiset Vv of its dependencies on variable minimal vertices, and a multiset Cv of elements
(c, o,C∗) representing operations with constant values.

• For all minimal v with constant value c we set s(v) = (., c, ∅, ∅)
• For all variable minimal v with edge label c ji we set s(v) = (., ., {c ji}, ∅)
• For all non-minimal v with direct predecessors P:

– V′ = ⋃
p∈P
Vp; C′ = ⋃

p∈P
Cp

– if V′ = C′ = ∅ then compute new constant cv value from all predecessors and set
s(v) = (., c, ∅, ∅)

– if ∃p ∈ P : Vp = Cp = ∅, then compute new constant cv value from the constants of
those p and set s(v) = (ov, .,V′, {(ov, cv,C′)})
otherwise set s(v) = (ov, .,V′,C′)

The signatures can be built bottom up in the accumulation circuit and with the multisets lexico-
graphically ordered and suitably represented as a string can be used to compare two vertices by
string comparison. This has been implemented to enable comparisons between sequences from
the cluster of good solutions and the cluster of solutions closer to the Hg result. Unfortunately,
even in circuits of similar size we could match only less than half of the vertices. The alternative
search for some vertices occurring only in circuits from the preferred cluster of solutions indi-
cating a crucial step in the elimination has so far not produced tangible results and is subject to
further research.

Acknowledgments

This work was supported in part by U.S. Department of Energy, under Contract DE-AC02-
06CH11357.

[1] A. Griewank, A mathematical view of automatic differentiation, in: Acta Numerica, Vol. 12, Cambridge University
Press, 2003, pp. 321–398. doi:10.1017/S0962492902000132.

[2] A. Griewank, O. Vogel, Analysis and exploitation of Jacobian scarcity, in: H. G. Bock, E. Kostina, H. X. Phu,
R. Rannacher (Eds.), Modeling, Simulation and Optimization of Complex Processes, Springer, Berlin, 2005, pp.
149–164. doi:10.1007/3-540-27170-8_12.

[3] A. Griewank, A. Walther, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, 2nd
Edition, no. 105 in Other Titles in Applied Mathematics, SIAM, Philadelphia, PA, 2008.

[4] A. Lyons, J. Utke, On the practical exploitation of scarsity, in: C. H. Bischof, H. M. Bücker, P. D. Hovland,
U. Naumann, J. Utke (Eds.), Advances in Automatic Differentiation, Vol. 64 of Lecture Notes in Computational
Science and Engineering, Springer, Berlin, 2008, pp. 103–114. doi:10.1007/978-3-540-68942-3_10.

[5] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, Equation of state calculations by fast
computing machines, The Journal of Chemical Physics 21 (6) (1953) 1087–1092. doi:10.1063/1.1699114.

[6] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated annealing, Science 220, 4598 (1983) 671–
680.

[7] J. J. Schneider, S. Kirkpatrick, Stochastic Optimization (Scientific Computation), Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

[8] D. F. Wong, H. W. Leong, C. L. Liu, Simulated annealing for VLSI design, Kluwer Academic Publishers, Norwell,
MA, USA, 1988.

[9] U. Naumann, P. Gottschling, Prospects for simulated annealing in automatic differentiation, in: K. Steinhöfel (Ed.),
Stochastic Algorithms: Foundations and Applications, no. 2264 in LNCS, Springer, Berlin, 2001, pp. 355–359.
doi:10.1007/3-540-45322-9_9.

http://dx.doi.org/10.1007/3-540-45322-9_9
http://dx.doi.org/10.1017/S0962492902000132
http://dx.doi.org/10.1007/3-540-27170-8_12
http://dx.doi.org/10.1007/978-3-540-68942-3_10
http://dx.doi.org/10.1063/1.1699114

A. Lyons, I. Safro, and J. Utke / Procedia Computer Science 00 (2010) 1–10 10

[10] U. Naumann, P. Gottschling, Simulated annealing for optimal pivot selection in Jacobian accumulation, in: A. Al-
brecht, K. Steinhöfel (Eds.), Stochastic Algorithms: Foundations and Applications, no. 2827 in Lecture Notes in
Computer Science, Springer, 2003, pp. 83–97. doi:10.1007/b13596.

[11] M. Jerrum, A. Sinclair, M. C. Algorithms, The markov chain monte carlo method: An approach to approximate
counting and integration, PWS Publishing, 1996, pp. 482–520.

[12] J. Utke, U. Naumann, M. Fagan, N. Tallent, M. Strout, P. Heimbach, C. Hill, C. Wunsch, OpenAD/F: A modular,
open-source tool for automatic differentiation of Fortran codes, ACM Transactions on Mathematical Software
34 (4) (2008) 18:1–18:36. doi:10.1145/1377596.1377598.

[13] U. Naumann, Y. Hu, Optimal vertex elimination in single-expression-use graphs, ACM Transactions on Mathemat-
ical Software 35 (1) (2008) 1–20. doi:10.1145/1377603.1377605.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”).
Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The
U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on
behalf of the Government.

http://dx.doi.org/10.1145/1377603.1377605
http://dx.doi.org/10.1007/b13596
http://dx.doi.org/10.1145/1377596.1377598

	Introduction
	Randomized heuristics
	Computational results
	Interpretation of the Results

