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Abstract 
 
The SEED project is a cooperative gene annotation  effort initiated in 2003. 
Researchers from a number of academic and private institutions built the SEED, 
an integration of genomic data that now contains almost a thousand complete or 
nearly complete genomes, a constantly updated set of curated annotations 
embodied in a large and growing collection of encoded subsystems, and a 
derived set of protein families. All of the SEED code and data are made freely 
available. Until recently, however, maintaining current copies of the SEED code 
and data at remote locations  has been a pressing issue. This paper describes 
four network-based servers that address this issue. Specifically, the servers are 
intended to expose the data in the underlying relational database, support basic 
annotation services, offer programmatic access to the capabilities of the RAST 
annotation server, and provide access to a growing collection of metabolic 
models that support flux balance analysis. Moreover, the four servers offer 
access to regularly updated data, the ability to annotate prokaryotic genomes, 
the ability to create metabolic reconstructions and detailed models of 
metabolism, and access to hundreds of existing metabolic models. Our goal is to 
support a framework upon which other groups can build independent research 
efforts. Large integrations of genomic data represent one of the major intellectual 
resources driving research in biology, and we believe that programmatic access 
to the SEED data will provide significant utility to a broad collection of potential 
users.  
 
 



 2 

Author Summary 
 
This paper describes four servers that offer programmatic access to the 
genomics-related data maintained and distributed via the SEED. Access to the 
servers, the underlying data, and the code is free to all users. The servers offer 
convenient programmatic access to a relational database containing 
approximately 1,000 curated genomes. For several years we have offered 
network-based interactive access to the SEED data via a number of web sites. 
This paper announces a facility that supports remote programmatic access to the 
underlying SEED data and services, allowing users to build independent 
research efforts upon the work being done to support and extend the SEED. The 
related RAST annotation server now supports the annotation of 300-400 
genomes per month, and we support programmatic data submission and retrieval 
of results. The servers also offer access to hundreds of metabolic models of 
prokaryotic genomes and the ability to perform flux balance analysis. 

Introduction 
 
In 2003, researchers from several institutions decided to cooperatively construct 
an integration of genomic data that could be used to support a wide variety of 
research efforts, including The Project to Annotate 1000 Genomes[1]. The intent 
was to build a common infrastructure that could be shared by the groups. Each 
group would seek its own funding, contribute to the common infrastructure, and 
pursue its own goals. The development of the systems architecture and software 
was done at a number of institutions, with the Fellowship for Interpretation of 
Genomes (FIG) and Argonne National Laboratory coordinating the effort. This 
effort was called the SEED project, and the resulting integration is called the 
SEED.  
 

Motivation 
The SEED project focuses on development of technology to support rapid, high-
volume, accurate annotation of genomes. Three advances are of central 
importance: 
 

1. The subsystems strategy was adopted as the guiding principle of the 
effort [2]. This strategy centers on leveraging expert annotations to 
define a small set of functional roles in all genomes rather than all the 
functional roles in a small number of genomes.  

 
2. The subsystem effort provided a convenient framework for the curation 

of a set of protein families that became known as FIGfams [3]. The 
goal was to produce families that contained only isofunctional 
homologs—that is, each family was intended to contain only 
homologous proteins playing the same functional role. When errors 
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were detected, corrections were made by updating the underlying 
subsystems and then regenerating the FIGfams. The rapid evolution of 
the FIGfam collection has possible made a number of the services 
described below. 
 

3. Using the subsystems and FIGfams as the underlying technology, the 
RAST (Rapid Annotations using Subsystems Technology) server was 
developed and made available in 2007. Thousands of prokaryotic 
genomes have been annotated with the RAST system, and hundreds 
more are annotated each month. The RAST system now has several 
thousand registered users; use of the system is free to anyone, but 
user registration is required preserve the privacy of each user’s 
genomes. 

 
In addition to these developments relating to the annotation of prokaryotic 
genomes, several groups have focused on the development of accurate models 
of metabolism [4, 5]. This work has made it possible to generate hundreds of 
detailed metabolic models that can be used to support flux-based analysis. 
 
These advances over the past six years have motivated members of the SEED 
project to provide straightforward, convenient programmatic access to the data 
developed during the project. 

Goals and Architecture of the SEED Servers 
In the initial stages of the SEED project, a commitment was made to make the 
code and data freely available. However, it was not completely clear how best to 
achieve this goal. Initially, the project used a distributed architecture in which 
numerous SEED installations were maintained at distinct institutions, and each of 
these peers could archive and exchange subsystems with one another either 
directly or via a central server. While support of numerous distinct SEED systems 
has continued, a major disadvantage of the peer-to-peer approach has been the 
effort required to continually update and integrate a growing set of data and 
systems software. One of the installations, the Annotators’ SEED, has become 
the de facto standard used to centralize and synchronize annotations made on 
remote machines. As errors and conflicts in annotation were detected, they were 
rapidly corrected on the Annotators’ SEED, and the underlying collection of 
subsystems has continued to be maintained and developed. Thus, the 
Annotators SEED became the central resource for updating remote copies of the 
system. A read-only mirror of the Annotators’ SEED is maintained by Argonne to 
provide all users immediate public access to the data (see 
http://www.theseed.org). A second, writable, public mirror at the University of 
Chicago is also supported for users to construct their own subsystems and to 
archive their results, which may then be incorporated into the Annotators’ SEED 
for widespread distribution (http://theseed.uchicago.edu/FIG/index.cgi). 
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With this centralized data model, code development to support the SEED was 
done in a distributed framework coordinated through a shared CVS, while 
curation and annotation used a centralized architecture. However, users of the 
SEED often desire programmatic access to the latest data, and the lack of a 
convenient API has hampered effective collaboration, as well as limiting the utility 
of the data outside the cooperating institutions. 
 
To address this issue, we initially provided a Simple Object Access Protocol 
(SOAP) server for access to data in the SEED database {ref: Disz et al; 
http://ws.theseed.org/}. Several problems were encountered with the day-to-day 
use of that service. In particular, the server abstraction layer consisted of large, 
monolithic Perl modules that were loaded on each invocation, resulting in a 
noticeable delay in response to each call made to the server. The encapsulation 
of the results in SOAP XML also conferred significant parsing and transmission 
overhead on the data being transferred. Moreover, each operation was atomic 
and required a single argument that was processed and a single datum returned. 
In combination, trivial requests such as retrieving all the functions for all of the 
proteins in a genome took unacceptably long to complete, requiring a separate 
call for each protein, transferring of many kilobytes of data over the network, and 
the instantiation of many threads on the server.  
 
The new approach presented here is more extensive and more extensible than 
our SOAP-based approach. These second-generation servers have significantly 
lower server-side delay for invocation, as well as significantly reduced network 
overhead, thus providing more responsive access. Furthermore, the new servers 
provide a more efficient and flexible computing approach because they are 
designed to process batches of requests at a time, streaming the responses as 
they complete. Thus, complex queries can be combined with minimal network 
and server overhead. The services we provide offer access to the integrated 
genomic data, subsystems, FIGfams, co-occurrence data, annotation services, 
RAST annotation submission and job retrieval, and metabolic modeling. All client 
modules, code examples and documentation are online at 
http://www.theseed.org/servers/. We are continually expanding these services 
and improving the underlying documentation. 
 

Results: The Servers and the Services 
 
We describe four servers that we collectively refer to as the SEED servers. 
These servers currently support approximately 100 methods that can be invoked 
to extract data and services (see Figure 1).  
 
We maintain server code that resides at the location of the SEED data. Users 
download a distribution with their choice of runtime environment (currently we 
support Perl and Java integrations) that they may use to write programs to 
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access SEED data or perform a number of common bioinformatic tasks using a 
supplied set of preprogrammed scripts.  
The following subsections describe the four servers in more detail. 

The Sapling Server  
The Sapling Server offers access to the underlying integration of genomic data— 
including genomes, genes, proteins, annotations, subsystems, FIGfams, and co-
occurrence data. 
 
On the server side, the Sapling Server accesses a database implemented by an 
entity-relationship data model (ERDB). The ERDB model is defined by a set of 
XML metadata describing the entities, relationships, and attributes in a form that 
can be used to generate queries as well as the documentation and a database 
diagram (see the web site 
http://servers.theseed.org/figdisk/FIG/ErdbDocWidget.cgi?database=Sapling). 
Therefore, the public description of the database remains synchronized with the 
internal data structures—an important benefit in a database designed for public 
use. 
 
The Sapling Server is architected such that new features can be added quickly. 
New data tables may be added by updating the XML metadata, which is 
processed by a special load program to build the initial database tables. The list 
of services offered is maintained on the server, so that client software does not 
need to be updated in order for users to access new features. A web application 
that converts general database queries to Perl code helps speed implementation 
of new functions. 
 
A database query is specified by naming the entities and relationships along a 
path through the ERDB diagram, as shown in Figure 2, along with a list of the 
data items to be returned and a filter clause that limits the results to the desired 
data objects (e.g., a particular genome or identifier). The Sapling Server allows 
direct queries against the database; however, the a set of common data requests 
are implemented as direct server functions. Sapling Server functions typically 
accept multiple input values within a single call, allowing a client to minimize the 
number of requests that must be made to the server. Additional input parameters 
allow a client to modify the query, for example, to request that the output be in 
FASTA format or to ask for protein rather than DNA sequences. 
 
A sample ids_to_sequences request is shown in Figure 3a. The user specifies 
four identifiers, and the server returns them as a table (actually a Perl hash) with 
the associated DNA sequences attached. 
 
The Sapling Server currently supports over 50 functions. These functions are 
listed on a web page generated automatically from the latest code, ensuring that 
the documentation remains up to date. A sample showing the web page 
description of ids_to_sequences is shown in Figure 3b. 
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The Annotation Support Server 
The Annotation Support Server supports two distinct capabilities relating to the 
annotation of genomes: de novo annotation of either protein or DNA sequences 
and aggregation of annotations into subsystems. The Annotation Support Server 
accepts either DNA or protein as input and, depending on the user options, can 
either use existing gene calls or invoke standard gene callers (e.g., GLIMMER-3 
for protein-encoding genes). The server also houses newly developed high-
performance methods to assign function to protein sequences or regions of 
genomic DNA sequences, based on FIGfams and a unique use of K-mers that 
act as FIGfam signatures (manuscript in preparation). Below is an example 
application using these methods that produces a relatively accurate annotation of 
most microbial genomes within a few minutes. To evaluate the technology, 
however, users are encouraged to simply submit a known prokaryotic genome to 
the server for annotation.  
 
Sequences can be submitted to the server in three ways: 
 

1. Programs can directly access the services needed to call genes and 
assign functions to the proteins encoded within the genome.  

2. If the protein-encoding genes have already been identified, the program 
can assign functions to these sequences. An example program is provided 
in the download library and is described at 
http://servers.theseed.org/sapling/server.cgi?pod=svr_assign_using_figfa
ms.pl. 

3. A program can take as input fragments of DNA (e.g., from a metagenomic 
sample) and use the services to detect pieces of protein-encoding genes. 
Again, an example program is provided in the download library and is 
described at 
http://servers.theseed.org/sapling/server.cgi?pod=svr_assign_to_dna_usin
g_figfams.pl). 

 
The server also provides the ability to take as input a set of functional roles (in 
the controlled vocabulary established by the subsystem collection) and to 
produce a detailed estimate of which subsystems are represented by those 
functional roles. That is, one can also use the server to develop a metabolic 
reconstruction based on the functional roles that have been assigned to the 
protein-encoding genes. 

The RAST Submission/Retrieval Server 
The RAST Submission/Retrieval Server supports programmatic submission of 
genomes to the RAST server, retrieval of job status, and retrieval of the final set 
of annotations. We have run over 1,000 distinct prokaryotic genomes through the 
RAST server using preprogrammed scripts that are available in the distribution. 
These scripts and the underlying API enable users to submit genomes to the 
RAST server, test the status of submitted jobs, and retrieve the output (i.e., 
annotated genomes).  
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Three types of input are supported:  
 

1. A FASTA file of contigs that make up the genome to be annotated  
2. A file of GenBank formatted entries (with the option to retain the gene calls 

as given in the uploaded files) 
3. ENTREZ ID or genome project ID. 

 
In the last case, the tools we provide will query NCBI for the set of contigs that 
make up the sequencing project. That set of IDs then becomes the input to the 
RAST server. 

The Metabolic Modeling and Flux Balance Analysis Server 
The Metabolic Modeling and Flux Balance Analysis (FBA) Server provides 
programmatic remote access to the SEED biochemistry and genome-scale 
metabolic model database. The SEED biochemistry database integrates into a 
single, nonredundant set all the reactions and compounds found in the KEGG 
database, together with additional curated reactions and compounds [6] and a 
continuously growing number of published genome-scale metabolic models. 
Currently this database consists of 15,285 compounds and 12,827 reactions. For 
compounds, the database also includes database IDs from KEGG and models, 
names/synonyms, mass, molecular formulas, molecular charge, and estimated 
Gibbs free energy of formation [7]. For reactions, the database includes database 
IDs from KEGG and models, names/synonyms, stoichiometry, EC numbers, 
pathways, and estimated Gibb free energy change of reactions [7]. Compound 
charge, formula, formation energies and reaction stoichiometry are all calculated 
for aqueous conditions at neutral pH. The user has two options for accessing this 
data on the Metabolic Modeling and FBA Server: A precompiled program 
available for download from http://servers.theseed.org/sapling/server.cgi or the 
API. The precompiled program accepts a limited number of command-line 
parameters and returns the compound and reaction data in text format. The API 
provides a much more flexible interface for accessing the server capabilities and 
returns server data in an organized data structure. All API functions used to 
access the Metabolic Modeling and FBA Server capabilities are documented in 
detail at http://servers.theseed.org/sapling/server.cgi. 

The SEED database also contains a large number of genome-scale 
metabolic models, including 13 published models [8-20] and 154 models 
generated from the annotated genomes stored in the SEED[21]. The Metabolic 
Modeling and FBA Server also provides the user with an API to remotely obtain a 
list of the models in the SEED and to download data on the compounds and 
reactions in each SEED model. The server returns the following data for each 
reaction in a specified model: (i) all data from the SEED biochemistry database, 
(ii) a list of the genes associated with each reaction in the model in a format that 
captures how the protein products encoded by the genes function to catalyze the 
reaction (as either independent enzymes or multienzyme complexes), and (iii) a 
list of compartments in the model where the reaction takes place and the 
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directionality/reversibility of the reaction in each compartment. For the model 
compounds, the server returns the data from the SEED biochemistry database. 
As with the biochemistry data, all the model data in the server is accessible either 
via the precompiled program or the API.  
 
The Metabolic Modeling and FBA Server also enables users to run various FBA 
studies on any of the genome-scale metabolic models stored in the SEED 
database. These studies can be performed while simulating any of 485 distinct 
media conditions currently encoded in the SEED database (which includes all 
Biolog media conditions and a variety of complex media formulations). Both the 
precompiled program and the API enable users to obtain a list of the media 
conditions currently stored in the SEED and details on the compounds included 
in each formulation. Once a model and media condition have been selected for 
simulation, the server provides an interface for running three types of FBA 
simulation: (i) simple growth simulation to predict maximum growth rate of the 
organism in the selected media, (ii) flux variability analysis (FVA) [22] to classify 
the reactions and compounds in the model according to their behavior during 
growth in the selected media, and (iii) single gene knockout analysis to predict 
the genes essential for growth in the selected media.  
 
The simple growth simulation returns the maximum predicted growth rate of the 
model given the input parameters, the predicted flux through the model reactions 
during maximum growth, and the predicted uptake and production of nutrients 
from and to the environment during maximum growth.  
 
The FVA simulation returns the predicted class of every reaction and compound 
in the model during growth given the input parameters. Reactions in the model 
are classified as forward essential or reverse essential if they are required for 
growth to occur, with the forward and reverse referring to the direction in which 
the reactions must proceed. Reactions that are not essential for growth but still 
active are classified as forward variable, reverse variable, and variable, with the 
forward and reverse indicating when reactions proceed only in a single direction. 
Reactions are classified as blocked if they cannot carry flux under the conditions 
specified by the user. Metabolites in the model are classified as essential 
nutrients or essential products if their uptake or secretion is required for growth in 
the input conditions, and they are classified as transported if they can be taken 
up or secreted but are not essential for growth. In addition to classifying the 
reactions and compounds in the model, the FVA simulation returns the maximum 
and minimum values for the flux through each reactions and the uptake/secretion 
of each metabolite.  
 
The single gene knockout analysis rapidly simulates the individual knockout of 
every gene represented in the model during growth in the input conditions. Based 
on these simulations, the analysis produces a list of the predicted essential 
genes and the predicted nonessential genes in the model. Both the precompiled 
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program and API allow the user to run any of the three simulation types from the 
command line. 
 
All three simulation types accept the same user input: the name of the model to 
be run, the name of the media formulation that growth should be simulated in, a 
list of genes in the model that should be knocked out during the simulation, and a 
list of the reactions in the model that should be knocked out during the 
simulation. See http://servers.theseed.org/sapling/server.cgi for detailed 
documentation on all Metabolic Modeling and FBA Server functions. 
 

Example Applications 
To help users begin to use the various services, we provide a set of tutorials and 
coding examples. In this section we discuss a small set of examples that 
illustrate the intended use of the system. 
 

Converting Gene and Protein IDs 
Dealing with IDs of genes and/or the proteins they encode is often nontrivial. In 
the SEED project we use IDs that specify protein-encoding genes in a rapidly 
growing set of genomes, and we support correspondences between these IDs 
and those used by other annotation efforts. The SEED has two notions of 
equivalence: (1) two IDs that represent either protein-encoding genes or protein 
sequences are said to be sequence equivalent if the protein sequences are 
identical and (2) two IDs that represent either exactly the same protein-encoding 
gene or the precise protein encoded by the gene (that is, “the protein sequence 
of gene X in genome Y”) are said to be precisely equivalent. Unfortunately, in the 
presence of multiple versions of thousands of genomes, perfect maintenance of 
the “precisely equivalent” correspondence is virtually impossible.  
 
Our first  example script takes a command-line argument containing a single ID 
and produces a table for all assertions of functions for sequence equivalent IDs. 
Each ID in the input is associated with the name of the genome containing it, the 
function for that ID, the source of the functional assignment assertion, and an 
indication of whether the source of the assertion provided a confidence for their 
estimate. The code is available at 
http://servers.theseed.org/sapling/server.cgi?code=server_paper_example1.pl 
 

Generating a Metabolic Reconstruction 
Given a set of functional roles, one often wishes to understand which 
subsystems can be inferred from the set. Our second example script reads as 
input a set of functional roles and constructs a table of subsystems that can be 
identified, along with their variation codes. The data displayed in this simple 
example could form the start of a research project to gather the functional roles 
not connected to subsystems, to determine whether they were not connected 
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because a small set of functional roles were not present in the input, and to seek 
candidates for such "missing functional roles." The ability to easily map functional 
roles into subsystems will improve as the SEED annotation effort improves its 
collection of encoded subsystems [23]. The code for this example is shown at 
http://servers.theseed.org/sapling/server.cgi?code=server_paper_example2.pl. 
 

Creating Custom Interfaces 
The SEED provides the ability to graphically display the chromosomal regions 
around a set of genes (normally from distinct genomes); for example, see 
http://seed-
viewer.theseed.org/seedviewer.cgi?page=Annotation&feature=fig|83333.1.peg.4. 
The SEED also offers an alternative for creating custom interfaces, moreover, 
one that does not require the user to know appropriate SEED IDs. This approach 
exploits the conversion capabilities of the SEED for creating a program to accept 
arbitrary protein IDs. It also exploits the ability of SEED to map functional roles 
into subsystems as described in the preceding example. The result is a tool that 
enables the user to take a SEED ID and a region size and extract the genes that 
are found within a region centered on the designated gene. The code for this 
example is shown  at 
 
http://servers.theseed.org/sapling/server.cgi?code=server_paper_example3.pl 
 

Accessing Functional Coupling Data 
A great deal has been learned from studying genes that tend to occur close to 
one another in diverse genomes [24, 25] [26-28]. In particular, the co-occurrence 
of hypothetical and nonhypothetical proteins can be exploited to suggest the 
function of the former based on the function of the latter. 
 
The example  program at  
http://servers.theseed.org/sapling/server.cgi?code=server_paper_example4.pl 
 
illustrates the potential for constructing custom tools by going through all of the 
protein-encoding genes in all of the complete prokaryotic genomes maintained 
within the SEED looking for "hypothetical proteins" that tend to co-occur with 
genes encoding functions that can be connected to subsystems. The program 
constructs a table showing the following:  
 

• Gene 
• Function of the gene  
• Genome id containing the gene 
• Biological name of the genome 
• Nonhypothetical gene in a subsystem that appears to have the strongest 

measure of co-occurrence 
• Measure of gene co-occurrence 
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• Function assigned to the co-occurring gene contained in a subsystem. 
 

This table can therefore be used to suggest functions for hypothetical proteins 
that could be tested experimentally. 
 

Assigning Functions to Protein Sequences 
The SEED can be used to assign functions to a file of protein sequences. The 
code for this example is at   
http://servers.theseed.org/sapling/server.cgi?code=server_paper_example6.pl 
 
 
This program reads a FASTA file of protein sequences and attempts to assign 
function to those sequences using a K-mer–based algorithm (manuscript in 
preparation). When a function is proposed, the program will produce a “score” 
(the number of distinct K-mers that were matched) and an estimate of 
phylogenetic neighborhood—a representative genome that is “phylogenetically 
close” to the genome containing the protein, if an estimate can reasonably be 
given. 
 

Running Flux Balance Analysis on the SEED Model of E. coli  
In our final example, we demonstrate how to run a variety of FBA algorithms on 
the SEED model of E. coli and how to print all data from the E. coli model and the 
results of the FBA into an output table. For the code, see 
http://servers.theseed.org/sapling/server.cgi?code=server_paper_example7.pl 
 
 
The program starts by obtaining a list of all compounds and reactions in the 
SEED E. coli model (Seed83333.1) using the “get_compound_id_list” and 
“get_reaction_id_list” functions, respectively. The program then uses these lists 
to obtain detailed data on all the E. coli compounds and reactions (using the 
“get_compound_data” and “get_reaction_data” functions, respectively). This data 
is stored in two tables: one for compounds and one for reactions. Next the 
“classify_model_entities” function is used to run a flux variability analysis (FVA) 
on the SEED E. coli model. In this particular FVA, the reactions and compounds 
in the E. coli model are classified while simulating growth in LB media (called 
ArgonneLBMedia in the SEED model). At this point, the data returned by the 
“classify_model_entities” function is added onto the compound and reaction 
tables prepared previously. In the next step, the code uses the 
“simulate_model_growth” function to run a standard FBA on the SEED E. coli 
model, maximizing the model growth rate in simulated glucose minimal media 
(called Carbon-D-Glucose in the Model SEED). The data returned by this 
function is also added to the reaction and compound tables. In the final call to the 
server, the program uses the “simulate_all_single_gene_knockout” function to 
simulate the single knockout of all E. coli genes, and the results of this study are 
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stored in a gene table. The remainder of the program handles the printing of the 
compound, reaction, and gene tables to the files CompoundTbl.txt, 
ReactionTbl.txt, and GeneTbl.txt, respectively. 

Discussion 
 
The four initial SEED servers provide programmatic access to the data 
developed by the SEED project. They expose the current data in a form that is 
conveniently accessed computationally. The installation and maintenance of the 
client-side software require minimal effort. We have constructed the underlying 
methods to support relatively large-grained data transfers, allowing the 
construction of relatively efficient programs.  
 
The four SEED servers provide network-based access to an integration of 
genomic data containing hundreds of genomes, the ability to locally support rapid 
annotation of microbial genomes, the ability to submit and retrieve jobs from the 
RAST server (thereby offering access to our continuing improvements in 
microbial annotation), and the ability to explore metabolic models for hundreds of 
organisms. 
 
We believe that the underlying implementation of these new servers is efficient 
enough to address the needs of most users. We will continue providing 
occasional stand-alone versions of the SEED to users who need more 
performance or privacy. 
 
 

Methods 

Distribution of the Server Packages  
The SEED servers project is documented and can be downloaded from the 
servers web site, http://servers.theseed.org.  
 
The Perl distribution contains the following. 
 
Client Packages  
   1. The Sapling server - SAPserver.pm 
   2. The MODEL server - MODELserver.pm 
   3. The Annotation Support Server - ANNOserver.pm 
   4. The RAST server - RASTserver.pm 
 
Utilities 
The package of utilities, called SeedUtils.pm, contains functions that are useful 
for bioinformatics but that do not require access to the databases.  
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Programming Using the Servers 
The SEED servers provide all necessary network operations in a client package 
that can be used to access the server functions. One uses these like any other 
Perl package. For instance, to find all genomes in the SEED, one does the 
following. 
 
 
#!/usr/bin/perl -w 
 
use strict; 
use SAPserver;  
 
my $sapObject = SAPserver->new(); 
my $genomes = $sapObject->all_genomes(); 
 
foreach my $g (sort { $genomes->{$a} cmp $genomes->{$b} }  
keys(%$genomes)) { 
    print "$g\t$genomes->{$g}\n"; 
} 

 

The function call $sapObject->all_genomes() marshals the correct server-side 
function call and arguments into a network package, transmits that package to 
the server, waits for and retrieves the answer, processes any returned error 
codes, decodes the return package into a Perl data structure, and returns the 
result. All function calls in all the client packages perform these basic services. 

The Java distribution contains the following. 

Client Packages 
The org.theseed.servers.serverConnections package handles connecting to the 
server, transmitting and receiving the data, and converting data structures from 
the server into Java data structures. The classes in org.theseed.servers.servers 
packages handle connecting to each of the servers and making the appropriate 
calls. 
 
Programming Using the Servers 
We recommend that the code be accessed in eclipse (http://www.eclipse.org/), 
netbeans (http://www.netbeans.org/), or a similar graphical IDE. These are used 
like any other class. For instance, to find all genomes in the SEED, one does the 
following.  
 
 
import java.util.HashMap; 
import servers.SAPserver; 
 
public class AllGenomes { 
 public static void main(String[] args) { 
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  SAPserver sapling = new SAPserver(); 
  HashMap<String, String> genomes = sapling.allGenomes(); 
  for (String id : genomes.keySet()) 
   System.out.println(id + "\t" + genomes.get(id)); 
 } 
} 

 

Availability and Future Directions  

The latest documentation and downloads can always be found at 
http://servers.theseed.org. 
G 
We are planning packages for use by other programming languages such as 
Python, and we are planning a SOAP version of these packages. These should 
all be available in mid- to late 2010. 
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Figure legends 
 
Figure 1. The SEED servers architecture. The client packages (currently 
available for Perl or Java) handle the HTTP requests and responses and parse 
the data from the appropriate lightweight data exchange formats to data 
structures. The four servers access the SEED data. 
 
Figure 2. Entities and relationships in the SEED. The entities (boxes) are 
connected to each other by a series of relationships (diamonds) that describe 
how the two entities relate. To move from one entity (e.g. “Identifier”) to another 
(e.g., “DNA Sequence”), the series of connections shown by the shaded arrow is 
made. This way, any entity can be connected, either directly or indirectly, to any 
other entity.  
 
Figure 3. Processing ids_to_sequences. (a) The ids_to_sequences function call 
accepts multiple IDs as an argument and uses the Sapling server to process the 
calls. These are returned as a single table. (b) A detailed description of each call 
(in this example, the ids_to_sequences) is provided online and is automatically 
generated from the entity-relationship models shown in Figure 2.
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