
Understanding Checkpointing
Overheads on Massive-Scale
Systems: Analysis of the IBM Blue
Gene/P System

Rinku Gupta1, Harish Naik1 and Pete Beckman1

Abstract
Providing fault tolerance in high-end petascale systems, consisting of millions of hardware components and complex
software stacks, is becoming an increasingly challenging task. Checkpointing continues to be the most prevalent technique
for providing fault tolerance in such high-end systems. Considerable research has focussed on optimizing checkpointing;
however, in practice, checkpointing still involves a high-cost overhead for users. In this paper, we study the checkpointing
overhead seen by various applications running on leadership-class machines like the IBM Blue Gene/P at Argonne National
Laboratory. In addition to studying popular applications, we design a methodology to help users understand and intelli-
gently choose an optimal checkpointing frequency to reduce the overall checkpointing overhead incurred. In particular,
we study the Grid-Based Projector-Augmented Wave application, the Carr-Parrinello Molecular Dynamics application,
the Nek5000 computational fluid dynamics application and the Parallel Ocean Program application—and analyze their
memory usage and possible checkpointing trends on 65,536 processors of the Blue Gene/P system.

Keywords
Checkpointing, Blue Gene, Fault Tolerance, I/O, Massive scale systems

1 Introduction

The past two decades have seen tremendous growth in the

scale, complexity, functionality, and usage of high-end

computing (HEC) machines. The Top500 (Dongarra

et al.) list shows that performance offered by high-end

systems has increased by over eight times in the past five

years. Current petascale machines consist of millions of

hardware components and complex software stacks and

future exascale systems will exponentially increase this

complexity. This increasing system complexity has

resulted in justified concerns about reliability and fault

tolerance in these machines.

High performance computing end-users and applica-

tions developers continue to use checkpointing/restart (Koo

and Toueg, 1986) as a preferred technique for achieving

fault tolerance in their software. Checkpointing requires

saving the local state of a process at a specific time and then

rolling back (also called recovery/restart) to the latest saved

state in the event of a crash during the execution lifetime of

a process.

New petascale machines, such as the IBM Blue Gene

series (IBM Blue Gene Team, 2008), which are capable

of scaling to over several hundreds of thousands of cores,

can offer enormous computational power. However, these

machines (as well as future exascale machines) utilize a

1Mathematics and Computer Science Division, Argonne National

Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, {rgupta,

hnaik, beckman}@mcs.anl.gov, April 19, 2010

This paper is an extended version of the paper presented at the

International Workshop on Parallel Programming Models and Systems

Software for High-End Computing Systems (P2S2), 2009, titled \Analyzing

Checkpointing Trends for Applications on the IBM Blue Gene/P System."

In this section, we highlight some of the additions done in this version of

the paper, as compared to the one presented at the workshop (several

other minor changes and explanation details 1 added in the paper are

skipped here): Additional Applications: Together with the diÛerent

applications demon- strated in the workshop version of the paper, this

version also includes a new computational¯uid dynamics application, the

Parallel Ocean Program (POP), which is a popular application for ocean

modeling. POP is an integral part of the SPEC 2007 benchmark suite, and

represents a wide-class of applications. Additional Experimentation and

Analysis: This paper also presents sev-eral additional results, including

experiments on larger system sizes and more analysis of the time taken

for checkpointing, evaluation of checkpointing param- eters, and other

trends. Theoretical Modeling: The paper also presents a new simplied

optimal checkpointing model and uses this model to evaluate

checkpointing parameters, and other trends. Theoretical Modeling: The

paper also presents a new simplied optimal checkpointing model and

uses this model to evaluate checkpointing parameters, and other trends.

Theoretical Modeling: The paper also presents a new simplied optimal

checkpointing model and uses this model to evaluate checkpointing

parameters for all the diÛerent applications.

The International Journal of High
Performance Computing Applications
000(00) 1–12
ª The Author(s) 2010
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342010369118
hpc.sagepub.com



large degree of shared hardware, including shared memory,

shared caches, and a shared network infrastructure. Storage

on such machines is provided, also, through a shared I/O

infrastructure. Large-scale applications, using these

machines, use checkpointing for proactive fault tolerance.

Saving states of thousands of processes during a checkpoint

can result in a heavy demand of I/O and network resources.

Since these machines have limited I/O and network

resources, frequent checkpointing (and saving these check-

points to back-end storage), at this scale, can result in longer

execution times, especially if the I/O or network resources

become a bottleneck. This undermines the end-users’ ability

to use the machine effectively and may result in wastage of

the limited processing cycles allocated to them on such large

machines. For applications and users to use these machines

in the most efficient manner, we must understand the feasi-

bility of checkpointing and memory trends of these

applications on large-scale machines. Information about

memory trends of these applications will allow end-users

to estimate the checkpointing time and thus make conscious

decisions on the checkpointing frequency. While measure-

ment and analysis of memory trends have received some

study, investigations have been limited to small-scale

systems of up to 64 processors (Sancho et al., 2004). The

challenges for checkpointing on large leadership machines

are completely different and on a different scale.

In this paper, we study similar checkpointing and

memory trends for applications on the IBM Blue Gene/P

system (BG/P) at Argonne National Laboratory (ANL).

Specifically, we present memory trends of four popular

applications: the Grid-Based Projector-Augmented Wave

application (GPAW), the Carr-Parrinello Molecular

Dynamics application (CPMD), the Nek5000 computa-

tional fluid dynamics application, and the Parallel Ocean

Program (POP). We also present an analytical model for

efficiently computing the optimum checkpoint frequencies

and intervals, and we determine the limitations of check-

pointing such applications on large systems. Our study and

analysis are based on a ‘‘full checkpointing’’ technique, in

which the entire program state of the processes is stored

during the checkpoint operation. This technique is used

by the IBM checkpointing library (Sosa and Knudson,

2007) and is the only checkpointing software currently

available for the IBM Blue Gene/P machines.

The rest of the paper is organized as follows. Section 2

discusses the background and related work performed in

the area of checkpointing. Section 3 provides an overview

of the IBM Blue Gene/P system and its checkpointing soft-

ware. Section 4 presents the applications used in this study.

Section 5 discusses our checkpointing model, experiments

performed and analysis of the results. In Section 6, we pres-

ent the conclusions and outline future work.

2 Overview of Checkpointing

Checkpointing methods and optimization techniques have

been studied and summarized by several researchers

(Plank, 1997; Silva and Silva, 1998; Zomaya, 1995). In this

section, we briefly discuss some checkpointing concepts

and techniques common to distributed computing environ-

ments. We will also discuss work done in the area of check-

pointing in (MPI) programs (Schulz et al., 2004) on large

scale high-performance computing (HPC) systems. In

distributed systems, checkpointing can typically occur at

the operating system level or the application level.

Operating system-level checkpointing: Operating sys-

tem (OS)-level checkpointing is a user-transparent way of

implementing checkpointing. In this approach, the user

typically needs to specify only the checkpointing interval,

with no additional programming effort; other details such

as checkpoint contents are handled by the operating system

(Barigazzi and Strigini, 1983). OS-level checkpointing for

an application involves saving the entire state of the appli-

cation, inclusive of all processes and temporary data, at the

checkpoint time. Since this type of checkpointing does not

take into account the internal characteristics and semantics

of the application, the total size of the checkpointing data

can dramatically increase with system size. On petascale

systems, which are I/O bound, this can cause a heavy over-

head on the runtime of the application.

Application-level checkpointing: Application-level

checkpointing (Zomaya, 1995), also called user-defined

checkpointing, is a checkpointing method that enables the

user to intelligently decide the placement and contents of

the checkpoints. The primary advantage of this approach is

that as users semantically understand the nuances of the appli-

cations they can place checkpoints, using libraries and prepro-

cessors, at critical areas, potentially decreasing the size of the

checkpoint contents and checkpointing time. While this

approach requires more programmer effort, it is more porta-

ble, since checkpoints can be saved in a machine-

independent format, and thus offers better performance and

flexibility as compared to the OS-level approach.

An important difference between the two types of

checkpointing is that an OS-level checkpoint can be per-

formed at any point during the execution of the application.

But application-level checkpoints can only be performed at

specified points in the program during the execution

(Schulz et al., 2004).

Compiler-level checkpointing (Li and Fuchs, 1990) also

exists. In this case, the compiler selects optimal checkpoint-

ing locations to minimize checkpointing content. Hybrid

techniques, such as compiler-assisted checkpointing coupled

with application checkpointing, also have been studied. These

provide a certain degree of transparency to the user.

Checkpointing in distributed systems requires that

global consistency be maintained across the entire system

and the avoidance of the domino effect. One way to achieve

this consistency is through coordinated checkpointing

(Guohong and Singhal, 1998). In coordinated checkpoint-

ing, once the decision to checkpoint is made, the program

does not progress unless all the checkpoints of all the pro-

cesses are saved. Coordinated checkpointing requires that

system or process components communicate with each

other to establish checkpoint start and end times in

single or multiple phases. Recovery in this technique is

achieved by rolling back all processes to the latest state.

Another method to achieve global consistency is through

2 The International Journal of High Performance Computing Applications 00(000)



independent checkpointing (Zomaya, 1995), which uses

synchronous and asynchronous logging of interprocess

messages along with independent process checkpointing.

In this method, recovery is achieved by rolling back to the

faulty process and replaying the messages received by the

faulty process. Other techniques such as adaptive indepen-

dent checkpointing (Zomaya, 1995) are based on hybrid

coordinated and independent checkpointing techniques.

Checkpointing optimizations have received considerable

attention. Two primary techniques that have emerged are

full-memory checkpointing and incremental-memory check-

pointing (Plank et al., 1995). In full-memory checkpointing,

during each checkpoint instance the entire memory context for

that process is saved. In incremental-memory checkpointing,

pages that have been modified since the last checkpoint are

marked as dirty pages and are saved. Incremental-memory

checkpointing, thus, can reduce the amount of memory con-

text that needs to be saved, especially for large systems.

Performing checkpointing operations on large scale

systems becomes very challenging in the context of large

scale distributed memory systems. A study by Liu et al.

(2008) proposes a checkpoint and recovery model for large

scale HPC systems. There have also been studies on check-

pointing and recovery mechanisms applied to a Network

of Workstations (NOW) (Dongsheng et al.). But in a

system like Blue Gene/P with 163,840 cores available for

computation, the challenges are far more severe.

3 Overview of the Blue Gene/P System

In this section, we discuss the architecture of the IBM Blue

Gene/P (IBM Blue Gene Team, 2008) system at Argonne

National Laboratory named Intrepid. We also provide an

overview of the IBM Blue Gene/P checkpointing library.

3.1 The BG/P Hardware Architecture

The Intrepid (Desai et al., 2008) system at Argonne

National Laboratory is IBM’s massively parallel supercom-

puter consisting of 40 racks of 40,960 quad-core compute

nodes (totaling 163,840 processors), 80 TB of memory and

a system peak performance of 556 TF. Each compute

node consists of four PowerPC 450 processors, operates

at 0.85 GHz, and has 2 GB memory. Compute nodes run

a lightweight Compute Node Kernel (CNK), which serves

as the base operating system. In addition to the compute

nodes, 640 input/output (I/O) nodes are used to communi-

cate with the file system. The I/O nodes physically are the

same as compute nodes but differ from them in function.

The Argonne system is configured to have a 1:64 ratio with

a single I/O node managing 64 compute nodes. In addition

to the compute and I/O nodes, there exist service and login

nodes that allow diagnostics, compilation, scheduling,

interactive activities, and administrative tasks to be carried

out. This system architecture is depicted in Figure 11.

The Intrepid system uses five different networks.

A three-dimensional torus network, based on adaptive

cut-through routing, interconnects the compute nodes and

carries the bulk of the communication while providing

low-latency, high bandwidth point-to-point messaging.

A collective network interconnects all the compute nodes

and I/O nodes. This network is used for broadcasting data

and forwarding file-system traffic to I/O nodes. An inde-

pendent, tree-based, latency-optimized barrier network also

Figure 1. ANL BG/P system architecture. (This figure was taken from the ‘‘IBM System Blue Gene/P Solution: Blue Gene/P
Application Development’’ redbook (Sosa and Knudson, 2007).)

Gupta et al. 3



exists for fast barrier collective operations. In addition,

a dedicated Gigabit Ethernet and JTAG network that con-

nects the I/O nodes and compute nodes to the service nodes

is used for diagnostics, debugging, and monitoring. Lastly,

a 10-Gigabit Ethernet network, consisting of Myricom

switching gear connected in a nonblocking configuration,

provides connectivity between the I/O nodes, file servers,

and several other storage resources.

As seen in Figure 2, the Intrepid back-end file system

architecture includes 16 DataDirect 9900 SAN storage

arrays (each with 480 1 TB disks) offering around 8 peta-

bytes of raw storage. Each array is directly connected to

eight file servers through eight Infiniband DDR ports, each

with a theoretical unidirectional bandwidth of 16 Gbp/s. The

entire Intrepid system consists of 128 dual-core file servers,

having 8 GB memory each. These file servers, as earlier

noted, connect to the 10-Gigabit Ethernet network through

their 10-Gigabit Ethernet ports. The I/O nodes connect to

this 10-Gigabit Ethernet network as well. We note that the

peak unidirectional bandwidth of each 10-Gigabit Ethernet

port of the I/O node is limited to 6.8 Gb/s by the internal

collective network that feeds it (IBM Blue Gene Team,

2008). From a theoretical performance standpoint, however,

the network links connecting the file servers to the

10-Gigabit Ethernet network will become a bottleneck.

3.2 Overview of the IBM BG/P Checkpointing Library

IBM provides a special user-level full checkpointing library

(Sosa and Knudson, 2007) for BG/P applications. This

library provides support for user-initiated checkpointing

where a user can insert checkpoint calls manually at critical

areas in the application. Restarting an application is trans-

parent and can be easily achieved by the user or system by

setting certain environment variables (which point to the

checkpoint file to be used for the restart) during applica-

tion re-launch time. The checkpoint calls are made avail-

able to the user through a simple checkpointing API

provided by IBM. Checkpoint-enabled applications are

expected to call the int BGCheckpointInit(char *path_

to_checkpoint_directory) routine at the beginning of the

application. This routine initializes all the relevant data

structures and is also used for the transparent restart of the

applications when they are re-launched. The int

BGCheckpoint() library call is used to take a snapshot/

checkpoint of the program state at the instant at which it

is called. All processes of the application should make this

call to take a consistent global checkpoint. The user needs

to ensure that no outstanding messages are present in the

system when this checkpoint call is being made. It is also

recommended that a Message Passing Interface (MPI)

collective operation routine such as barrier synchroniza-

tion (Snir and Otto, 1998) be called just before the

BGCheckpoint().

In addition to the above routines, IBM provides various

other routines which allow applications to perform various

tasks such as registering functions that can be called just

before checkpointing (int BGAtCheckpoint(args...)), regis-

tering functions that can be called when continuing after a

checkpoint (int BGAtContinue(args...)) or marking regions

that can be excluded from the program state when the check-

point is taken (int BGCheckpointExcludeRegion(args...)).

The IBM checkpointing library only provides support

for full checkpointing. It provides no support for incremen-

tal checkpointing. Thus, for practical applicability, in this

paper, we currently focus on studying applications, their

memory usage, and checkpointing trends with respect to

the full checkpointing method.

Figure 2. ANL BG/P file system.

4 The International Journal of High Performance Computing Applications 00(000)



4 Overview of the Applications Used

In this section, we describe the applications that we run on

the IBM Blue Gene machines. We study four popular appli-

cations from the fields of molecular dynamics and compu-

tational fluid dynamics.

4.1 Molecular Dynamics Simulations

In classical molecular dynamics (Car et al., 1985), a single

potential energy surface is represented by a force field.

However, most times, this level of representation is deemed

inefficient. More accurate representations, involving

atomic structure, electron/proton distribution, chemical

reactions, and electronic behavior can be generated using

quantum mechanical methods such as density functional

theory. This area of molecular dynamics is known as

Ab Initio (first principles) Molecular Dynamics (AIMD)

(Marx and Hutter, 2000). GPAW (Grid Projected-

Augmented Method) and CPMD (Carr-Parrinello

Molecular Dynamics) are two very popular Ab Initio Mole-

cular Dynamics codes. AIMD-based simulations tend to be

highly complex with more stringent requirements for com-

putational and memory resources as compared to tradi-

tional classical molecular dynamics code. The emergence

of petascale machines like the IBM Blue Gene series has

resulted in significant provisions for running such AIMD

simulations efficiently and accurately. We thus choose two

applications from this field, as described below, for our

study of checkpointing trends on the IBM Blue Gene

supercomputer.

4.1.1 Grid-Based Projector-Augmented Wave Application. The

GPAW (Mortensen et al., 2005) application is a density

functional theory (DFT) based code that is built on the

projector-augmented wave (PAW) method and can use

real-space uniform grids and multigrid methods. In the

field of material and quantum physics, the Schrödinger

equation (Cazenave,1989) is considered an important

equation since it describes how the quantum state of a

physical system changes in time. Various electronic struc-

ture methods (Foresman and Frisch, 1996) can be used to

solve the Schrödinger equation for the electrons in a mole-

cule or a solid, to evaluate the resulting total energies,

forces, response functions, atomic structure, electron dis-

tributions, and other attributes of interest. The Projector

Augmented Wave method is an electronic structure

method for ab-initio molecular dynamics with full-wave

functions. The term PAW is often also used used to

describe the CP-PAW code developed originally by

Blochl (Blochl et al., 2003). An advantage of PAW over

other electronic structure methods is that PAW allows

end-users to get rid of core electrons and work with soft

pseudo-valence wave functions.

The GPAW application allows users to represent these

pseudo-wave functions on uniform real-space orthorhom-

bic grids. This makes it possible to run these modeling

codes on very large systems, the results of which could

be used to provide a theoretical framework for interpreting

experimental results and even to accurately predict the

material properties before experimental data actually

becomes available. More information on GPAW, can be

found on its website.

4.1.2 Carr-Parrinello Molecular Dynamics Application. The

CPMD (Marx and Hutter, 2000; Andreoni and Curioni,

2000) code is another electronic structure method and a

parallelized plane wave/pseudo-potential implementation

of density functional theory, which targets ab initio quan-

tum mechanical molecular dynamics plane wave basis sets.

The CPMD code is based on the Kohn-Sham (Koch and

Holthausen, 2001) DFT code, and it provides a rich set of

features that have been successfully applied to calculate

static and dynamic properties of many complex molecular

systems such as water, proteins, and DNA bases, as well as

various processes such as photoreactions, catalysis, and dif-

fusion. Reactions and interactions in such systems are too

complicated to be handled by classic molecular dynamics;

but they can be successfully handled in the Carr-Parrinello

method because they are calculated directly from the elec-

tron structure in every time step. CPMD’s flexibility and

high performance on many computer platforms have made

it an optimal tool for the study of liquids, surfaces, crystals,

and biomolecules.

CPMD runs on many computer architectures. Its

well-parallelized nature, based on MPI, makes it a popular

application that can take advantage of petascale systems,

motivating us to choose it for this study.

4.2 Computational Fluid Dynamics Applications

Computational Fluid Dynamics (CFD) is a method of ana-

lyzing fluid and gas flow in structures and surfaces (Laval,

2008) using numerical methods and algorithms. CFD appli-

cations are used to predict how fluids flow and to predict

the transfer of heat, mass, structural deformations, radia-

tion, chemical reactions of the fluids and the solids with

which they are in contact. Such CFD problems, which

involve millions of calculations, place an immense demand

on computing resources. The goal of a CFD application is

to obtain a valid solution for a given CFD problem (con-

strained by certain boundaries) in a reasonable amount of

time. With the availability of large scale machines like

Blue Gene/P, it is possible to achieve a very high accuracy

in computations involving CFD principles. CFD applica-

tions are used in various fields such as ocean modeling,

thermal hydraulics, polymer processing, weather simulation,

etc. In this paper, we study two popular CPD applications,

namely the Nek5000 application and the Parallel Ocean

Program (POP) application.

4.2.1 Nek5000. Nek5000 (Lottes and Fischer, 2004) is

an open source, spectral element Computational Fluid

Dynamics (CFD) code developed at the Mathematics and

Computer Science Division at Argonne National Laboratory.

The C and Fortran code, which won a Gordon Bell prize,

focuses on the simulation of unsteady incompressible

fluid flow, convective heat with species transport, and

Gupta et al. 5



magnetohydrodynamics. It can handle general two- and

three-dimensional domains described by isoparametric quad

or hex elements. In addition, it can be used to compute axi-

symmetric flows. Nek5000 is a time-stepping-based code and

supports steady Stokes and steady heat conduction. It also fea-

tures some of the first practical spectral element multigrid sol-

vers, which are coupled to a highly scalable, parallel, coarse-

grid solver.

The Nek5000 application was chosen for this study

because it is highly scalable and can scale to processor

counts of over 100,000, typical of petascale computing

platforms. In addition, the Nek5000 software is used by

many research institutions worldwide with a broad range

of applications, including ocean current modeling, combus-

tion, spatiotemporal chaos, the interaction of particles with

wall-bounded turbulence, thermal hydraulics of reactor

cores, and transition in vascular flows.

4.2.2 The Parallel Ocean Program. Parallel Ocean Program

(POP), developed at the Los Alamos National Laboratory,

is a three-dimensional ocean circulation model, designed

to study an ocean’s climate system. The POP application

is an integral part of the SPEC 2007 Benchmark suite.

The POP application has been used to perform the high-

est resolution global ocean simulation at Los Alamos

National Laboratory. POP is used in a variety of appli-

cations, including very high resolution eddy-resolving

simulations of the ocean and as the ocean component

of coupled climate models like the Community Climate

System Model.

POP is a descendant of the Bryan-Cox model, that has

been used frequently for ocean climate simulations. POP

has substantial improvements (Jones et al.,2005) over

the earlier model. The POP application solves the

three-dimensional equations for fluid motions on the

sphere under hydrostatic and Boussinesq approximation.

The spatial derivatives are computed using finite-

difference discretizations, which are formulated to handle

any generalized orthogonal grid on a sphere. These grids

include the dipole and tripole grids which shift the North

Pole singularity into land masses to avoid time step

constraints due to grid convergence. Time integration of

the model is split into two parts. The three-dimensional

vertically-varying (baroclinic) tendencies are integrated

explicitly using a leapfrog scheme. The very fast

vertically-uniform (barotropic) modes are integrated using

an implicit free surface formulation in which a precondi-

tioned conjugate gradient solver is used to solve for the

two-dimensional surface pressure. A wide variety of phys-

ical parameterizations and other features are also available

in the model.

Portability in POP is achieved by isolating all commu-

nication routines into a small set of modules which can be

modified for specific architectures (Jones et al., 2005).

POP has been validated on many platforms including the

IBM Blue Gene/L (Kerbyson et al., 2005). The combina-

tion of fine-granularity simulations, provided in POP, to

resolve ocean eddies (which can impact dynamics of the

ocean significantly) and long time scales required for

climate and deep ocean circulation necessitates many

computational cycles; making POP a good candidate for

our study on BG/P.

5 Theory and Experiments

In this section we describe the experimental methodology

used to conduct this study. We also describe our check-

pointing model and use it in conjunction with the observed

application memory trends to gain insight into optimal

checkpointing parameters.

The scope of our study measures and analyzes the fol-

lowing trends:

1. How the application memory usage varies over appli-

cation execution time, and

2. How the application memory usage varies with system

size.

These memory trends were observed for the GPAW,

CPMD, Nek5000, and the POP applications for varying

system sizes up to 65,536 cores. These trends were then

analyzed to determine the checkpoint frequency and check-

point duration using the optimum checkpoint model. In the

next few subsections we discuss the mechanism used to

measure the memory usage and the details of our check-

pointing model.

5.1 Recording Memory Usage Patterns

In the ‘‘full memory checkpointing’’ technique, a snapshot

of the entire process memory for every process is taken. In

our experiments, we run the various application codes

and record the text memory, data memory, stack memory,

and process-related information. The text memory contains

the instruction-specific code. The data memory (which

includes the heap memory) along with the stack memory,

manages the local, global, static, and declared variables,

as well as memory requested by various system (new, mal-

loc, calloc) calls. Note that applications running on the IBM

Blue Gene Compute Node Kernel (CNK) are statically

linked, resulting in the text memory portion remaining con-

stant during the lifetime of the application.

In our setup, a minimal amount of instrumentation code

was inserted at the startup of each application that could

record the memory usage for a process. An optimal method

to achieve this, transparently to the application, would have

been through constructor methods made available in a sta-

tically linked external library. However, the BG/P compi-

lers, provided by IBM, do not provide this option. As an

alternative, we invoke this measuring code soon after the

entry point of the application.

From an implementation perspective, the memory-usage

measuring code is based on a timer function that sets up a

timer interrupt for a certain defined interval. As shown in

Figure 3, the interrupt handler method when invoked mea-

sures the amount of memory used and records it. The getru-

sage() function, available in POSIX.1-2001, provides the

measurements of the resources (indicated in Table 1) used

by the current process. In our case, we use this routine in

6 The International Journal of High Performance Computing Applications 00(000)



our instrumentation code, to measure the resident memory

size (indicated by the ru_maxrss field in Table 1) for

the process. The resident set size of a process refers to

the amount of physical memory the process is using. Since

the CNK operating system does not support virtual

memory, the getrusage() routine takes into consideration

only the currently active pages of the process.

5.2 The Optimum Checkpointing Model

Runtime on large systems like Intrepid is a valuable com-

modity, which users wish to use in the most optimal man-

ner. While checkpointing is a necessary activity, users wish

to devote only a certain percentage of application execution

time to this procedure. Knowledge about checkpoint dura-

tion and frequency, based on such constraints, would help

the user make more informed decisions and tradeoffs

between their resource usage and application resiliency.

We attempt to provide this information through the ‘‘opti-

mum checkpoint model’’ discussed in this section. Our

checkpoint model has been largely influenced by past

research on other checkpointing models (Young, 1974;

Daly, 2006) in this field.

To arrive at the analytical model of the optimum

checkpointing scheme on the Blue Gene/P system, let us

consider an example application as shown in Figure 4. Like

a majority of scientific applications, this application has a

constant memory pattern for a majority of its execution

period. The figure is a diagrammatic representation of the

application with the checkpointing feature enabled.

Here T is the total execution time, including the time

required to perform all the checkpoints; Ts is the time

required to complete one full checkpoint operation; N is the

optimum number of checkpoints to be performed during

the length of the application execution; and t is the opti-

mum time interval between two checkpoints when the

application resumes execution.

Let n be the number of cores the application is run on,

M be the mean memory usage per core, and B be the unidir-

ectional bandwidth from all the compute nodes to storage

disks that is available to the entire application. Based on

these parameters, the time TS required to save the state of

all processes (cores) during a single checkpoint can be

given by:

Ts ¼
M � n

B
: ð1Þ

If TA is the actual length of time the application needs to

complete without checkpointing enabled, the total applica-

tion runtime with checkpointing enabled, i.e. T , is given by

T ¼ TA þ ðN � TsÞ: ð2Þ

Note that, for long running applications on large systems,

end-users tend to have information on the total execution

times (i.e. TA) based on historical data or past runs

performed. Frequently, users wish to devote only a certain

Figure 3. Instrumentation code.

Table 1. The rusage Structure

Type Field Function

Struct timeval ru_utime; user time used
Struct timeval ru_stime; system time used
Long ru_maxrss; maximum resident set size
Long ru_ixrss; integral shared memory size
Long ru_idrss; integral unshared data size
Long ru_isrss; integral unshared stack size
Long ru_minflt; page reclaims
Long ru_majflt; page faults
Long ru_nswap; Swaps
Long ru_inblock; block input operations
Long ru_oublock; block output operations
Long ru_msgsnd; messages sent
Long ru_msgrcv; messages received
Long ru_nsignals; signals received
Long ru_nvcsw; voluntary context switches
Long ru_nivcsw; involuntary context switches

Gupta et al. 7



percentage, X , of the application execution time, TA, for

checkpointing (note that in such situations, users increase

the reservation time by X% as well). Thus, the overall exe-

cution time of an application with checkpoints enabled can

also be described as:

T ¼ TA þ ðX � TAÞ: ð3Þ

Based on equations (1), (2), and (3), one can estimate the

total number of checkpoints, N , possible as follows:

TA þ ðN � TsÞ ¼ TA þ ðX � TAÞ ð4Þ

N � Ts ¼ X � TA: ð5Þ

Therefore, N can be computed as follows:

∴ N ¼ XTAB

Mn

� �
: ð6Þ

We can, thus, derive the number of optimum checkpoints

based on: (a) the percentage of the application execution

time dedicated for checkpointing, (b) the bandwidth from

the compute nodes to the file servers, and (c) the total

amount of data to be checkpointed. Having this information

provides users the flexibility to choose areas they wish to

checkpoint. In practice, it may be difficult to predict an

accurate value for B since several applications may use the

I/O and network resources at the same time. However, the

user can make educated guesses based on their system size

and file system architecture, as we show in the next section.

(On a side note, one might speculate that since bandwidth is

an important factor in determining the number of check-

points, it might be worthwhile spreading the problem

among more nodes [for example, by running a 16K process

job on 16K nodes; instead of 4K nodes with four cores

each] to increase the I/O bandwidth and reduce the memory

usage per core. In practice, this turns out to be an expensive

idea since end-users will typically get charged for cumula-

tive processing cycles [i.e. a user would be charged for time

on 16K nodes � 4 cores each ¼ 64K cores; as compared

with just 16K cores] for such jobs.)

Finally, the frequency of checkpointing or the time inter-

val between two checkpoints can be calculated as follows:

t ¼ TA

N
: ð7Þ

Simplifying the above equation with substitutions from

equation (6)

t ¼ Mn

XB
: ð8Þ

Having checkpoint interval information makes it easier to

develop independent libraries that can be compiled into the

application and can used timer-based methods to check-

point periodically.

5.3 Application Evaluation

In this section, we carry out the evaluation of the GPAW,

CPMD, Nek5000, and the POP applications on the Intrepid

system.

All the above applications are strong-scaled problems.

Strong scaling is a methodology used where the overall

problem size is kept constant but the number of processors

that the application is executing on is varied. (For weak

scaling, the problem size per processor is kept constant and

as the number of processors is increased, the problem size

is increased as well.)

Applications on the Intrepid system can be run in three

modes: (a) SMP mode: In this mode, only one process, with

a maximum of four threads can be launched on each

compute node with each thread using a core. (b) Dual

mode: In this mode, two processes with a maximum of two

threads each can be launched with each thread using a

core. The 2 GB is equally divided between the two

processes. (c) Virtual mode: In this mode, a single process

per core (i.e. four processes per compute node) can be

launched. The 2 GB memory is equally divided among all

the four processes.

Figure 4. Application execution with checkpoint enabled. Figure 5. GPAW memory consumption for small systems.

Figure 6. GPMD memory consumption for large systems.

8 The International Journal of High Performance Computing Applications 00(000)



The GPAW application (version 0.4) being evaluated,

consists of 256 water molecules with 2,048 electrons,

1,056 bands, and 1123 grid points, with a grid spacing of

0.18. This application was run on the Intrepid system, with

the compute node count varying from 32 cores to 1,024

cores. The problem size was kept constant between all runs

of the application. Note that memory in GPAW is dynami-

cally allocated. The application was run in SMP mode with

a single thread. Figure 5 shows the memory trends for up to

256 cores and Figure 6 shows it for 512 and 1,024 cores.

The x-axes show the total application execution time and

the y-axes show the memory usage per core. As can be seen

from the graphs, the memory requirements for the GPAW

application grow relatively slowly against the total time exe-

cution as the system size increases. We also observe that the

application execution time decreases with increasing system

size. The graph for GPAW clearly shows the decrease in

memory footprint per core as the number of processors (sys-

tem size) increases. The memory usage per core remains

constant once the peak is attained, indicating a constant pos-

sible checkpointing time in later stages of the code.

Figure 7 shows memory trends for the CPMD applica-

tion. The CPMD application was run in SMP mode with

four threads on a system size of 8,192 cores. While the

CPMD memory consumption trend is similar to the GPAW

application, we notice that CPMD memory consumption

increases a little slowly as system size increases. The

important difference is that the memory consumption for

the majority of the execution time remains the same irre-

spective of the system size.

Figure 8 shows the memory consumption trend for

Nek5000. The Nek5000 application was run in virtual

mode on a system size ranging from 8,192 cores to

32,768 cores. The 3–D graph in Figure 8 shows the system

size on the z-axis and the application execution time and

memory usage (for the various system sizes), on the x-axis

and y-axis, respectively. In Nek5000, memory is allocated

as soon as the application starts up and remains the same

for the execution lifetime of the process, irrespective of

the number of processors the application is finally meant

to run on or the size of the problem set assigned to a

particular node. Like CPMD, Nek5000 memory consump-

tion does not vary with a change in system size.

Figure 9 shows memory consumption for the POP ocean

modeling application. The POP application was run in

virtual mode for system sizes ranging from 4,096 cores to

65,536 cores. The trends seen for the POP application show

that memory usage increases rapidly once the application

starts up and it remains constant for the lifetime of the

application.

5.4 Computing Optimum Checkpointing Values

We briefly discussed the I/O and the network infrastructure

of the Intrepid system in Section 3. As discussed, the band-

width between the 10-Gigabit Ethernet network and the file

servers is theoretically 2 Tbps. When an application uses

the entire BG/P system, all the 640 I/O nodes can theoreti-

cally deliver up to a maximum of 4.25 Tbps. This indicates

that the bandwidth bottleneck for the maximum data

throughput lies more towards the file servers than the I/O

nodes when the system is running at full capacity.

However, since our study involves only using up to 16

racks (65,536 cores) out of the 40 racks (163,840 cores)

available, we only use a maximum of 256 I/O nodes, thus

limiting the I/O node bandwidth to 1,740 Gbps (i.e.

256� 6:8 Gbps).

Moreover, as we are utilizing only a fraction of the total

system capacity, the available file server I/O bandwidth for

our runs is also limited by the other applications that are

performing I/O bound operations. Each I/O node is

equipped with a network interface capable of delivering

6.8 Gb/s. We based our optimum checkpoint value calcula-

tion on two cases. In the first case (B30), we assume that we

Figure 7. CPMD memory consumption.
Figure 8. Nek5000 memory consumption.

Figure 9. POP memory consumption.

Gupta et al. 9



are able to makes use of 30% of the total bandwidth pro-

vided by each I/O node interface. In the second case

(B60), we optimistically assume that we make use of 60%
of the total bandwidth provided by each I/O node interface.

On the Intrepid system, the I/O node to compute node

ratio is 1:64. Each compute node consists of a quad-core

processor. When an application is run in the virtual node

mode or SMP mode with four threads, the 64 compute

nodes provide a total of 256 cores. The Nek5000 and POP

applications were run in virtual node mode and the CPMD

application was run in SMP mode with four threads.

Assuming, BI=O to be the total bandwidth available per I/

O node and n to be the number of cores the application is

running on, the total bandwidth available to the Nek5000

application, the CPMD application, and the POP applica-

tion can be computed by:

B ¼ n

64� 4

� �
� BI=O: ð9Þ

The GPAW application is executed in SMP mode with one

thread, with only core being used on each compute node.

The total bandwidth available to the GPAW application can

be computed by:

B ¼ n

64

� �
� BI =O: ð10Þ

For case 1 with 30% of the total bandwidth available, we

have BI=O ¼ 0:30� 6:8Gb=s ¼ 0:30�6800
8

¼ 255 MB/s.

For case 2 with 60% of the total bandwidth available, we

have BI=O ¼ 0:60� 6:8Gb=s ¼ 0:60�6800
8

¼ 510 MB/s.

Based on the the equations from Section 5.2 and the

observations in Section 5.3, we can compute the optimum

Table 2. Computed Values for GPAW

n M TA X

30% Bandwidth 60% Bandwidth

B30 N30 t30 B60 N60 t60

32 1650 3168 0.3 127.5 2 1584 255 4 792
64 1000 1914 0.3 255 2 957 510 4 478.5
128 650 1386 0.3 510 2 693 1020 5 277.2
256 475 990 0.3 1020 2 495 2040 4 247.5
512 400 858 0.3 2040 2 429 4080 5 171.6
1024 350 726 0.3 4080 2 363 8160 4 181.5

Table 3. Computed Values for CPMD

n M TA X

30% Bandwidth 60% Bandwidth

B30 N30 t30 B60 N60 t60

2048 51.82 220 0.4 2040 1 220 4080 3 73.33
4096 51.85 330 0.4 4080 2 165 8160 5 66
8192 51.87 440 0.4 8160 3 146.67 16320 6 73.33

Table 4. Computed Values for Nek5000

n M TA X

30% Bandwidth 60% Bandwidth

B30 N30 t30 B60 N60 t60

8192 10.52 1080 0.05 8160 5 216 16320 10 108
16384 10.52 1050 0.05 16320 4 262.5 32640 9 116.67
32768 10.52 1000 0.05 32640 4 250 65280 9 111.11

Table 5. Computed Values for POP

n M TA X

30% Bandwidth 60% Bandwidth

B30 N30 t30 B60 N60 t60

4096 25.13 960 0.07 4080 2 480 8160 5 192
8192 25.13 960 0.07 8160 2 480 16320 5 192
16384 25.13 900 0.07 16320 2 450 32640 4 225
32768 23.57 900 0.07 32640 2 450 65280 5 180
65536 23.57 900 0.07 65280 2 450 130560 5 180

10 The International Journal of High Performance Computing Applications 00(000)



checkpointing parameter values for each of these

applications.

Let us assume that the user is willing to dedicate 3% to

7% of the application execution time for performing check-

point operations. So we have X varying from 0.03 to 0.07

for the different applications.

Based on equations 6, 8, 9 and 10 and the graphs

obtained in the previous section, we compute the optimum

checkpointing parameters for the applications and tabulate

them. Tables 2, 3, 4, and 5 show the calculated checkpoint-

ing values for the four applications where n is the number

of cores, M is the average memory usage per core in mega-

bytes, TA is the application execution time in seconds

(milliseconds for the CPMD application), B is the unidirec-

tional bandwidth from all the compute nodes to storage

disks in MB/s, N is the number of optimal checkpoints, and

t is the checkpoint interval in seconds (milliseconds for

the CPMD applications).

Table 2 shows the various checkpoint values for node

counts ranging from 32 to 1,024 nodes and X set to 3%.

We see that for B30, the number of optimal checkpoints is

2 for all node ranges and for B60, the optimal checkpoint

count lies between 4 and 5. Thus, we see that the check-

point frequency will heavily depend on the available I/O

bandwidth, which can be challenging to determine.

The remaining tables show similar calculations for the

other applications.

6 Conclusions and Future Work

In this paper, we discussed checkpointing trends for

applications running on leadership class machines such

as the IBM Blue Gene/P Intrepid system at Argonne National

Laboratory. Ranked #5 on the Top500 November 2008

ranking, the Intrepid has 163,840 processors and a peak

performance of 557 teraflops. We also presented an analytical

model for efficiently computing the optimum checkpoint

frequencies and intervals and studied four applications: the

Grid-Based Projector-Augmented Wave application

(GPAW), the Carr-Parrinello Molecular Dynamics applica-

tion (CPMD), the Nek5000 computational fluid dynamics

application, and Parallel Ocean Program (POP). We also

showed with the help of experimental data and computed

values how application scaling characteristics influence

checkpoint-related decisions.

Our current work considered ‘‘full checkpointing,’’

where the entire program state of the processes is stored

during the checkpoint operation. We chose this approach

because the IBM checkpointing library currently supports

only full checkpointing. We are conducting a similar

study for incremental checkpointing of applications on

IBM BG/P, which will be useful for incremental check-

pointing libraries built in the future for this machine. Our

current study has been conducted on up to 65,536

processors of the Intrepid system. Further research in this

direction will be to profile the content of the application

memory in order to place checkpoints at critical junctures

of the code.

Note

1. This gure was taken from the ‘‘IBM System Blue Gene/P

Solution: Blue Gene/P Application Development’’ redbook

(Sosa and Knudson, 2007).

Acknowledgments

This work was supported in part by the Office of Advanced Sci-

entific Computing Research, Office of Science, U.S. Depart-

ment of Energy, under Contract DE-AC02-06CH11357. This

research also used resources of the Leadership Computing

Facility at Argonne National Laboratory, which is supported

by the Office of Science of the U.S. Department of Energy

under contract DE-AC02-06CH11357.

References

Andreoni, W. and Curioni, A. (2000). New Advances in

Chemistry and Materials Science with CPMD and Parallel

Computing. Parallel Computing 26(7-8): 819–842.

Barigazzi, G. and Strigini, L. (1983). Application-Transparent

Setting of Recovery Points. In FTCS.

Blochl, P., Forst, C. and Schimpl, J. (2003). Projector Augmented

Wave Method: Ab Initio Molecular Dynamics with Full Wave

Functions. 26-1.

Car, R., Parrinello, M., Schmidt, J., Sebastiai, D. et al. (1985).

Unified Approach for Molecular Dynamics and Density-

Functional Theory.

Cazenave, T. (1989). An Introduction to Nonlinear Schrodinger

Equations.

Daly, J. T. (2006). A Higher Order Estimate of the Optimum

Checkpoint Interval for Restart Dumps. Future Generation

Computer Systems 22(3): 303–312.

Desai, N., Bradshaw, R., Lueninghoener, C., Cherry, A., Coghlan,

S. and Scullin, W. (2008). Petascale System Management

Experiences. In LISA.

Dongarra, J., Meuer, H. W. and Strohmaier, E. Technical report.

Dongsheng, W., Weimin, Z., Dingxing, W. and Meiming, S. Check-

pointing and Rollback Recovery for Network of workstations.

Science in China Series E: Technological Sciences 42: 207–214.

Foresman, J. and Frisch, E. (1996). Exploring Chemistry with

Electronic Methods.

GPAW Website: https://wiki.fysik.dtu.dk/gpaw

Guohong, C. and Singhal, M. (1998). On Coordinated Check-

pointing in Distributed systems. In TPDS, vol. 9-12,

pp. 1213–1225.

IBM Blue Gene Team. (2008). Overview of the IBM Blue/Gene

Project. 52-1/2.

Jones, P. W., Worley, P. H., Yoshida, Y., White III, J. B. and

Levesque, J. (2005). Practical performance portability in the

Parallel Ocean Program (POP). Concurrency and Computation:

Practice and Experience 17(10): 1317–1327.

Kerbyson, Darren, J. and Jones, P. W. (2005). A Performance

Model of the Parallel Ocean Program. International Journal

of High Performance Computing Applications 19(3): 261–276.

Koch, W. and Holthausen, M. (2001). A Chemist’s Guide to

Density Functional Theory.

Koo, R. and Toueg, S. (1986). Checkpointing and Rollback-

Recovery For Distributed Systems. In ACM Fall Joint

Computer Conference.

Gupta et al. 11



Laval, B. (2008). Numerical Computation of Internal and External

Flows: The Fundamentals of Computational Fluid Dynamics.

Li, C. and Fuchs, W. (1990). CATCH - Compiler Assisted Tech-

niques for Checkpointing. In FTCS.

Liu, Y., Nassar, R., Leangsuksun, C., Paun, M. and Scott, S. L.

(2008). An Optimal Checkpoint/Restart Model for Large Scale

High Performance Computing System, pp. 1–9.

Lottes, J. and Fischer, P. (2004). Hybrid multigrid/Schwarz algo-

rithms for the spectral element method. Journal of Scientific

Computing 45–78.

Marx, D. and Hutter, J. (2000). Ab-initio Molecular Dynamics:

Theory and Implementation. NIC series, Vol. 3.

Mortensen, J. J., Hansen, L. B. and Jacobsen, K. W. (2005). Real-

space grid implementation of the projector augmented wave

method. Phys. Rev. B 71(3): 035109, Jan.

Plank, J. (1997). An overview of checkpointing in uniprocessor

and distributed systems, focusing on implementation and per-

formance. Technical Report UT-CS-97-372. University of

Tennesse, Knoxville. Available at http://www.cs.utk.edu/

plank/plank/papers/CS-97-372.html.

Plank, J., Beck, M., Kingsley, G. and Li, K. (1995). Libckpt:

transparent checkpointing under Unix. In Usenix Winter Tech-

nical Conference, pp. 213–223.

The Parallel Ocean Program (POP) Overview, website: http://

climate.lanl.gov/Models/POP

Sancho, J., Petrini, F., Johnson, G. and Frachtenberg, E. (2004).

On the Feasibility of Incremental Checkpointing for Scientific

Computing. In IPDPS.

Schulz, M., Bronevetsky, G., Fernandes, R., Marques, D., Pingali,

K. and Stodghill, P. (2004). Implementation and evaluation of

a scalable application-level checkpoint-recovery scheme for

MPI programs. In SC’04: Proceedings of the 2004 ACM/IEEE

conference on Supercomputing, p. 38, Washington, DC, USA.

IEEE Computer Society.

Silva, L. and Silva, J. (1998). System-Level versus User-Defined

Checkpointing. In SRDS.

Snir, M. and Otto, S. (1998). MPI—The Complete Reference: The

MPI Core.

Sosa, C. and Knudson, B. (2007). IBM System Blue Gene/P Solu-

tion: Blue Gene/P Application Development. Available at

http://www.redbooks.ibm.com/abstracts/sg247287.html

Young, J. W. (1974). A first order approximation to the optimum

checkpoint interval. Communications of the ACM 17(9): 530–531.

Zomaya, A. (1995). Parallel and Distributed Computing Handbook.

Author’s Biographies

Rinku Gupta is a senior scientific developer at Argonne

National Laboratory. In the past 10 years, she has worked

on several aspects of system and infrastructure develop-

ment for enterprise high-performance computing. She

received her MS degree in computer science from Ohio

State University in 2002. Her research interests primarily

lie towards middleware libraries, programming models,

and fault tolerance in high-end computing systems. She is

currently involved in researching coordinated fault toler-

ance techniques for system software on current petascale

machines and emerging exascale supercomputers.

Harish Naik currently works as a pre-doctoral researcher at

the Argonne National Laboratory’s Mathematics and Com-

puter Science division. He graduated from the University of

Illinois at Chicago with a master’s degree in computer sci-

ence in the fall of 2008. He finished his bachelor’s degree

in computer science and engineering from R. V. College of

Engineering, Bangalore in the year 2004. His research

interests are broadly in the area of system software for large

scale machines and parallel programming models. Particu-

larly his interests lie in the areas of operating systems with

respect to design and implementation, performance mea-

surement, and noise evaluation. He is also involved in the

design and implementation of policy definition and execu-

tion mechanisms for fault-tolerance and recovery enabled

resource managers and software components.

Pete Beckman is a recognized global expert in high-end

computing systems. During the past 20 years, he has

designed and built software and architectures for large-

scale parallel and distributed computing systems. After

receiving his Ph.D. degree in computer science from Indiana

University, he helped found the university’s Extreme Com-

puting Laboratory, which focused on parallel languages,

portable run-time systems, and collaboration technology.

In 1997 he joined the Advanced Computing Laboratory at

Los Alamos National Laboratory, where he founded the

ACL’s Linux cluster team and launched the Extreme Linux

series of workshops and activities that helped catalyze the

high-performance Linux computing cluster community.

He also has been a leader within industry. In 2000 he

founded a Turbolinux-sponsored research laboratory in

Santa Fe that developed the world’s first dynamic provi-

sioning system for cloud computing and HPC clusters. The

following year, he became vice president of Turbolinux’s

worldwide engineering efforts, managing development

offices in the US, Japan, China, Korea, and Slovenia.

He joined Argonne National Laboratory in 2002, as Director

of Engineering, and later as Chief Architect for the

TeraGrid, he designed and deployed the world’s most

powerful grid computing system for linking production

HPC computing centers for the National Science Foundation.

After the TeraGrid became fully operational, he started a

research team focusing on petascale high-performance

software systems, Linux, and the SPRUCE system to provide

urgent computing for critical, time-sensitive decision support.

In 2008 he became the director for the Argonne Leadership

Computing Facility, which is home to one of the world’s

fastest open science supercomputers in production. He also

leads Argonne’s exascale computing strategic initiative and

explores system software and programming models for

exascale computing.

12 The International Journal of High Performance Computing Applications 00(000)



To be removed before publishing:

The submitted manuscript has been created by UChicago Argonne, LLC, Opera-
tor of Argonne National Laboratory (”Argonne”). Argonne, a U.S. Department
of Energy Office of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself, and others acting
on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said arti-
cle to reproduce, prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the Government.

1


