
 1

Programmatic Access to the SEED Data Via the Network

Authors and Affiliations
R. Overbeek,3*

 R. Aziz,1, 4 D. Bartels,1 T. Disz,1, 2 R. Edwards,1, 4 S. Gerdes,3 C.
Henry,1, 2 G. Olsen,5 R. Olson,1, 2 A. Osterman,6 T. Paczian,2 B. Parrello,3 G.D.
Pusch,3 A. Rodriguez,2 R. Stevens,1, 2 O. Vassieva,3 V. Vonstein,3 A. Wilke,2 and
O. Zagnitko3

1Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL 60439
2Computation Institute, University of Chicago, Chicago, IL 60637
3Fellowship for the Interpretation of Genomes, Burr Ridge, IL, 60527
4Department of Computer Science, San Diego State University, San Diego, CA
92182
5Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana,
IL 61801
6The Burnham Institute, San Diego, CA 92037
*Corresponding Author

Abstract

The SEED project is a cooperative gene annotation effort initiated in 2003.
Researchers from a number of academic and private institutions built the SEED,
an integration of genomic data that now contains almost a thousand complete or
nearly complete genomes, a constantly updated set of curated annotations
embodied in a large and growing collection of encoded subsystems, and a
derived set of protein families. All of the SEED code and data are made freely
available. Until recently, however, maintaining current copies of the SEED code
and data at remote locations has been a pressing issue. This paper describes
four network-based servers that address this issue. Specifically, the servers are
intended to expose the data in the underlying relational database, support basic
annotation services, offer programmatic access to the capabilities of the RAST
annotation server, and provide access to a growing collection of metabolic
models that support flux balance analysis. Moreover, the four servers offer
access to regularly updated data, the ability to annotate prokaryotic genomes,
the ability to create metabolic reconstructions and detailed models of
metabolism, and access to hundreds of existing metabolic models. Our goal is to
support a framework upon which other groups can build independent research
efforts. Large integrations of genomic data represent one of the major intellectual
resources driving research in biology, and we believe that programmatic access
to the SEED data will provide significant utility to a broad collection of potential
users.

 2

Author Summary

This paper describes four servers that offer programmatic access to the
genomics-related data maintained and distributed via the SEED. Access to the
servers, the underlying data, and the code is free to all users. The servers offer
convenient programmatic access to a relational database containing
approximately 1,000 curated genomes. For several years we have offered
network-based interactive access to the SEED data via a number of web sites.
This paper announces a facility that supports remote programmatic access to the
underlying SEED data and services, allowing users to build independent
research efforts upon the work being done to support and extend the SEED. The
related RAST annotation server now supports the annotation of 300-400
genomes per month, and we support programmatic data submission and retrieval
of results. The servers also offer access to hundreds of metabolic models of
prokaryotic genomes and the ability to perform flux balance analysis.

Introduction

In 2003, researchers from several institutions decided to cooperatively construct
an integration of genomic data that could be used to support a wide variety of
research efforts, including The Project to Annotate 1000 Genomes[1]. The intent
was to build a common infrastructure that could be shared by the groups. Each
group would seek its own funding, contribute to the common infrastructure, and
pursue its own goals. The development of the systems architecture and software
was done at a number of institutions, with the Fellowship for Interpretation of
Genomes (FIG) and Argonne National Laboratory coordinating the effort. This
effort was called the SEED project, and the resulting integration is called the
SEED.

Motivation
The SEED project focuses on development of technology to support rapid, high-
volume, accurate annotation of genomes. Three advances are of central
importance:

1. The subsystems strategy was adopted as the guiding principle of the
effort [2]. This strategy centers on leveraging expert annotations to
define a small set of functional roles in all genomes rather than all the
functional roles in a small number of genomes.

2. The subsystem effort provided a convenient framework for the curation

of a set of protein families that became known as FIGfams [3]. The
goal was to produce families that contained only isofunctional
homologs—that is, each family was intended to contain only
homologous proteins playing the same functional role. When errors

 3

were detected, corrections were made by updating the underlying
subsystems and then regenerating the FIGfams. The rapid evolution of
the FIGfam collection has possible made a number of the services
described below.

3. Using the subsystems and FIGfams as the underlying technology, the
RAST (Rapid Annotations using Subsystems Technology) server was
developed and made available in 2007. Thousands of prokaryotic
genomes have been annotated with the RAST system, and hundreds
more are annotated each month. The RAST system now has several
thousand registered users; use of the system is free to anyone, but
user registration is required preserve the privacy of each user’s
genomes.

In addition to these developments relating to the annotation of prokaryotic
genomes, several groups have focused on the development of accurate models
of metabolism [4, 5]. This work has made it possible to generate hundreds of
detailed metabolic models that can be used to support flux-based analysis.

These advances over the past six years have motivated members of the SEED
project to provide straightforward, convenient programmatic access to the data
developed during the project.

Goals and Architecture of the SEED Servers
In the initial stages of the SEED project, a commitment was made to make the
code and data freely available. However, it was not completely clear how best to
achieve this goal. Initially, the project used a distributed architecture in which
numerous SEED installations were maintained at distinct institutions, and each of
these peers could archive and exchange subsystems with one another either
directly or via a central server. While support of numerous distinct SEED systems
has continued, a major disadvantage of the peer-to-peer approach has been the
effort required to continually update and integrate a growing set of data and
systems software. One of the installations, the Annotators’ SEED, has become
the de facto standard used to centralize and synchronize annotations made on
remote machines. As errors and conflicts in annotation were detected, they were
rapidly corrected on the Annotators’ SEED, and the underlying collection of
subsystems has continued to be maintained and developed. Thus, the
Annotators SEED became the central resource for updating remote copies of the
system. A read-only mirror of the Annotators’ SEED is maintained by Argonne to
provide all users immediate public access to the data (see
http://www.theseed.org). A second, writable, public mirror at the University of
Chicago is also supported for users to construct their own subsystems and to
archive their results, which may then be incorporated into the Annotators’ SEED
for widespread distribution (http://theseed.uchicago.edu/FIG/index.cgi).

 4

With this centralized data model, code development to support the SEED was
done in a distributed framework coordinated through a shared CVS, while
curation and annotation used a centralized architecture. However, users of the
SEED often desire programmatic access to the latest data, and the lack of a
convenient API has hampered effective collaboration, as well as limiting the utility
of the data outside the cooperating institutions.

To address this issue, we initially provided a Simple Object Access Protocol
(SOAP) server for access to data in the SEED database {ref: Disz et al;
http://ws.theseed.org/}. Several problems were encountered with the day-to-day
use of that service. In particular, the server abstraction layer consisted of large,
monolithic Perl modules that were loaded on each invocation, resulting in a
noticeable delay in response to each call made to the server. The encapsulation
of the results in SOAP XML also conferred significant parsing and transmission
overhead on the data being transferred. Moreover, each operation was atomic
and required a single argument that was processed and a single datum returned.
In combination, trivial requests such as retrieving all the functions for all of the
proteins in a genome took unacceptably long to complete, requiring a separate
call for each protein, transferring of many kilobytes of data over the network, and
the instantiation of many threads on the server.

The new approach presented here is more extensive and more extensible than
our SOAP-based approach. These second-generation servers have significantly
lower server-side delay for invocation, as well as significantly reduced network
overhead, thus providing more responsive access. Furthermore, the new servers
provide a more efficient and flexible computing approach because they are
designed to process batches of requests at a time, streaming the responses as
they complete. Thus, complex queries can be combined with minimal network
and server overhead. The services we provide offer access to the integrated
genomic data, subsystems, FIGfams, co-occurrence data, annotation services,
RAST annotation submission and job retrieval, and metabolic modeling. All client
modules, code examples and documentation are online at
http://www.theseed.org/servers/. We are continually expanding these services
and improving the underlying documentation.

Results: The Servers and the Services

We describe four servers that we collectively refer to as the SEED servers.
These servers currently support approximately 100 methods that can be invoked
to extract data and services (see Figure 1).

We maintain server code that resides at the location of the SEED data. Users
download a distribution with their choice of runtime environment (currently we
support Perl and Java integrations) that they may use to write programs to

 5

access SEED data or perform a number of common bioinformatic tasks using a
supplied set of preprogrammed scripts.
The following subsections describe the four servers in more detail.

The Sapling Server
The Sapling Server offers access to the underlying integration of genomic data—
including genomes, genes, proteins, annotations, subsystems, FIGfams, and co-
occurrence data.

On the server side, the Sapling Server accesses a database implemented by an
entity-relationship data model (ERDB). The ERDB model is defined by a set of
XML metadata describing the entities, relationships, and attributes in a form that
can be used to generate queries as well as the documentation and a database
diagram (see the web site
http://servers.theseed.org/figdisk/FIG/ErdbDocWidget.cgi?database=Sapling).
Therefore, the public description of the database remains synchronized with the
internal data structures—an important benefit in a database designed for public
use.

The Sapling Server is architected such that new features can be added quickly.
New data tables may be added by updating the XML metadata, which is
processed by a special load program to build the initial database tables. The list
of services offered is maintained on the server, so that client software does not
need to be updated in order for users to access new features. A web application
that converts general database queries to Perl code helps speed implementation
of new functions.

A database query is specified by naming the entities and relationships along a
path through the ERDB diagram, as shown in Figure 2, along with a list of the
data items to be returned and a filter clause that limits the results to the desired
data objects (e.g., a particular genome or identifier). The Sapling Server allows
direct queries against the database; however, the a set of common data requests
are implemented as direct server functions. Sapling Server functions typically
accept multiple input values within a single call, allowing a client to minimize the
number of requests that must be made to the server. Additional input parameters
allow a client to modify the query, for example, to request that the output be in
FASTA format or to ask for protein rather than DNA sequences.

A sample ids_to_sequences request is shown in Figure 3a. The user specifies
four identifiers, and the server returns them as a table (actually a Perl hash) with
the associated DNA sequences attached.

The Sapling Server currently supports over 50 functions. These functions are
listed on a web page generated automatically from the latest code, ensuring that
the documentation remains up to date. A sample showing the web page
description of ids_to_sequences is shown in Figure 3b.

 6

The Annotation Support Server
The Annotation Support Server supports two distinct capabilities relating to the
annotation of genomes: de novo annotation of either protein or DNA sequences
and aggregation of annotations into subsystems. The Annotation Support Server
accepts either DNA or protein as input and, depending on the user options, can
either use existing gene calls or invoke standard gene callers (e.g., GLIMMER-3
for protein-encoding genes). The server also houses newly developed high-
performance methods to assign function to protein sequences or regions of
genomic DNA sequences, based on FIGfams and a unique use of K-mers that
act as FIGfam signatures (manuscript in preparation). Below is an example
application using these methods that produces a relatively accurate annotation of
most microbial genomes within a few minutes. To evaluate the technology,
however, users are encouraged to simply submit a known prokaryotic genome to
the server for annotation.

Sequences can be submitted to the server in three ways:

1. Programs can directly access the services needed to call genes and
assign functions to the proteins encoded within the genome.

2. If the protein-encoding genes have already been identified, the program
can assign functions to these sequences. An example program is provided
in the download library and is described at
http://servers.theseed.org/sapling/server.cgi?pod=svr_assign_using_figfa
ms.pl.

3. A program can take as input fragments of DNA (e.g., from a metagenomic
sample) and use the services to detect pieces of protein-encoding genes.
Again, an example program is provided in the download library and is
described at
http://servers.theseed.org/sapling/server.cgi?pod=svr_assign_to_dna_usin
g_figfams.pl).

The server also provides the ability to take as input a set of functional roles (in
the controlled vocabulary established by the subsystem collection) and to
produce a detailed estimate of which subsystems are represented by those
functional roles. That is, one can also use the server to develop a metabolic
reconstruction based on the functional roles that have been assigned to the
protein-encoding genes.

The RAST Submission/Retrieval Server
The RAST Submission/Retrieval Server supports programmatic submission of
genomes to the RAST server, retrieval of job status, and retrieval of the final set
of annotations. We have run over 1,000 distinct prokaryotic genomes through the
RAST server using preprogrammed scripts that are available in the distribution.
These scripts and the underlying API enable users to submit genomes to the
RAST server, test the status of submitted jobs, and retrieve the output (i.e.,
annotated genomes).

 7

Three types of input are supported:

1. A FASTA file of contigs that make up the genome to be annotated
2. A file of GenBank formatted entries (with the option to retain the gene calls

as given in the uploaded files)
3. ENTREZ ID or genome project ID.

In the last case, the tools we provide will query NCBI for the set of contigs that
make up the sequencing project. That set of IDs then becomes the input to the
RAST server.

The Metabolic Modeling and Flux Balance Analysis Server
The Metabolic Modeling and Flux Balance Analysis (FBA) Server provides
programmatic remote access to the SEED biochemistry and genome-scale
metabolic model database. The SEED biochemistry database integrates into a
single, nonredundant set all the reactions and compounds found in the KEGG
database, together with additional curated reactions and compounds [6] and a
continuously growing number of published genome-scale metabolic models.
Currently this database consists of 15,285 compounds and 12,827 reactions. For
compounds, the database also includes database IDs from KEGG and models,
names/synonyms, mass, molecular formulas, molecular charge, and estimated
Gibbs free energy of formation [7]. For reactions, the database includes database
IDs from KEGG and models, names/synonyms, stoichiometry, EC numbers,
pathways, and estimated Gibb free energy change of reactions [7]. Compound
charge, formula, formation energies and reaction stoichiometry are all calculated
for aqueous conditions at neutral pH. The user has two options for accessing this
data on the Metabolic Modeling and FBA Server: A precompiled program
available for download from http://servers.theseed.org/sapling/server.cgi or the
API. The precompiled program accepts a limited number of command-line
parameters and returns the compound and reaction data in text format. The API
provides a much more flexible interface for accessing the server capabilities and
returns server data in an organized data structure. All API functions used to
access the Metabolic Modeling and FBA Server capabilities are documented in
detail at http://servers.theseed.org/sapling/server.cgi.

The SEED database also contains a large number of genome-scale
metabolic models, including 13 published models [8-20] and 154 models
generated from the annotated genomes stored in the SEED[21]. The Metabolic
Modeling and FBA Server also provides the user with an API to remotely obtain a
list of the models in the SEED and to download data on the compounds and
reactions in each SEED model. The server returns the following data for each
reaction in a specified model: (i) all data from the SEED biochemistry database,
(ii) a list of the genes associated with each reaction in the model in a format that
captures how the protein products encoded by the genes function to catalyze the
reaction (as either independent enzymes or multienzyme complexes), and (iii) a
list of compartments in the model where the reaction takes place and the

 8

directionality/reversibility of the reaction in each compartment. For the model
compounds, the server returns the data from the SEED biochemistry database.
As with the biochemistry data, all the model data in the server is accessible either
via the precompiled program or the API.

The Metabolic Modeling and FBA Server also enables users to run various FBA
studies on any of the genome-scale metabolic models stored in the SEED
database. These studies can be performed while simulating any of 485 distinct
media conditions currently encoded in the SEED database (which includes all
Biolog media conditions and a variety of complex media formulations). Both the
precompiled program and the API enable users to obtain a list of the media
conditions currently stored in the SEED and details on the compounds included
in each formulation. Once a model and media condition have been selected for
simulation, the server provides an interface for running three types of FBA
simulation: (i) simple growth simulation to predict maximum growth rate of the
organism in the selected media, (ii) flux variability analysis (FVA) [22] to classify
the reactions and compounds in the model according to their behavior during
growth in the selected media, and (iii) single gene knockout analysis to predict
the genes essential for growth in the selected media.

The simple growth simulation returns the maximum predicted growth rate of the
model given the input parameters, the predicted flux through the model reactions
during maximum growth, and the predicted uptake and production of nutrients
from and to the environment during maximum growth.

The FVA simulation returns the predicted class of every reaction and compound
in the model during growth given the input parameters. Reactions in the model
are classified as forward essential or reverse essential if they are required for
growth to occur, with the forward and reverse referring to the direction in which
the reactions must proceed. Reactions that are not essential for growth but still
active are classified as forward variable, reverse variable, and variable, with the
forward and reverse indicating when reactions proceed only in a single direction.
Reactions are classified as blocked if they cannot carry flux under the conditions
specified by the user. Metabolites in the model are classified as essential
nutrients or essential products if their uptake or secretion is required for growth in
the input conditions, and they are classified as transported if they can be taken
up or secreted but are not essential for growth. In addition to classifying the
reactions and compounds in the model, the FVA simulation returns the maximum
and minimum values for the flux through each reactions and the uptake/secretion
of each metabolite.

The single gene knockout analysis rapidly simulates the individual knockout of
every gene represented in the model during growth in the input conditions. Based
on these simulations, the analysis produces a list of the predicted essential
genes and the predicted nonessential genes in the model. Both the precompiled

 9

program and API allow the user to run any of the three simulation types from the
command line.

All three simulation types accept the same user input: the name of the model to
be run, the name of the media formulation that growth should be simulated in, a
list of genes in the model that should be knocked out during the simulation, and a
list of the reactions in the model that should be knocked out during the
simulation. See http://servers.theseed.org/sapling/server.cgi for detailed
documentation on all Metabolic Modeling and FBA Server functions.

Example Applications
To help users begin to use the various services, we provide a set of tutorials and
coding examples. In this section we discuss a small set of examples that
illustrate the intended use of the system.

Converting Gene and Protein IDs
Dealing with IDs of genes and/or the proteins they encode is often nontrivial. In
the SEED project we use IDs that specify protein-encoding genes in a rapidly
growing set of genomes, and we support correspondences between these IDs
and those used by other annotation efforts. The SEED has two notions of
equivalence: (1) two IDs that represent either protein-encoding genes or protein
sequences are said to be sequence equivalent if the protein sequences are
identical and (2) two IDs that represent either exactly the same protein-encoding
gene or the precise protein encoded by the gene (that is, “the protein sequence
of gene X in genome Y”) are said to be precisely equivalent. Unfortunately, in the
presence of multiple versions of thousands of genomes, perfect maintenance of
the “precisely equivalent” correspondence is virtually impossible.

Our first example script takes a command-line argument containing a single ID
and produces a table for all assertions of functions for sequence equivalent IDs.
Each ID in the input is associated with the name of the genome containing it, the
function for that ID, the source of the functional assignment assertion, and an
indication of whether the source of the assertion provided a confidence for their
estimate. The code is available at
http://servers.theseed.org/sapling/server.cgi?code=server_paper_example1.pl

Generating a Metabolic Reconstruction
Given a set of functional roles, one often wishes to understand which
subsystems can be inferred from the set. Our second example script reads as
input a set of functional roles and constructs a table of subsystems that can be
identified, along with their variation codes. The data displayed in this simple
example could form the start of a research project to gather the functional roles
not connected to subsystems, to determine whether they were not connected

 10

because a small set of functional roles were not present in the input, and to seek
candidates for such "missing functional roles." The ability to easily map functional
roles into subsystems will improve as the SEED annotation effort improves its
collection of encoded subsystems [23]. The code for this example is shown at
http://servers.theseed.org/sapling/server.cgi?code=server_paper_example2.pl.

Creating Custom Interfaces
The SEED provides the ability to graphically display the chromosomal regions
around a set of genes (normally from distinct genomes); for example, see
http://seed-
viewer.theseed.org/seedviewer.cgi?page=Annotation&feature=fig|83333.1.peg.4.
The SEED also offers an alternative for creating custom interfaces, moreover,
one that does not require the user to know appropriate SEED IDs. This approach
exploits the conversion capabilities of the SEED for creating a program to accept
arbitrary protein IDs. It also exploits the ability of SEED to map functional roles
into subsystems as described in the preceding example. The result is a tool that
enables the user to take a SEED ID and a region size and extract the genes that
are found within a region centered on the designated gene. The code for this
example is shown at

http://servers.theseed.org/sapling/server.cgi?code=server_paper_example3.pl

Accessing Functional Coupling Data
A great deal has been learned from studying genes that tend to occur close to
one another in diverse genomes [24, 25] [26-28]. In particular, the co-occurrence
of hypothetical and nonhypothetical proteins can be exploited to suggest the
function of the former based on the function of the latter.

The example program at
http://servers.theseed.org/sapling/server.cgi?code=server_paper_example4.pl

illustrates the potential for constructing custom tools by going through all of the
protein-encoding genes in all of the complete prokaryotic genomes maintained
within the SEED looking for "hypothetical proteins" that tend to co-occur with
genes encoding functions that can be connected to subsystems. The program
constructs a table showing the following:

• Gene
• Function of the gene
• Genome id containing the gene
• Biological name of the genome
• Nonhypothetical gene in a subsystem that appears to have the strongest

measure of co-occurrence
• Measure of gene co-occurrence

 11

• Function assigned to the co-occurring gene contained in a subsystem.

This table can therefore be used to suggest functions for hypothetical proteins
that could be tested experimentally.

Assigning Functions to Protein Sequences
The SEED can be used to assign functions to a file of protein sequences. The
code for this example is at
http://servers.theseed.org/sapling/server.cgi?code=server_paper_example6.pl

This program reads a FASTA file of protein sequences and attempts to assign
function to those sequences using a K-mer–based algorithm (manuscript in
preparation). When a function is proposed, the program will produce a “score”
(the number of distinct K-mers that were matched) and an estimate of
phylogenetic neighborhood—a representative genome that is “phylogenetically
close” to the genome containing the protein, if an estimate can reasonably be
given.

Running Flux Balance Analysis on the SEED Model of E. coli
In our final example, we demonstrate how to run a variety of FBA algorithms on
the SEED model of E. coli and how to print all data from the E. coli model and the
results of the FBA into an output table. For the code, see
http://servers.theseed.org/sapling/server.cgi?code=server_paper_example7.pl

The program starts by obtaining a list of all compounds and reactions in the
SEED E. coli model (Seed83333.1) using the “get_compound_id_list” and
“get_reaction_id_list” functions, respectively. The program then uses these lists
to obtain detailed data on all the E. coli compounds and reactions (using the
“get_compound_data” and “get_reaction_data” functions, respectively). This data
is stored in two tables: one for compounds and one for reactions. Next the
“classify_model_entities” function is used to run a flux variability analysis (FVA)
on the SEED E. coli model. In this particular FVA, the reactions and compounds
in the E. coli model are classified while simulating growth in LB media (called
ArgonneLBMedia in the SEED model). At this point, the data returned by the
“classify_model_entities” function is added onto the compound and reaction
tables prepared previously. In the next step, the code uses the
“simulate_model_growth” function to run a standard FBA on the SEED E. coli
model, maximizing the model growth rate in simulated glucose minimal media
(called Carbon-D-Glucose in the Model SEED). The data returned by this
function is also added to the reaction and compound tables. In the final call to the
server, the program uses the “simulate_all_single_gene_knockout” function to
simulate the single knockout of all E. coli genes, and the results of this study are

 12

stored in a gene table. The remainder of the program handles the printing of the
compound, reaction, and gene tables to the files CompoundTbl.txt,
ReactionTbl.txt, and GeneTbl.txt, respectively.

Discussion

The four initial SEED servers provide programmatic access to the data
developed by the SEED project. They expose the current data in a form that is
conveniently accessed computationally. The installation and maintenance of the
client-side software require minimal effort. We have constructed the underlying
methods to support relatively large-grained data transfers, allowing the
construction of relatively efficient programs.

The four SEED servers provide network-based access to an integration of
genomic data containing hundreds of genomes, the ability to locally support rapid
annotation of microbial genomes, the ability to submit and retrieve jobs from the
RAST server (thereby offering access to our continuing improvements in
microbial annotation), and the ability to explore metabolic models for hundreds of
organisms.

We believe that the underlying implementation of these new servers is efficient
enough to address the needs of most users. We will continue providing
occasional stand-alone versions of the SEED to users who need more
performance or privacy.

Methods

Distribution of the Server Packages
The SEED servers project is documented and can be downloaded from the
servers web site, http://servers.theseed.org.

The Perl distribution contains the following.

Client Packages
 1. The Sapling server - SAPserver.pm
 2. The MODEL server - MODELserver.pm
 3. The Annotation Support Server - ANNOserver.pm
 4. The RAST server - RASTserver.pm

Utilities
The package of utilities, called SeedUtils.pm, contains functions that are useful
for bioinformatics but that do not require access to the databases.

 13

Programming Using the Servers
The SEED servers provide all necessary network operations in a client package
that can be used to access the server functions. One uses these like any other
Perl package. For instance, to find all genomes in the SEED, one does the
following.

#!/usr/bin/perl -w

use strict;
use SAPserver;

my $sapObject = SAPserver->new();
my $genomes = $sapObject->all_genomes();

foreach my $g (sort { $genomes->{$a} cmp $genomes->{$b} }
keys(%$genomes)) {
 print "$g\t$genomes->{$g}\n";
}

The function call $sapObject->all_genomes() marshals the correct server-side
function call and arguments into a network package, transmits that package to
the server, waits for and retrieves the answer, processes any returned error
codes, decodes the return package into a Perl data structure, and returns the
result. All function calls in all the client packages perform these basic services.

The Java distribution contains the following.

Client Packages
The org.theseed.servers.serverConnections package handles connecting to the
server, transmitting and receiving the data, and converting data structures from
the server into Java data structures. The classes in org.theseed.servers.servers
packages handle connecting to each of the servers and making the appropriate
calls.

Programming Using the Servers
We recommend that the code be accessed in eclipse (http://www.eclipse.org/),
netbeans (http://www.netbeans.org/), or a similar graphical IDE. These are used
like any other class. For instance, to find all genomes in the SEED, one does the
following.

import java.util.HashMap;
import servers.SAPserver;

public class AllGenomes {
 public static void main(String[] args) {

 14

 SAPserver sapling = new SAPserver();
 HashMap<String, String> genomes = sapling.allGenomes();
 for (String id : genomes.keySet())
 System.out.println(id + "\t" + genomes.get(id));
 }
}

Availability and Future Directions

The latest documentation and downloads can always be found at
http://servers.theseed.org.
G
We are planning packages for use by other programming languages such as
Python, and we are planning a SOAP version of these packages. These should
all be available in mid- to late 2010.

Acknowledgments
This work was supported in part with Federal funds from the National Institute of
Allergy and Infectious Diseases, National Institutes of Health, Department of
Health and Human Services, under Contract No. HHSN266200400042C and
Contract No. HHSN272200900040C

This work was supported in part by the U.S. Dept. of Energy under Contract DE-
AC02-06CH11357.

RE thanks Daniel Cuevas, Josh Hoffman, and Sajia Akhter for help with the Java
code.

References

1. Overbeek, R. The Project to Annotate 1000 Genomes
. Available from:

http://www.theseed.org/wiki/index.php/Annotating_1000_genomes#The_P
roject_to_Annotate_1000_Genomes.

2. Overbeek, R., et al., The subsystems approach to genome annotation and
its use in the project to annotate 1000 genomes. Nucleic Acids Res, 2005.
33(17): p. 5691-702.

3. Meyer, F., R. Overbeek, and A. Rodriguez, FIGfams: yet another set of
protein families. Nucleic Acids Res, 2009. 37(20): p. 6643-54.

4. Henry, C.S., et al., iBsu1103: a new genome-scale metabolic model of
Bacillus subtilis based on SEED annotations. Genome Biol, 2009. 10(6):
p. R69.

5. DeJongh, M., et al., Toward the automated generation of genome-scale
metabolic networks in the SEED. BMC Bioinformatics, 2007. 8: p. 139.

 15

6. Kanehisa, M., et al., The KEGG databases at GenomeNet. Nucleic Acids
Research, 2002. 30(1): p. 42-46.

7. Jankowski, M.D., et al., Group contribution method for thermodynamic
analysis of complex metabolic networks. Biophysical Journal, 2008. 95(3):
p. 1487-99.

8. Reed, J.L., et al., An expanded genome-scale model of Escherichia coli K-
12 (iJR904 GSM/GPR). Genome Biology, 2003. 4(9): p. 1-12.

9. Feist, A.M., et al., A genome-scale metabolic reconstruction for
Escherichia coli K-12 MG1655 that accounts for 1261 ORFs and
thermodynamic information. Mol Syst Biol, 2007. 3: p. 121.

10. Durot, M., et al., Iterative reconstruction of a global metabolic model of
Acinetobacter baylyi ADP1 using high-throughput growth phenotype and
gene essentiality data. BMC Syst Biol, 2008. 2: p. 85.

11. Oh, Y.K., et al., Genome-scale reconstruction of metabolic network in
Bacillus subtilis based on high-throughput phenotyping and gene
essentiality data. J Biol Chem, 2007. 282(39): p. 28791-9.

12. Goelzer, A., et al., Reconstruction and analysis of the genetic and
metabolic regulatory networks of the central metabolism of Bacillus
subtilis. BMC Syst Biol, 2008. 2: p. 20.

13. Schilling, C.H., et al., Genome-scale metabolic model of Helicobacter
pylori 26695. Journal of Bacteriology, 2002. 184(16): p. 4582-4593.

14. Oliveira, A.P., J. Nielsen, and J. Forster, Modeling Lactococcus lactis
using a genome-scale flux model. BMC Microbiol, 2005. 5: p. 39.

15. Feist, A.M., et al., Modeling methanogenesis with a genome-scale
metabolic reconstruction of Methanosarcina barkeri. Mol Syst Biol, 2006.
2: p. 2006 0004.

16. Jamshidi, N. and B.O. Palsson, Investigating the metabolic capabilities of
Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and
proposing alternative drug targets. BMC Syst Biol, 2007. 1: p. 26.

17. Suthers, P.F., et al., A genome-scale metabolic reconstruction of
Mycoplasma genitalium, iPS189. PLoS Comput Biol, 2009. 5(2): p.
e1000285.

18. Nogales, J., B.O. Palsson, and I. Thiele, A genome-scale metabolic
reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory.
BMC Syst Biol, 2008. 2: p. 79.

19. Duarte, N.C., M.J. Herrgard, and B.O. Palsson, Reconstruction and
validation of Saccharomyces cerevisiae iND750, a fully
compartmentalized genome-scale metabolic model. Genome Research,
2004. 14(7): p. 1298-1309.

20. Becker, S.A. and B.O. Palsson, Genome-scale reconstruction of the
metabolic network in Staphylococcus aureus N315: an initial draft to the
two-dimensional annotation. BMC Microbiol, 2005. 5(1): p. 8.

21. Henry, C.S., et al., Model Seed: a resource for high-throughput
generation, optimization, and analysis of genome-scale metabolic models.
. 2010.

 16

22. Mahadevan, R. and C.H. Schilling, The effects of alternate optimal
solutions in constraint-based genome-scale metabolic models. Metabolic
Engineering, 2003. 5(4): p. 264-276.

23. Venter, J.C., et al., Environmental genome shotgun sequencing of the
Sargasso Sea. Science, 2004. 304(5667): p. 66-74.

24. Overbeek, R., et al., Use of contiguity on the chromosome to predict
functional coupling. In Silico Biol, 1999. 1(2): p. 93-108.

25. Dandekar, T., et al., Conservation of gene order: a fingerprint of proteins
that physically interact. Trends Biochem Sci, 1998. 23(9): p. 324-8.

26. Overbeek, R., et al., The use of gene clusters to infer functional coupling.
Proc Natl Acad Sci U S A, 1999. 96(6): p. 2896-901.

27. Wolf, Y.I., et al., Genome alignment, evolution of prokaryotic genome
organization, and prediction of gene function using genomic context.
Genome Res, 2001. 11(3): p. 356-72.

28. Moreno-Hagelsieb, G., Inferring functional relationships from conservation
of gene order. Methods Mol Biol, 2008. 453: p. 181-99.

 17

Figure legends

Figure 1. The SEED servers architecture. The client packages (currently
available for Perl or Java) handle the HTTP requests and responses and parse
the data from the appropriate lightweight data exchange formats to data
structures. The four servers access the SEED data.

Figure 2. Entities and relationships in the SEED. The entities (boxes) are
connected to each other by a series of relationships (diamonds) that describe
how the two entities relate. To move from one entity (e.g. “Identifier”) to another
(e.g., “DNA Sequence”), the series of connections shown by the shaded arrow is
made. This way, any entity can be connected, either directly or indirectly, to any
other entity.

Figure 3. Processing ids_to_sequences. (a) The ids_to_sequences function call
accepts multiple IDs as an argument and uses the Sapling server to process the
calls. These are returned as a single table. (b) A detailed description of each call
(in this example, the ids_to_sequences) is provided online and is automatically
generated from the entity-relationship models shown in Figure 2.

 18

Figure 1.

 19

Figure 2.

 20

a)

b)

Figure 3.

 21

The submitted manuscript has been created in part by UChicago Argonne, LLC,
Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S.
Department of Energy Office of Science laboratory, is operated under Contract
No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the Government.

