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Abstract. We have investigated ideal MHD stability of two advanced spherical
tokamak confinement concepts: the Spherical Tokamak Power Plant, a 3 GW concept
fusion power plasma producing 1 GW of electric power, and the Component Test
Facility, a concept designed for in situ materials testing for ITER and beyond. Detailed
stability studies for toroidal mode number n = 1,2, 3 displacements are presented as a
function of conformal wall radius R,, and on-axis safety factor gg. These confirm that
both concepts are stable provided that the wall is sufficiently close and ¢q sufficiently
large (qo > 2.8 for the power plant and ¢o > 2.1 for the component test facility). For
the component test facility we have also extended earlier scans to study the marginal
stability boundaries for constant plasma current [,. This work involved implementing
parallel versions of the equilibrium transformation and stability scans. Both power

plant and component test facility configurations are found to be ballooning stable.
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1. Introduction

As well as complementing the physics base for ITER [1], theory and progress in spherical
tokamak experiments have prompted design studies into thermonuclear fusion facilities
having a tight aspect ratio: the component test facility [2, 3] and spherical tokamak
power plants |4, 5, 6]. A UK Component Test Facility (CTF) concept is an aspect ratio
A= R/a=0.75/0.47 = 1.60 spherical tokamak with moderate elongation x = 2.7, with
8.0 MA of plasma current I, and 10.5 MA of toroidal field rod current. The machine,
which is designed for in situ materials testing in parallel with ITER and beyond, provides
a test area of ~ 10 m? with a projected 14 MeV neutron flux of 1-2 MW m~2 [7]. Voss
et al. [2| give a detailed study of vertical plasma stability, neutronics, and engineering.
A larger, alternative design, extrapolated based on the stable operating space of the
NSTX concept, has also been developed by Peng et al. [3] and Stambaugh et al. [8|.

More comprehensive MHD stability scans have been conducted on the more
challenging Spherical Tokamak Power Plant (STPP) [6]. This 3 GW fusion power plant
concept, designed to deliver 1 GW electric power, has an aspect ratio A = R/a =
3.42/2.44 = 1.40, I, = 31 MA, and 30.2 MA of centre rod current. Preliminary MHD
studies have shown that stable configurations can be produced provided that the wall is
sufficiently close and the on-axis safety factor ¢q is sufficiently large [6]. Detailed studies
have been conducted on other similar designs, such as the ARIES-ST configuration [5, 9].
Some relevant parameters for the STPP [6] and CTF [2] designs that we analyse in this
paper are listed in Table 1. We focus attention on the stability of ideal MHD modes
with toroidal mode number n = 1,2,3, as well as n = oo ballooning modes. Vertical
(n = 0) stability has been treated by a separate study using the PACE [10] filament
code. For both the CTF and STPP concepts, stability scans are performed as a function
of safety factor ¢ and wall position. For the CTF concept, which has parameters much
closer to present day experiments, we have also investigated stability as a function of ¢
with fixed I,.

This paper is structured as follows: Sections 2 and 3 present analysis of the MHD
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Table 1. Selection of parameters for the STPP [6] and CTF [2] baseline designs.
Quantity Description STPP CTF

R/a major /minor radius (m) 3.42/2.44 0.75/0.47
K,0 elongation, triangularity 3.2, 0.55 2.7,0.3

I, plasma current (MA) 31 8
Ips/I,  bootstrap fraction (%) 92.6 41
70,9 axis, edge safety factors 3,15 2.2,6.2
BexpsBn beta (%), normalized beta ~ 59,8.2 20, 3.4
12 internal inductance 0.21 0.53

i

stability of the STPP and the CTF, respectively. These stability analyses are based
on a SCENE [11] Grad-Shafranov equilibrium produced on a (R, Z) mesh. Ideal MHD
stability is investigated with the KINX stability code |12|, described in Sec. 3, and uses
the CAXE [13] equilibrium code to remap the equilibrium from SCENE. For the CTF
studies the equilibrium code CHEASE [14]| was used to modify the configuration when
performing detailed stability studies as a function of ¢ with fixed I,,. We close in Sec. 4

with some concluding remarks.

2. Stability of the Spherical Tokamak Power Plant

To demonstrate convergence of the equilibrium and subsequent MHD stability studies, a
scan was performed of both global equilibrium properties and the MHD growth rate with
increasing grid resolution. A high spatial resolution (169 radial by 257 axial grid point)
SCENE equilibrium is shown in Fig. 1. Figure 1(a) shows contours of constant poloidal
flux ¢, and 1(b) shows the 1 variation along the mid-plane (Z = 0). The figures reveal
the large Shafranov shift for this equilibrium. Figures 1(c) through 1(g) respectively
show the assumed profiles of ¢(1)), pressure p(¢), toroidal flux function f(¢) = RB,,
and the derivatives p/(¢) and f(1)f'(¢) used to constrain the grad-Shafranov equation.
Note that SCENE calculates the f(1) profile that is consistent with p(1)), the bootstrap
current and driven current profile.

Using the plasma boundary p/(¢) and f(¢) f'(¢) profiles from SCENE, we generated
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Figure 1. Spherical Tokamak Power Plant (STPP) equilibrium. Figure 1 (a) is a

contour map of equal spaced v¥,,, and the blue contour is the plasma boundary. Figure
1 (b) shows the poloidal flux through the mid-plane Z = 0. Figures 1 (c) through

1 (g) show the g, pressure p(v), toroidal flux function f(1), and p’(v) and f(¥)f'(¢)
profiles, respectively.

CAXE equilibrium solutions of increasing grid resolution from N = Ny, = Ny = 16
to N = 160 grid points. Here, N, and Ny are the number of radial and poloidal
grid points. For each grid resolution, the solution was iterated until the variation of
magnetic surfaces, €jepe;, Was less than 107°, and the change in normalised radius p
between subsequent iterations, ¢,, was less than 107°. Figure 2 shows the variation
in global quantities with increasing N of (a) the plasma internal inductance [; and (b)
the normalized beta (3,. The figure shows that the volume integrated quantities have
converged in the interval 100 < N < 140.

With the equilibrium described, ideal MHD stability can be examined. First, in
the absence of a vacuum (i.e. a conducting wall on the plasma surface) and for each
CAXE equilibrium solution, the most unstable n = 1,2,3 modes were found using
KINX. Figure 2(c¢) shows the variation in normalized growth rate w?/w% of the most
unstable solution as a function of 1/N? for the different n eigenmodes. Here, w, denotes
the on-axis Alfvén frequency at the geometric axis, calculated in vacuo. In this analysis

a flat density profile was used. For n = 1,2 convergence is approximately linear, with
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Figure 2. Integrated quantities of the STPP equilibrium versus grid dimensions N:
Figure 2 (a) is the CAXE internal inductance /;, Figure 2 (b) shows the CAXE £,
value, and Figure 2 (c¢) shows most unstable eigenvalue for n = 1 (black), n = 2 (blue)
n =3 (red).

1/N? over the range 10~* < 1/N? < 1073, in agreement with earlier convergence studies
for less demanding equilibria [12|. For the remaining analysis in this work, a value of
N = 128 was used to investigate stability limits. The same grid resolution has been
used previously to study ideal MHD limits in the MAST spherical tokamak [15].

Two free scalings of the equilibrium are available, which can be used to generate
families of solutions to the grad-Shafranov equation from a single solution. These
transformations can be combined to provide for a change in either I, or ¢ at a prescribed
poloidal flux surface [14]. We have used this freedom to investigate the internal stability
as a function of qg, with a conducting wall at the plasma boundary. Figure 3 shows the
normalized eigenvalue for different ¢y values with N = 128. The ¢y scan reveals that the
plasma is stable for ¢y > 2.8 but unstable to the axis-asymmetric modes for ¢y < 2.8.
Projection of the eigenfunction for an unstable configuration (¢o = 2.5) confirms the
internal nature of the mode. Figure 4(a) and 4(c) respectively show a selection of
poloidal harmonics and the normal mode displacement for an n = 1 mode versus the
square root of normalized flux, s = 1/4,,. The low dominant poloidal mode numbers
suggest a resonance with the core where ¢ is small.

The addition of a vacuum region allows the edge displacement to be nonzero at the
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Figure 3. Scan of eigenvalue versus gy for the STPP equilibrium with no vacuum
conducting wall at plasma boundary.

plasma boundary. Thus, gradients in the current density or pressure near the edge of the
plasma couple more strongly to the displacement and increase the drive. For example,
Figure 4 (b) shows a selection of poloidal harmonics and Figure 4 (d) the normal mode
displacement of an n = 1 mode with equilibrium ¢y = 2.9 and R,,/a = 1.3 The spatial
projection of the eigenfunction shows the mode becoming more localized to the vertical
extremities of the plasma.

We also conducted a stability scan of the low n modes as a function of wall position.
The perfectly conducting wall was selected to be conformal to the plasma boundary.
Figure 5 shows the normalized eigenvalue w?/w? for n = 1,2,3 as a function of the
wall parameter R, /a. The scans show that the plasma is stabilised with respect to the
external n = 1,2, 3 modes provided R, /a < 1.15.

The STPP was designed to be second stable to ballooning modes across the entire
minor radius |[6]. We have confirmed ballooning stability using the ballooning code
BALM2000 [16], and Figure 6 shows the maximum achievable pressure gradient versus
the square root of normalized flux. As with the MAST calculations [15], we have chosen
the numerical integration interval over the poloidally extended “ballooning” angle to be
20 periods, while the initial angle (i.e. that about which the mode balloons) was chosen

to be zero.
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Figure 4. STPP eigenfunctions of n = 1 marginally unstable displacements for (a) and
(c) an internal mode with R,,/a =1 and go = 2.5, and (b) and (d) an external mode
with R,,/a = 1.2 and go = 2.9. Figures 4 (a) and 4 (b) show the s profile of selected
harmonics, and Figures 4 (c) and 4 (d) show the full eigenfunction displacements. The
colormap is a sliding jet colorbar, where red corresponds to an expansion, and blue a
contraction in the direction normal to the contour.

3. Component Test Facility

In this section we report on more detailed scans that augment earlier studies of vertical
MHD stability. [2| Specifically, we have conducted marginal stability scans over the
total beta 3 = 25/ B2, where the overline denotes the volume average, by extending the
equilibrium remapping of the surface averaged current I*(s) to preserve both the plasma

current [, and ¢q at fixed 3. The total beta 3 is related to the experimental beta, B,
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Figure 5. Normalized eigenvalue versus wall parameter R,/a for n = 1,2,3
eigenmodes of the STPP equilibrium.
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Figure 6. Ballooning stability of the STPP equilibrium. The solid line is the pressure
gradient profile of the STPP equilibrium, and the dashed line is the marginally stable
threshold.

through 3/8 = B2/B2, where By is the vacuum toroidal field at the geometric axis. We
have used the equilibrium code CHEASE [14] to remap for the surface averaged current

I*(s). Two equilibrium remappings for I*(s) were explored:
I*(s) = MI7(s™), (1)
I"(s) = M(I7(s) + 27 (0)(1 = 5)), (2)

with A;, A2 adjusted to preserve I, and gy for each new target 3, where I*(0) is the value

of the unmapped I*(s) at s = 0. In both remappings of Eq. (1) and Eq. (2), automated
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equilibrium scans were performed by using task-parallel Python scripts. These scripts
were constructed using the PyPar [17] Python bindings to the Message Passing Interface
library. The calculations were executed on a local commodity cluster. First, these scaled
p' to achieve a target 3. Next, an interpolative search algorithm was used to adjust
Ao to obtain the original ¢y value. For each Ay value, \; was automatically adjusted
within CHEASE to preserve I,. Because of parameter interdependency, this process
was iterated until all three parameters converged.

Figure 7 shows contours of constant 3 in (go, A2) space with constant [,. As the
purpose of this figure is to identify the effect of automated equilibrium remappings of
Eq. (1) and Eq. (2) on gy, we have restricted our attention to a parameter range for
which ¢y is monotonic with \y. For both remappings, gy drops with increasing 3 at
fixed A, and gy decreases with increasing Ay at fixed 3. The latter trend corresponds to
adding current to the plasma core: the nonlinear mapping of Eq. (1) corresponds to an
inward contraction of the current profile, while the remapping of Eq. (2) corresponds to
adding on-axis current /*(0). We have selected remapping Eq. (2) for use in marginal
stability scans because this accesses higher 3 for the baseline .

Figure 8 shows a CHEASE computed equilibrium of the CTF configuration, using
input parameters from SCENE. While not shown here, we have performed similar
equilibrium and stability convergence studies to those described in Sec. 2 for the STPP.
Also shown in Figures 8(c) and (g) are the ¢ and I*(s) profile variation using the
application of Eq. (2) with I, and gy preserved for 0.06 < 3 < 0.15. Over this range of
3, the change in the I*(s) profile is less than 5%, even at the core where the modification
is largest. This explains why the variation in ¢ and I*(s) is barely visible. Figure 8(d)
shows the corresponding variation of pressure profile over this range of 3, and with I,
and ¢y preserved.

We have investigated stability as a function of conformal wall radius and ¢y. For
R,/a < 2.2 the plasma is stable to n = 1 displacements, and it is stable to n = 2

and n = 3 displacements in the no wall limit. Figure 9 shows the change in plasma
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stability as a function of gy with a conducting wall on the plasma boundary. While the
plasma current was not conserved in these scans, they show nonetheless that the plasma
is stable to n = 1,2 and 3 internal modes provided gy > 2.1. As illustration, Fig. 10
shows n = 1 eigenfunctions for external (no-wall) and internal (wall on boundary) kink
modes for gy = 2.1. The substantial m = 2 lobes indicate a resonance with the ¢ = 2
surface.

Using the equilibrium transformation of Eq. (2), we have also computed more

detailed marginal stability boundaries in (R, /a, 3) parameter space. For instance, Fig.

2.2 ---p=0.12
——p=0.13
215 ---p=0.14]
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Figure 7. Scaling of gy versus Ag for the equilibrium transformations useded for
the Component Test Facility. Figure 7 (a) is the nonlinear flux surface rescaling of
Eq. (1), and Figure 7 (b) shows the addition of an on-axis current given by Eq, (2).
Intersections of § contours with the horizontal dashed line are solutions for Ao that
preserve qp.
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Figure 8. Component Test Facility equilibrium. Figure 8 (a) is a contour map of
equal-spaced 1,,, and the blue contour is the plasma boundary. Figure 8 (b) shows the
poloidal flux through the mid-plane Z = 0. Figures 8 (c¢) through 8 (g) show the ¢
profile, pressure p(v), toroidal flux function f(v), and p’(¢) and I'* profiles respectively.
The light shading in Figures 8 (c), 8 (d) and 8 (g) represents the variation of the ¢, p,
and I* for the marginal stability scans performed.
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Figure 9. Change in plasma stability for the CTF equilibrium as a function of gq.

11 shows the (R, /a, ) marginal stability boundary for n = 1 displacements for constant
qo and I, and constant go only. Also shown is the (R, /a, 3) marginal stability boundary
for constant I,. As expected, the maximum [ increases with decreasing wall distance.
The change in stability at 3 = 0.14 occurs because the g profile becomes non-monotonic,
so the zero shear surface moves off-axis with increasing 3, into regions of the plasma

for which the destabilising pressure and current gradients are larger. Also shown is the
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Figure 10. CTF mode structure of an n = 1 displacement for an (a) internal (wall
on plasma) and (b) external (wall at infinity) mode.

marginal stability boundary when only ¢y is preserved and I, is unconstrained. For this
curve I, is 8.0 MA between 0.114 < 3 < 0.13, I, drops to 7.6 MA at 8 = 0.15, and I,
increases to 11.1 MA at 3 = 0.06. This trend explains both the improved performance
for 3 > 0.135, as the current gradient is weaker in this case compared to the boundary
with both [, and gy preserved, and the reduced performance compared to the fixed I,
case for 3 < 0.115, for which the current gradient is larger.

Figure 12 is a contour plot showing the available increase in maximum possible
pressure gradient, Ap’(¢), such that the plasma is ballooning stable. This shows that
there is considerable margin before the onset of ballooning instability. As in Sec. 2 we
have checked that the ballooning stability conclusions are insensitive to the initial angle

and the number of periods of integration.

4. Conclusions

We have performed an ideal MHD stability analysis on high-resolution equilibrium
reconstructions for the spherical tokamak power plant and component test facility
configurations. An equilibrium and MHD stability convergence study was performed,

showing convergence of both globally integrated quantities and MHD eigenvalues. Taken
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Figure 11. Marginal n = 1 stability boundary in (R, /a,3) space for the CTF
configuration. The black line shows the marginal stability boundary using the I*
mapping of Eq. (2) with both I,, and gy preserved, and the red line shows the marginal
stability boundary with only ¢o preserved. In each case the plasma is more stable
below the curve (lower value of R,,/a), and unstable above the curve (larger value of
Ry /a). The baseline 3 value is 0.13.
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Figure 12. Contour plot of ballooning mode maximum increase in pressure gradient
Ap' (1) for the CTF configuration as a function of s and 3.

together, these results confirm the existence of stable, high-performance configurations
in the spherical tokamak family.

For the power plant, the central conclusions are threefold. First, of the axis-
asymmetric modes investigated (n = 1,2, 3), a scan with ¢o shows that the equilibrium

is stable to internal modes provided ¢y > 2.8. Second, a stability scan with an ideal
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conformal wall showed that the low n modes (n = 1,2,3) are stabilised provided
R,/a < 1.15. Three, the power plant equilibrium is stable to n = oo ballooning modes.

We have also explored the stability of a component test facility configuration as a
function of ¢, R,,/a and 3 for constant I, and go. Specifically, we find: the configuration
is stable to n = 1, 2, 3 internal modes provided ¢y > 2.1; the n = 1 external kink mode
is stabilised provided R, /a < 2.2, and the plasma is n = oo ballooning stable. We find
that there is a considerable stable operating 3 margin with respect to ballooning modes:
the plasma is ballooning stable up to at least 3 = 0.15; and for a tightly fitting wall,

the plasma is n = 1 stable up to 8 = 0.15 (Besp = 23%).
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