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This paper describes an approach for the dynamic simulation of complex
computer-aided engineering models where large collections of rigid bodies
interact mutually through millions of frictional contacts and bilateral me-
chanical constraints. Thanks to the massive parallelism available on to-
day’s GPU boards, we are able to simulate sand, granular materials, and
other complex physical scenarios with one order of magnitude speedup when
compared to a sequential CPU-based implementation of the discussed algo-
rithms.

1 Introduction, Problem Statement, and Context

The ability to efficiently and accurately simulate the dynamics of rigid multi-
body systems is relevant in computer-aided engineering (CAE) design, in
virtual reality, in video games, and in computer graphics in general, for
instance, when physical simulation is used for special effects in 3D movies.

Devices composed of rigid bodies interacting through frictional contacts and
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Figure 2: Chrono::Engine simulation of
a tracked vehicle on a granular soil.
The GPU was used for both dynamics
Figure 1: Chrono::Engine [1] simulation and collision detection between tracks,
of a complex, rigid multibody mecha- sprockets, and pebbles [2].

nism with contacts and joints.

mechanical joints pose numerical solution challenges because of the discon-
tinuous nature of the motion; the dynamics is nonsmooth because of the
presence of noninterpenetration, collision, and adhesion constraints. Conse-
quently, even relatively small systems composed of a few hundred parts and
constraints may require significant computational effort. More complex sce-
narios such as vehicles running on pebbles and sand as in Fig. 1 and Fig. 2,
soil and rock dynamics, and flow and packing of granular materials, such as
in Fig. 3, would require prohibitively long computational times, hindering
the effectiveness of multibody dynamics simulation in the CAE landscape.
Results reported in [3] indicate that the most widely used commercial soft-
ware for multibody dynamics runs into significant difficulties when handling
simple problems involving hundreds of contact events, and cases with thou-
sands of contacts become intractable. The method embraced in this work
can solve efficiently problems with millions of contacts in a sequential CPU
implementation, and improved performance can be obtained with the GPU
implementation discussed herein.

Until recently, because of a price barrier, taking advantage of the potential
of large-scale parallel computing was the privilege of a relatively small num-
ber of research groups, thus limiting the spectrum of applications benefiting
from efficiency gain induced by parallel computing. This scenario is rapidly
changing as a result of a trend set by general-purpose computing on GPUs.
Few GPU projects, however, are concerned with the dynamics of multibody
systems. The two most significant ones can be traced back to the Havok
and the Ageia physics engines. Both are commercial proprietary libraries
used in the video-game industry. Given these circumstances, the goal of
this work was to implement an open source, general-purpose GPU solver for



Figure 3: The proposed method can simulate the dynamics of devices with motors, joints
and contacts, as in the case of this size segregation machine that shakes thousands of steel
spheres.

multibody dynamics backed by rigorous convergence results that guarantee
the accuracy of the solution. To this end, the parallel version implemented
on the GPU builds on an analytical framework defined in [4, 5], which can
robustly accommodate bilaterally constrained rigid bodies undergoing fric-
tional contacts.

Unlike the so-called penalty or regularization methods, where the frictional
interaction can be represented by a collection of stiff springs combined with
damping elements that act at the interface of the two bodies [6], the approach
embraced here relies on a different mathematical framework. Specifically,
the algorithm draws on time-stepping procedures producing weak solutions
of the differential variational inequality (DVI) problem that describes the
time evolution of rigid bodies with impact, contact, friction, and bilateral
constraints. When compared to penalty methods, the DVI approach has a
greater algorithmic complexity but avoids the small time steps that plague
the former approach.

Early numerical methods based on DVI formulations can be traced back
to the early 1980s and 1990s [7, 8, 9], while the DVI formulation has been
recently classified by differential index [10]. Recent approaches based on
time-stepping schemes have included both acceleration-force linear comple-
mentarity problem (LCP) approaches [11, 12] and velocity-impulse, LCP-
based time-stepping methods [13, 14, 15]. The LCPs, obtained as a result
of the introduction of inequalities accounting for nonpenetration conditions
in time-stepping schemes, coupled with a polyhedral approximation of the
friction cone, must be solved at each time step in order to determine the
system state configuration as well as the Lagrange multipliers represent-
ing the reaction forces [8, 13]. If the simulation entails a large number of



contacts and rigid bodies, as is the case for granular materials, the com-
putational burden of classical LCP solvers can become significant. Indeed,
a well-known class of numerical methods for LCPs based on simplex meth-
ods, also known as direct or pivoting methods [16], may exhibit exponential
worst-case complexity [17]. Moreover, the three-dimensional Coulomb fric-
tion case leads to a nonlinear complementarity problem (NCP). The use of
a polyhedral approximation to transform the NCP into an LCP introduces
unwanted anisotropy in friction cones and significantly augments the size of
the numerical problem [13, 14].

In order to circumvent the limitations imposed by the use of classical LCP
solvers and the limited accuracy associated with polyhedral approximations
of the friction cone, a parallel fixed-point iteration method with projection
on a convex set has been proposed, developed, and tested [5]. The method
is based on a time-stepping formulation that solves at every step a cone-
constrained quadratic optimization problem [18]. The time-stepping scheme
has been proved to converge in a measure differential inclusion sense to the
solution of the original continuous-time DVI. This paper illustrates how this
problem can be solved in parallel by exploiting the parallel computational
resources available on NVIDIA’s GPU cards.

2 Core Method

The formulation of the equations of motion, that is, the equations that
govern the time evolution of a multibody system, is based on the so-called
absolute, or Cartesian, representation of the attitude of each rigid body in
the system.

The state of the system is denoted by the generalized positions q = [r{, el

..,rgb, egb]T € R™ and their time derivatives ¢ = [i’{, ef ... ,I"Zb, é:,fb]
€ R™_ where ny is the number of bodies, r; is the absolute position of the
center of mass of the jth body, and the quaternions (Euler parameters) ¢;
are used to represent rotation and to avoid singularities. Instead of using
quaternion derivatives in ¢, it is more advantageous to work with angular
velocities expressed in the local (body-attached) reference frames; in other
words, the method described will use the vector of generalized velocities
v = [i‘{,@lT, e ,I"gb,@,{b]T € R%%. Note that the generalized velocity can
be easily obtained as ¢ = L(q)v, where L is a linear mapping that transforms

each w; into the corresponding quaternion derivative ¢; by means of the linear

’
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algebra formula ¢; = $GT(q)w;, with 3x4 matrix G(q) as defined in [19].
We denote by 4 (t,q,v) the set of applied, or external, generalized forces.

Bilateral constraints

Bilateral constraints represent kinematic pairs, for example spherical, pris-
matic or revolute joints, and can be expressed as algebraic equations con-
straining the relative position of two bodies. Assuming a set B of constraints
is present in the system, they lead to the scalar equations V;(q,t) =0, i€
B. Assuming smoothness of constraint manifold, ¥;(q,¢) can be differenti-
ated to obtain the Jacobian V,¥; = [0W;/dq]” .

Constraints are consistent at velocity level provided that V\I’Zv + 85121- =0,

where VU! = v, UTL(q).

Contacts with friction

Given a large number of rigid bodies with different shapes, modern collision-
detection algorithms are able to find efficiently a set of contact points, that
is, points where a gap function ®(q) can be defined for each pair of near-
enough shape features. Where defined, such a gap function must satisfy the
nonpenetration condition ®(q) > 0 for all contact points.

Note that a signed distance function, differentiable at least up to some value
of the interpenetration, can be easily defined if bodies are smooth and con-
vex. However, this situation is not always possible, for instance when dealing
with concave or faceted shapes often used to represent parts of mechanical
devices.

When a contact i is active, that is, ®;(q) = 0, a normal force and a tangential
friction force act on each of the two bodies at the contact point. We use the
classical Coulomb friction model to define these forces [14]. If the contact is
not active, that is, ®;(q) > 0, no contact or friction forces exist. This implies
that the mathematical description of the model leads to a complementarity
problem [13]. Given two bodies in contact A and B, let n; be the normal at
the contact pointing toward the exterior of the body of lower index, which
by convention is considered to be body A. Let u; and w; be two vectors
in the contact plane such that n;,u;, w; € R® are mutually orthonormal
vectors.



The frictional contact force is impressed on the system by means of mul-
tipliers 7;n, > 0, %4, and 7, which lead to the normal component of
the force F; ;v = 7;,n; and the tangential component of the force F;r =
Vi Wi + Vi wWi.

The Coulomb model imposes the following nonlinear constraints:

Vin = 0, ®i(q) >0, Pi(q)7in =0,
Wiin > \/ﬁﬁu + %%w
(Fiz,vir) = —|[Fir|| |[|[virll

virll (#iin = 32, +52,) = 0,

where v; 7 is the relative tangential velocity. The constraint (F; r,v; 1) =
—||Fi7|| ||vi || requires that the tangential force be opposite to the tangen-
tial velocity. Note that the friction force depends on the friction coefficient
Wi € R+,

An equivalent convenient way of expressing this constraint is by using the

maximum dissipation principle:

Fiur Vi) = argmin vig Fiulli +iwWs) - (1)
2wt 0 <HiTin

In fact, the first-order necessary Karush-Kuhn-Tucker conditions for the
minimization problem (1) correspond to the Coulomb model above [20, 9].

The complete model

Considering the effects of both the set A of frictional contacts and the set
B of bilateral constraints, the time evolution of the dynamical system is
governed by the following differential variational inequality (a differential
problem with set-valued functions and complementarity constraints):

q = L(qv
Mv = f (t, q, V) + Z %J,V\I’ﬂ-
i€B
+ Z (az,n Di,n + :?i,u Di,u + :V\i,w Di,w)
€A (2)

ieB : Yiq,t)=0
icA : Fip>0 L ®(q) >0, and

(ai,u, ’/y\i,w) = argmin v (az,u Di,u + &\i,w Di,w) .

:U'i;/\i,n > \/ :7\7;27714'?&2,10
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i-th contact

z

Figure 4: Contact ¢ between two bodies A, B € {1,2,...,n}

The tangent space generators D; = [D; ,, D;,, D; ] € R67%%3 are sparse
and are defined given a pair of contacting bodies A and B as

pl — 0 ... —A;-Z:p A;T’:pAASZA 0 . (3)
‘ 0 ... Al —-A{ Apsip 0 ..],

where we use A; ), = [n;, u;, w;] as the R3*3 matrix of the local coordinates
of the ith contact and introduce the vectors s; 4 and s; p as contact point
positions in body coordinates, with skew matrices 8; 4 and s; g; see Fig. 4.

3 The time-stepping scheme

We formulate the dynamical problem in terms of measure differential inclu-
sions [15], whose numerical solution can be obtained by using the following
time-stepping scheme based on the solution of a complementarity problem
at each time step.

Given a position g and velocity v\ at the time step ¢, the numerical
solution is found at the new time step t!*1) = t() 4 h by solving the following



optimization problem with equilibrium constraints [4]:

M) vy = he(tO, g0, vO) £ 3 5, VT, +

i€B
+ > iea Yin Din + Yiu Diw + Yiaw Diw) (4)
i€B: Ly, (q®, 1) + voTvD 1 2 — ¢ (5)
i€ A: 0< +®i(qV) + DI vIHD 140 >0, (6)
(Vijus Yiw) = argmin VI (iuDiu + Yiw Diw) (7)
um,nz\/m
qth = a® + hL(g®)v+D). (8)

Here, v, represents the constraint impulse of a contact constraint; that is,
vs = h7s, for s = n,u,w. The %@i(q(l)) term achieves constraint stabiliza-
tion; its effect is discussed in [21]. Similarly, the term %@i(q(l)) achieves
stabilization for bilateral constraints. The scheme converges to the solution
of a measure differential inclusion [18] when the step size h — 0.

Several numerical methods can be used to solve (4)—(7) [22]. Our approach
casts the problem as a monotone optimization problem by introducing a
relaxation over the complementarity constraints, replacing Eq. (6) with ¢ €
A:0<3:0;(qW)+ DZHV(IH) — i/ (VI D)2 + (vI D)2 L% > 0. The
solution of the modified time-stepping scheme will approach the solution of
the same measure differential inclusion for h — 0 as the original scheme [18].

Previous work [5] showed that the modified scheme is a cone complementar-
ity problem (CCP), which can be solved efficiently by an iterative numerical
method that relies on projected contractive maps. Omitting for brevity some
of the details discussed in [5, 23|, we note that the algorithm makes use of
the following vectors:

k = Mv+ne",q",v) 9)
T

b, = {%@i(q(l)),0,0} ic A, (10)

by = +0(qY, )+ %, ieB. (11)

The solution, in terms of dual variables of the CCP (the multipliers), is
obtained by iterating the following contraction maps until convergence:

vied: T =Ty, [y —wni (DIv7 +1b;)] (12)
vieB: Tt =Ty, [V —wn; (VEIVT+b;)]. (13)



At each iteration r, before repeating (12) and (13), also the primal variables
(the velocities) are updated as

vt = Mt <Z DA 4> VAL 4 12) : (14)

z€A z€eB
Note that the superscript (I + 1) was omitted.

The iterative process uses the metric projector Iy, () [4], which is a non-
expansive map Iy, : R3 — R? acting on the triplet of multipliers associated
with the ith contact. Thus, if the multipliers fall into the friction cone,
they are not modified; if they are in the polar cone, they are set to zero; in
the remaining cases they are projected orthogonally onto the surface of the
friction cone. The overrelaxation factor w and n; parameters are adjusted
to control the convergence. Interested readers are referred to [5] for a proof
of the convergence of this method.

The previous algorithm has been implemented on serial computer archi-
tectures and proved to be reliable and efficient. In the following, the time-
consuming part of the methodology, the CCP iteration, will be reformulated
to take advantage of the parallel computing resources available on GPU
boards.

4 Algorithms, Implementations, and Evaluations

A detailed analysis of the computational bottlenecks in the proposed multi-
body dynamics analysis method reveals that the CCP solution and the
prerequisite collision detection represent, in this order, the most compute-
intensive tasks of the numerical solution at each integration (simulation)
time step. The rest of this section concentrates on two approaches that
expose a level of fine-grained parallelism that allows an efficient implemen-
tation of these two tasks on the GPU.

4.1 Parallel, rigid multibody dynamics solver on the GPU

Modern GPU processors can execute thousands of threads in parallel, pro-
viding teraflops-level computing speed. These processors, usually devoted
to the execution of pixel shading fragments for three-dimensional visualiza-
tion, can be exploited also for scientific computation thanks to development



environments such as CUDA from NVIDIA, which provide C++ functions
to easily manage GPU data buffers and kernels, that is, operations to ex-
ecuted in parallel on the data. The proposed algorithm fits well into the
GPU multithreaded model because the computation can be split into multi-
ple threads each acting on a single contact, or kinematic constraint, or rigid
body depending on the stage of the computation.

Buffers for data structures

In the proposed approach, the data structures on the GPU are implemented
as large arrays (buffers) to match the execution model associated with
NVIDIA’s CUDA. Specifically, threads are grouped in rectangular thread
blocks, and thread blocks are arranged in rectangular grids. Four main
buffers are used: the contacts buffer, the constraints buffer, the reduction
buffer, and the bodies buffer.

Special care should be paid to minimize the memory overhead caused by
repeated transfers of large data structures. We organized data structures in a
way that minimizes the number of fetch and store operations and maximizes
the arithmetic intensity of the kernel code, as recommended by the CUDA
development guidelines.

The data structure for the contacts has been mapped into columns of four
floats, as shown in Fig. 5. Each contact will reference its two touching bodies
through the two pointers B4 and Bp, in the fourth and seventh rows of the
contact data structure.

There is no need to store the entire D; matrix for the ith contact because
it has zero entries for most of its part, except for the two 12x3 blocks cor-
responding to the coordinates of the two bodies in contact. In fact, once
the velocities of the two bodies I'4,, w4, and Ip,, wp, have been fetched, the
product D7v" in Eq. (12) can be performed as

D/v" =D/, i, +D]

1,V 1,wA

wa, + D” rp, + DZ:waBi (15)

1,V

with the adoption of the following 3x3 matrices:

T _ T T _ T =
D = AL DL, = ABAGL
,UB - A-i7p’ Di7wB = _AZ7pABSZ’B
Since Dva . = _Dz‘Tva there is no need to store both matrices. Therefore,
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in each contact data structure only a matrix D7 n

used with opposite signs for each of the two bodies.

is stored, which is then

The velocity update vector Av;, needed for the sum in Eq. (14) also is
sparse: it can be decomposed into small subvectors. Specifically, given the
masses and the inertia tensors of the two bodies m,, mp, and J 4,, Jp,, the
term Av; will be computed and stored in four parts as follows:

Afg, =m Dy AT Awy, = JZZ_IDZ-,MAA%TH (17)
AI"BZ. = m;l DZ"vBA’}/;—Fl, AwBi = JEZ_IDZ',MBA’){—Fl.

Note that those four parts of the Av; terms are not stored in the ith con-
tact data structure or in the data structure of the two referenced bodies
(because multiple contacts may refer the same body, they would overwrite
the same memory position). These velocity updates are instead stored in the
reduction buffer, which will be used to efficiently perform the summation in
Eq. (14). This will be discussed shortly.

The constraints buffer, shown in Fig. 6, is based on a similar concept. Ja-
cobians VV; of all scalar constraints are stored in a sparse format, each
corresponding to four rows VV; .., VW, ,, .. V¥, ..., V¥, .. Therefore the
product V¥7v" in Eq. (13) can be performed as the scalar value VU’ v’ =
V\I/ZUAi'Ai + V\I/g:wAwAi + V\I/ZUBi'Bi + V\I/ZWBwBZ.. Also, the four parts of
the sparse vector Av; can be computed and stored as

Aly, = mZ;V‘I’wA’nT T Awg, =35IV, Ay (18)
Aip, =mp VU, Ay Awp, = J;}V\ywmgﬂ.

Figure 7 shows that each body is represented by a data structure containing
the state (velocity and position), the mass moments of inertia and mass
values, and the external applied force F; and torque C;. Note that to speed
the iteration, it is advantageous to store the inverse of the mass and inertias
rather than their original values, because the operation M~ D; Ay ™! must

(2
be performed multiple times.

The parallel algorithm
A parallelization of computations in Eq. (12) and Eq. (13) is easily imple-

mented, by simply assigning one contact per thread (and, similarly, one
constraint per thread). In fact the results of these computations would not

11



GPU contacts buffer i-th contact data
Thread grid float4
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Figure 5: Grid of data structures for frictional contacts, in GPU memory.

GPU constraints buffer

Thread grid

j-th constraint data
float4

K—%

Thread

T
DLIJI ’TVA Bia
I:]ll-f%lﬂ Bis
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bl | ¥
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Thread block

Figure 6: Grid of data structures for scalar constraints, in GPU memory.
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GPU bodies buffer

Thread grid j-th body data

float4

K—/%

ix Viy Viz|R
WjLjylig

Thread block ix Xy X,z
Ao A1 A2 A3
hx Jiy Jix|m ]
Fix Fiy Fiz
Cix Gy Gz

Figure 7: Grid of data structures for rigid bodies, in GPU memory.

overlap in memory, and two parallel threads will never need to write in the
same memory location at the same time. These are the two most numer-
ically intensive steps of the CCP solver, called the CCP contact iteration
kernel and the CCP constraint iteration kernel.

However, the sums in Eq. (14) cannot be performed with embarrassingly-
parallel implementations: it may happen that two or more contacts need
to add their velocity updates to the same rigid body. A possible approach
to overcome this problem is presented in [24], for a similar problem. We
adopted an alternative method, with higher generality, based on the parallel
segmented scan algorithm [25] that operates on an intermediate reduction
buffer (Fig. 8); this method sums the values in the buffer using a binary-tree
approach that keeps the computational load well balanced among the many
thread processors. In the example of Fig. 8, the first constraint refers to
bodies 0 and 1, the second to bodies 0 and 2; multiple updates to body 0
are then accumulated with parallel segmented reduction.

Since collision detection is the biggest computational overhead after the
CCP solution, we also developed a GPU-based parallel code for collision
detection, obtaining a 20x speedup factor when compared to the serial code
of the Bullet library. The GPU collision code requires the use of multiple
kernels and complex data structures that we cannot describe here because

13



GPU reduction buffer Vix Viy Viz|O Body 0
Constraint float4
0w’ [0 Wiy iyl
A . Xjx Xjy Xjz
% Av ;
Dq{Tah /)' Aw |0 / j Vix Viy Viz|2 | Bodyl
— i . )
Dtl‘,"Tah T Av E WGyl
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Figure 8: The reduction buffer avoids race conditions in parallel updates of the same body
state.

of limited space; details are available in [26].

The following pseudocode shows the sequence of main computational phases
at each time step, for the most part executed as parallel kernels on the GPU.

Algorithm 1: Time Stepping Using GPU

1. (GPU or host) Perform collision detection between bodies, obtaining
n4 possible contact points within a distance d, as contact positions
5;.4, Si,B on the two touching surfaces, and normals n;.

2. (Host, serial) If needed, copy contact and body data structures from
host memory to GPU buffers. Copy also constraint data (residuals b;
and Jacobians) into the constraint buffer.

3. (GPU, body-parallel) Force kernel. For each body, compute forces
£(t1,q"W,v®), if any (for example, gravity). Store these forces and
torques into F; and C}.

4. (GPU, contact-paralle]) Contact preprocessing kernel. For each

14



10.

11.

12.

contact, given contact normal and position, compute in place the ma-
trices D;{U K D;f':w ,» and D;TF’WB. Then compute 7; and the contact

residual b; = {+®;(q),0,0}T.

(GPU, body-parallel) CCP force kernel. For each body j, initialize

.. . (I+1 — +1 _
body velocities: r§. )= h m; 1Fj and w§ )= h Jj 1Cj.

(GPU, contact-parallel) CCP contact iteration kernel. For each
contact 7, do

A = Ny, (v —wn; (DIv™ +b;)) + (1= \)7!. Note that DI v" is
evaluated with sparse data, using Eq. (15). Store A’y{“ = ’yl’-”rl -7
in the contact buffer. Compute sparse updates to the velocities of the
two connected bodies A and B, and store them in the R; 4 and R;

slots of the reduction buffer.

(GPU, constraint-paralle]) CCP constraint iteration kernel. For
each constraint i, do

’yl’-”rl =A (’yf —wn; (V\I/ZTVT + bz)) +(1—=X)7!. Store A’y{“ = ’yl’-”rl —
v/ in the contact buffer. Compute sparse updates to the velocities of
the two connected bodies A and B, and store them in the R; 4 and

R; p slots of the reduction buffer.

(GPU, reduction-slot-parallel) Segmented reduction kernel. Sum
all the Ar;, Aw; terms belonging to the same body, in the reduction
buffer.

(GPU, body-parallel) Body velocity updates kernel. For each j
body, add the cumulative velocity updates that can be fetched from
the reduction buffer, using the index R;.

Repeat from step 6 until convergence or until number of CCP steps
reached r > rp42.

(GPU, body-parallel) Time integration kernel. For each j body,

q§z+1) 0 4 (gD

. . . l
perform time integration as j i)V

(Host, serial) If needed, copy body, contact, and constraint data struc-
tures from the GPU to host memory.
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4.2 Parallel collision detection algorithm

The collision detection algorithm implemented performs a two-level spatial
subdivision. The first partitioning occurs at the CPU level, which leads to
a relatively small number of large bozes. The second partitioning of each of
these boxes occurs at the GPU level, which leads to a large number of small
bins. The collision detection occurs in parallel at the bin level. Specifically,
an exhaustive collision detection process is carried out by one GPU thread
to check for collisions between all the bodies that happen to intersect the
associated bin. Since the bin size can be made arbitrarily small, the number
of possible collisions inside the bin is kept small. Figure 9 outlines the
software and hardware stack associated with this methodology.

Four OpenMP threads control the four GPUs available on the computer.
The coarse-grained partitioning at the CPU level is straightforward: the
volume occupied by the objects is partitioned into boxes whose edges are
aligned with a global Cartesian reference frame. Typically, this operation
results in hundreds of boxes, which are subsequently assigned in a round
robin fashion to each of the four GPUs. For instance, if there are 125
boxes it is expected that on average each of the four GPUs will have to
process about 31 or 32 boxes. Objects that span two or more boxes are
automatically assigned to each box when the data is sent down for fine-level
partitioning on the GPU. A mechanism is in place on the GPU side to avoid
double counting of potential collisions in this case. The specifics of the GPU
collision detection are discussed in detail in the following subsections. Once
the collision data has been computed for each box, it is merged together on
a single CPU thread.

4.2.1 Stages of GPU collision detection algorithm

A high-level overview of the GPU-based collision detection is as follows. The
collision detection process starts by identifying the intersections between
objects and bins. The object-bin pairs are subsequently sorted by bin id.
Next, each bin’s starting index is determined so that the bins’ objects can
be traversed sequentially. All objects inside a bin are subsequently checked
against each other for collisions by one GPU thread. This high-level process
is implemented in a sequence of nine stages, each of which is discussed next.
Figure 10 shows what a typical set of data used for collision detection looks
like and will be used in what follows to explain the proposed approach.
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CPU: Open MP
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GPU GPU GPU GPU 4x4 GB Memory
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Figure 9: Software and hardware stack

Stage 1 The collision detection process begins by identifying all object-to-
bin intersections. As Figure 11 shows, an object (body) can ”touch” more
than one bin; there is no limit to how many intersections take place. The
proposed approach, for performance reasons, had bins sized so that spheres
would intersect only up to eight bins; however, because the actual number
of intersections between an object and a bin is computed, an object can
intersect any number of bins. This feature allows the proposed algorithm to
be extended to any geometry.

In this stage, the bounds of the simulation space are calculated first. Both
the largest and outermost objects are determined, allowing the required bin
size to be calculated. In order for the grid and bins to remain uniform, each
side of the grid, like a cube, has equal length. The bin size is set to be twice
as large as the radius of the largest object, which ensures that each sphere
can touch a maximum of eight bins. The issue of choosing an optimal bin
size is further discussed in [26] as it relates to efficient use of the GPU. If
one knows the bin size, the number of bins used in the collision detection
process can be determined.

Next, the minimum and maximum bounding points of each object are de-
termined and placed in their respective bins. For example, Fig. 11 shows
that object 4’s minimum point lies in B4 and its maximum point in A5. The
entire object must fit between the minimum and maximum points; therefore
the number of bins that the object intersects can be determined quickly by
counting the number of bins between the two points in each axis and multi-
plying them. In this case the number is 4. This number is then saved into
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Figure 10: Two-dimensional example used
to introduce the nine stages of the collision
detection process. The grid is aligned to a
global Cartesian reference frame.
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Figure 12: Array T with N entries, based on
spatial subdivision in Fig. 10.
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Figure 11: Minimum and maximum bounds
of object, based on spatial subdivision in
Fig. 10.
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Figure 13: Result of prefix sum operation on
T, based on spatial subdivision in Fig. 10.
Each entry represents an object’s offset based
on the number of bins it touches.



an array, T ( see Fig. 12), which is the size of the number of objects N. As
a result of this stage, array T contains at index ¢ the number of bins that
object ¢ touches.

Stage 2 An inclusive parallel prefix sum is next performed on T, which
was created in Stage 1. A parallel prefix sum (scan) operation takes an array
of N elements and returns a second array in which element ¢ is the sum of
the first ¢ entries of the original array [25]. The CUDA-based Thrust library
implementation [27] of the scan algorithm used operates on T to return in
S the memory offset for each object in T ( see Fig. 13). Specifically, if one
needs to determine what bins body b intersects, S[b— 1] provides the memory
offset used in Stage 3.

Stage 3 In Stage 3, an array B (see Fig. 16), is allocated of size equal to
the value of the last element in S. This value is equal to the total number of
object-bin intersections in the uniform grid. Each element in B is a key-value
pair of two unsigned integers. The key in this pair is the bin number and
the value is the object number. The bin number is calculated as described
in the pseudocode of Fig. 15, where [i, j, k], in 3D, are the coordinates of the
bin in the uniform grid. This process is equivalent to a 3D geometric hash
function and ensures that each bin number is unique. Additional checks
make sure that the bin number is within the valid bounds of the uniform
grid. As Fig. 14 shows, objects not fully contained within the outer edge
of the grid are restricted so that their maximum bound cannot be greater
than the bounds of the uniform grid. The process used to determine the
intersections is essentially the same as Stage 1 with the difference being
that intersections are written rather than just being counted. In this stage,
the memory offsets contained in S are used so that the thread associated
with each body can write data to the correct location in B.

Stage 4 In Stage 4, the key-value array B is sorted by its key, that is, by
bin id. This stage utilizes a GPU-based radix sort from the Thrust library
[27]. This stage effectively inverts the body-to-bin mapping to a bin-to-
body mapping by grouping together all bodies in a given bin for further
processing.
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Outer Edge
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Figure 14: Max bound is constrained to bin Ab5.

SIDE: number of bins on side of uniform grid (stages 1 and 3)
BinNumber =i+ j* SIDE x + k * SIDE x * SIDE .y

Figure 15: Pseudocode: Bin number computation.

B-array The Value
1 1 1 1 2 2 2 3 3 3 3 4
Bl B2 Cl | C2 | A2 | A3 B2 Al A2 Bl B2 A4 | ..

The Key

Figure 16: Array B, based on spatial subdivision in Fig. 10.

B-array ) The Value

3 23|25 7 4 747 1]3].
Al | A2 A2 A3 A3 A3 A4 A4 | A5 A5 Bl Bl . |

The Key

Figure 17: Sorted array B, based on spatial subdivision in Fig. 10.
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For each thread index:
If index<number of active Bins:
if index > 0:
if Current bin number != Previous bin number
Bin start = index
else if index=0:
Bin start = ©

Figure 18: Pseudocode: Bin starting index computation.

TheValue —s Al | A2 A3 | A4 | AS | BL .. |

C-array $ $ $ $ $ $
Thekey —e0xfff| 1 3 | 6 | 8 | 10 | .

Figure 19: Array C, based on spatial subdivision in Fig. 10.

Stage 5 Once the key value pairs are sorted by bin id, the start of each bin
needs to be determined. The total number of elements in array B is known
and is equal to the total number of object-bin interactions. The process for
this stage is outlined in the pseudocode of Fig. 18. Each element in the
array is processed in parallel by one thread. Each of these threads reads the
current and previous bin value. If these values differ, then the start of a bin
has been detected. The first thread reads only the first element and records
it as the initial value. The starting positions for each bin are written into
an array C of key-value pairs of size equal to the number of bins in the 3D
grid. When the start of a bin is found in array B, the thread and bin id are
saved as the key and value, respectively. This pair is written to the element
in C indexed by the bin id. Not all bins are active. Inactive bins (i.e., bins
touched by zero or one bodies), are set to Oxffffffff, the largest possible value
for an unsigned integer on a 32-bit, X86 architecture. This simplifies the
sorting process in the next stage, since such bins cannot host any contacts.
Figure 19 shows the outcome of this stage.

Stage 6 In Stage 6, the bins that are not used are pushed to the end of
the array. To accomplish this, array C is sorted by key and invalid entries
(the OxfIHIH entries, represented for brevity as Oxfff in the figure) are moved
to the end of the array; see Fig. 20. This stage allows C to be traversed
sequentially, so that the number of active bins can be determined for the
next stage. To this end a second radix sort is utilized. Once sorted, the
array is processed in parallel, and the index of the last valid entry in the
array is determined. No bins after this index will be processed.
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The Value —e A2 ‘ ‘ E4 ‘ Al ‘ £5 ‘

Sorted C-array 4 $ $ $ $ $
Thekey —e 1 | .. | 45 [oOxfff| - | oxfff

Figure 20: Sorted array C, based on spatial subdivision in Fig. 10.

3 4 5
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Figure 21: Center of collision volume. Based on spatial subdivision in Fig. 10.

Stage 7 At this point, one GPU thread is assigned to each active bin
to perform an exhaustive, brute-force, bin-parallel collision detection. This
is effective because the number of objects being tested for collisions has
become relatively small. First, the total number of active bins is determined
by finding the index in the sorted C array where the bin value is a valid
number and the next value is an invalid Oxffffffff. Because the values were
sorted in the previous stage, there is only one place in the array where this
can occur. Determining this value allows memory and thread usage to be
allocated accurately. In this manner no threads will be wasted on passive
bins, that is, bins that are touched by one or no object at all. In this stage,
each thread computes the total number of collisions in its bin and writes
that number to an array D of unsigned integers with a size equal to the
number of active bins. The bin starting number (from Stage 5) is read for
the current and next bins, the starting value for the next bin being the
ending value for the current one, allowing the list of objects to be iterated
through.

The algorithm used to check for collisions between spheres does so by cal-
culating the distance between both objects. Because all objects are spheres,
contacts can occur only when the distance between each object’s centroid
is less than or equal to the sum of their radii. Because one object could
be contained within more than one bin, caution was required to prevent re-
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For each thread index:
If index<last:
For posA=bin start && posA<bin end:
For posB=posA+1 && posB<bin end:
centerDist = distance between center of A and B
rAB =Radius of A plus Radius of B
if centerDist<=rAB:
if centerDist+radius of A)<radius of B):
collision center=bin of object A
if centerDist+radius of B)<radius of A):
collision center=bin of object B
if(current bin=collision center)
D[index]++;

Figure 22: Pseudocode: Determine number of collisions.

peated detection of the same collision. For example, if two objects intersect
within two separate bins, each thread processing its respective bin shouldn’t
find the exact same collision pair. Therefore, several conditions need to be
satisfied in order to guarantee unique collisions.

The principle used is simple; the midpoint of a collision volume can be con-
tained only within one bin. Therefore, only one thread will find a collision
pair. For example, in order to determine the midpoint of the collision vol-
ume, the vector going from centroid of object 4 to the centroid of object
7 is determined; see Fig. 21. Then the point where this vector intersects
each object is determined. The midpoint between these two points is used
as the midpoint of the collision volume. If one object is completely inside
the other, the midpoint of the collision volume is the centroid of the smaller
object. Using this process, the number of collisions are counted for each bin
and written to D. This stage is outlined in the pseudocode of Fig. 22.

Stage 8 Once the number of collisions per bin is returned, an inclusive
prefix scan operation is performed on it. This stage returns an array E
whose last element is the total number of collisions in the uniform grid.
This allows an exact amount of memory to be allocated in the next stage.
The Thrust scan algorithm [27] was again used for this stage.

Stage 9 The final step of the collision detection algorithm is to write
the contact information to the contact pair array. Concretely, an array of
contact information structures F is allocated with a size equal to the value
of the last element in E. The collision pairs are then found by using the
algorithm outlined in Stage 7. At this point, instead of simply counting the
number of collisions, actual contact information is written to its respective
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ObjectA=A

ObjectB=B

Normal=-midpoint/centerDist

Collision point on B(x)= B.x+(B.w/centerDist)*(A.x-B.x)
(repeat for y and z)..

Collision point on A(x)= A.x+(A.w/centerDist)*(B.x-A.x)
(repeat for y and z)..

Figure 23: Pseudocode: Computing collision data.

place in F; see the pseudocode of Fig. 23. Additional contact information
can be computed if necessary in this stage.

5 Final Evaluation

The GPU iterative solver and the GPU collision detection have been embed-
ded in our C++ simulation software Chrono::Engine. We tested the GPU-
based parallel method with benchmark problems and compared it with the
serial method in terms of computing time.

For the results in Table 1, we simulated densely packed spheres that flow
from a silo. The CPU is an Intel Xeon 2.66 GHz; the GPU is an NVIDIA
Tesla C1060. The simulation time increases linearly with the number of
bodies in the model. The GPU algorithm is at least one order of magnitude
faster than the serial algorithm.

Other stress tests were performed with even larger amounts of spheres, such
as in the benchmark of Fig. 30. Similarly, the test of Fig. 29 simulates 1
million rigid bodies inside a tank being shaken horizontally (the amount of
available RAM on a single GPU board restricted us from going beyond that
limit).

Using the proposed GPU method, we are already able to simulate granular
soil (pebbles, sand) under the tracks of a vehicle; see Fig. 2. In fact our GPU
collision detection code is able to handle nonconvex shapes by performing
spherical decomposition. In order to simulate larger scenarios, with smaller
grains of sand, future efforts will address the possibility of using domain
decomposition, with clusters of multiple GPU boards on multiple hosts.
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CPU GPU
Number of Bodies CCP CCP Speedup CCP Speedup CD

5] 5]
16,000 711 0.57 12.59 167
32,000 16.01  1.00 16.07 6.14
64,000 34.60 1.97 17.58 10.35
128,000 76.82  4.55 16.90 21.71

Table 1: Stress test of the GPU CCP solver and GPU collision detection.

Table 2: Errors computed by taking the Euclidean norm of the difference between the
collision data from Bullet and the collision detection algorithm discussed. AE stands for
Average Error. SD stands for Standard Deviation

Contact Dist. | Contact Normal | Contact Point
Spheres
Contacts Error [m] Error [m] Error [m]
x106] AE SD AE SD AE SD
[x1077] | [x107%] | [x10710] | [x1077] | [x1076] | [x1079)
1 462,108 1.46 2.48 0.82 2.21 2.73 2.98
2 1,015,556 0.74 291 1.91 2.15 2.37 3.35
3 1,379,397 | 1.69 3.52 2.75 2.26 3.58 4.09
4 1,530,309 | 5.49 4.14 2.33 2.24 1.94 4.78
5 1,995,548 | 6.35 4.38 1.09 2.23 3.10 5.09

5.1 Validation against and comparison with state-of-the-art
sequential collision detection

A first set of experiments was carried out to validate the implementation
of the algorithm using various collections of spheres that display a wide
spectrum of collision scenarios: disjoint spheres, spheres fully containing
other spheres, spheres barely touching each other, and spheres that are in
contact but not full containment. The first column of Table 2 reports the
number of objects in the test for five scenarios. For each test the error
between the reference algorithm and the implemented algorithm is reported
for the total number of contacts identified, the average error and standard
deviation of the contact distance, contact unit normal, and point of contact.
The reference algorithm used for validation was the sequential (nonparallel)
collision detection implementation available in the open source, state-of-the-
art Bullet Physics Engine [28].

These results showed that the error in the proposed algorithm, when com-
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pared to the CPU implementation, is minimal and is due to floating-point
error. The CPU-based algorithm relies on double precision, while the GPU
algorithm relies on single precision. While this had an effect on the overall
contact data, the number of contacts was the same. Furthermore, the small
errors reported above show that no collisions were missed by the algorithm.
Because the data was sorted, if a contact had been missed, subsequent con-
tacts would have also been incorrect, leading to large error values.

A second set of numerical experiments was carried out to gauge the effi-
ciency of the parallel CD algorithm developed. The reference used was the
same sequential CD implementation from Bullet Physics Engine. The CPU
used in this experiment (relevant for the Bullet implementation) was AMD
Phenom II Black X4 940, a quad core 3.0 GHz processor that drew on 16
GB of RAM. The GPU used was NVIDIA’s Tesla C1060. The operating
system used was the 64bit version of Windows 7. Three scenarios were con-
sidered. The first one gauged the relative speedup gained with respect to
the serial implementation. This test stopped when dealing with about 6
million contacts (see horizontal axis of Fig. 24), when Bullet ran into mem-
ory management issues. The plot illustrates that the relative speedup is up
to 180. The second scenario determined how many contacts a single GPU
could determine with this algorithm before running short on memory. As
Fig. 25 shows, approximately 22 million contacts were determined in less
than 4 seconds. This was followed by a third scenario, where the problem
size was increased up to 1.6 billion contacts; see Fig. 26. This experiment
relied on the software/hardware stack outlined in Fig. 9. Specifically, the
test combined the use of OpenMP, for multiple GPU management, with
CUDA, for GPU-level computation management.

5.2 Collision detection scaling for relevant dynamics appli-
cation

Our second set of experiments was designed to illustrate how the proposed
algorithm performs when interfaced with a physics based dynamics simula-
tion package. The goal was to understand how the algorithm scaled when
the objects were tightly packed rather than randomly distributed as in the
previous test. The simulation consisted of a cylindrical tank that had a con-
stant height with the radius varying with the number of spheres added to the
tank. Specifically, the number of spheres in the tank was increased with each
simulation without increasing the depth of the tank. Instead, the radius of
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GPU: NVIDIA Tesla C1060
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Figure 24: Overall speedup when comparing the CPU algorithm to the GPU algorithm.
The maximum speedup achieved was approximately 180 times.
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Figure 25: Collision time vs. contacts detected. This graph shows that when the algorithm
is executed on a single GPU it scales linearly.
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Figure 26: Collision time vs. contacts detected. This graph shows that the multi-GPU
algorithm scales linearly and can detect more than a billion contacts in less than a minute.
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Table 3: Total time taken per time step at steady state and the number of contacts
associated with it.

Objects | Total Time | GPU Collision

[x10] [sec] Detection [sec] GPU Solver | Contacts
0.1 6.1972 0.5436 5.4243 361,440
0.2 12.1190 1.0758 10.5881 718,377
0.3 18.2708 1.6183 15.9482 1,080,069
0.4 23.2806 1.9746 20.4606 1,403,784
0.5 29.2565 2.4568 25.7773 1,765,772
0.6 35.0433 2.9785 30.7971 2,124,639
0.7 40.5938 3.4695 35.6405 2,439,241
0.8 46.9516 4.0234 41.2297 2,838,832
0.9 52.6227 4.5272 46.1909 3,178,228
1.0 58.1518 4.9473 51.1686 3,548,594

the cylinder, which had to increase, was determined for each simulation us-
ing the number of spheres and their packing factor. Each test was run using
an NVIDIA Tesla C1060 until the number of collisions and thus the simu-
lation time per time step reached steady state. The open source dynamics
engine Chrono::Engine was used for this simulation [1]. The GPU solver in
Chrono::Engine was used in conjunction with the proposed algorithm.

In this simulation spheres were first dropped into the tank at fixed intervals
until the number of objects in the tank reached the desired amount, at
which time a hole in the bottom of the tank was opened. The simulation
was then run until steady state flow was reached. The results are presented
in Table 3 and graphed in Fig. 27 and Fig. 28. They indicate that even
in a dynamics application, the collision detection algorithm scales linearly.
Furthermore, the results show that the bulk of each time step was spent on
the GPU dynamics solver portion of the simulation, with a small amount of
time taken up by the collision detection step. These times are larger than
the raw collision detection times presented earlier due to the pre- and post-
processing required by the physics engine as it transfers and organizes data
for use between the solver and collision detection.
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Figure 27: Collision time as the number of contacts increases.
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Figure 28: Collision time as the number of objects increases.

29



Figure 29: Light ball floating on 1 million rigid bodies moving around in a tank while
interacting through friction and contact.

Figure 30: Benchmark: mixing of two granular materials, approximately 40,000 bodies.

6 Future Directions

A parallel numerical method has been proposed for the simulation of multi-
body mechanical systems with frictional contacts and bilateral constraints.
The parallel method is based on an iterative approach that falls within the
mathematical framework of measure differential inclusions and is backed by
a rigorous convergence analysis.

Results obtained with the proposed method demonstrate that the GPU ver-
sion of the dynamics solver is about 20x faster than the CPU version. A
similar speedup has been obtained for the collision detection.
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