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Abstract. Traditionally there has been little interaction between the
Grid and High-Performance Computing (HPC) storage research com-
munities. Grid research often focused on optimizing data accesses
for high-latency, wide-area networks while HPC research focused on
optimizing data accesses for local, high-performance storage systems.
Recent software and hardware trends are blurring the distinction between
Grids and HPC. In this paper, we investigate the use of I/O forwarding
– a well established technique in leadership-class HPC machines – in a
Grid context. We show that the problems that triggered the introduction
of I/O forwarding for HPC systems also apply to contemporary Grid
computing environments. We present the design of our I/O forwarding
infrastructure for Grid computing environments. Finally, we discuss
the advantages our infrastructure provides for Grids, such as simplified
application data management in heterogeneous computing environments
and support for multiple application I/O interfaces.

1 Introduction

Grid computing environments, such as the National Science Foundation (NSF)
funded TeraGrid project, have recently begun deploying massively-parallel
computing platforms similar to those in traditional HPC centers. While these
systems do not support distributed or multi-resource MPI applications[8, 2],
they do support a variety of HPC applications well suited for tightly-coupled
resources, including high-throughput workloads [19] and massively-parallel
workloads [6]. To efficiently connect these resources, TeraGrid has has focused on
enhancing Grid data services. This trend is evident in the goals for the emerging
third phase of TeraGrid operations, known as TeraGrid “eXtreme Digital” (XD).

This shift in resource usage and deployments aligns Grids more closely
with traditional HPC data-centers, such as the DOE leadership computing
facilitates at Argonne National Laboratory and Oak Ridge National Laboratory.
This realignment poses several data access challenges. One such challenge
is enabling efficient, remote data access by Grid applications using large
numbers of processing elements. Massively-parallel applications can overwhelm
file systems with large numbers of concurrent I/O requests. Leadership-class
computing platforms face a similar data access problem for local data access
to high-performance storage systems. Grid computing platforms experience
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Fig. 1. I/O Forwarding in HPC systems

similar problems for both local and remote data accesses. Existing Grid data
management tools do not address the impact of increased concurrency on remote
data access performance or account for the limited capacity of network and
storage resources as application data continues to increase.

In this paper, we describe how I/O forwarding can improve the performance
of Grid application data accesses to both local and remote storage systems.
In the following sections, we present our I/O forwarding infrastructure for
Grid computing environments and how this infrastructure optimizes application
remote data accesses in Grids. Section 2 presents I/O forwarding and its use in
HPC. Section 3 describes typical I/O mechanisms used by Grid applications and
how I/O forwarding integrates into Grids. In Section 5, we describe related work
and conclude this paper.

2 HPC I/O

In this section, we introduce the concept of I/O forwarding, followed by a
description of our portable, open source implementation.

2.1 A Revised I/O Software Stack

The current generation of leadership-class HPC machines such as the IBM Blue
Gene/P supercomputer at Argonne National Laboratory or the Roadrunner
machine at the Los Alamos National Laboratory consist of a few hundred thou-
sand processing elements. Future generations of supercomputers will incorporate
millions of processing elements. This significant increase in scale is brought about
by an addition in the number of nodes along with new multi-core architectures
that can accommodate an increasing number of processing cores on a single chip.

While the computation power of supercomputers keeps increasing with every
generation, the same is not true for their I/O subsystems. The data access



rates of storage devices has not kept pace with the exponential growth in
processing performance. In addition to the growing bandwidth gap, the increase
in compute node concurrency has revealed another problem: the parallel file
systems available on current leadership-class machines, such as PVFS2 [4],
GPFS [14], Lustre [5] and PanFS [12] were designed for smaller systems with
fewer file system clients. While some of these file systems incorporate features
for enhanced scalability, they are often not prepared to deal with the enormous
increase in clients brought on by the increasing trend towards more concurrency.

MPI-IO, distributed as part of the MPI library, is the standard parallel I/O
API for HPC systems. In certain cases, by using collective I/O, the MPI-IO
implementation is able to reduce the number of requests made to the filesystem.
However, not all applications use the MPI-IO interface or are able to use
collective I/O, so improvements made at the MPI-IO layer may not be available
to the entire spectrum of scientific applications. Parallel high-level libraries
such as Parallel-NetCDF [11] use MPI-IO and as such face many of the same
limitations outlined above. POSIX implementations and serial high-level libraries
are an artifact from an earlier generation and are only available on current HPC
systems to support legacy applications.

To address this I/O bottleneck, another layer needed to be introduced into
the I/O software stack. Clients, instead of directly making requests to the
parallel filesystem, forward their I/O operations to an I/O forwarder node,
which performs the I/O operation on their behalf. One I/O node is typically
responsible for 32 to 128 compute clients. Due to its position in the I/O path,
the I/O forwarder is able to perform a wide range of optimizations that were not
previously possible. For example, it can aggregate requests of unrelated software
running on multiple compute nodes. As such, it reduces both the number of
requests and the number of clients visible to the parallel filesystem. Since the I/O
forwarding software – running on the I/O node – does not share any resources
(CPU or memory) with the compute clients, it is free to dedicate memory and
compute power to optimizing I/O traffic without slowing down computation.

Another benefit of moving the actual I/O calls to the forwarder is that the
compute client can be simplified. Instead of requiring a full I/O stack, it only
needs to be able to send and receive requests to the I/O forwarder. The I/O
forwarder then takes care of using the correct protocol to access the remote
filesystem. Likewise, authentication (to the remote filesystem) can be handled
by the I/O forwarder. This enables compute clients to use a simpler, local
authentication scheme to authenticate to the I/O forwarder. Figure 1 shows
the resulting I/O software stack.

2.2 I/O Forwarding Scalability Layer (IOFSL)

In view of the importance of I/O forwarding in HPC systems, it is desirable to
have a high quality implementation capable of supporting multiple architectures,
file systems and high-speed interconnects. While a few I/O forwarding solutions
are available for the IBM Blue Gene and other leadership class platforms, such as
the Cray XT, they are each tightly coupled to one architecture [20, 7]. The lack



of an open-source, high-quality implementation capable of supporting multiple
architectures, file systems and high-speed interconnects has hampered research
and makes the deployment of novel I/O optimizations difficult.

To address this issue, we created a scalable, unified I/O forwarding framework
for high-performance computing systems called the I/O Forwarding Scalability
Layer (IOFSL) [1]. IOFSL includes features such as the coalescing of I/O calls on
the I/O node, reducing the number of requests to the file system, and full MPI-IO
integration, which translates into improved performance for MPI applications.
Ongoing work includes the integration of some other techniques for improving
HPC I/O performance, such as [21] and [13].

3 Grid Data Access

Two approaches to application data accesses in Grids have emerged. They are
described in section 3.1. Section 3.2 describes how IOFSL can be used to improve
the performance and enhance the use-ability of these approaches.

3.1 Traditional Grid I/O

The first approach stages data at the resource where the application executes or
offloads data locally generated by an application to a remote storage system. This
approach often uses GridFTP to perform bulk data transfers between the high-
performance storage systems attached to Grid resources. While this approach
offers good performance, as remote I/O is only used for staging files in and out
the local storage, it has a number of drawbacks. For one, it is hard to maintain
consistency between the local and remote copy. The second issue is related to
the access granularity. Typically, the whole file needs to be transferred, reducing
efficiency if the application only requires a subset of the file data.

The second approach is to host data on wide-area file systems. These file-
systems construct a distributed, shared storage space, which is mounted locally
on each Grid resource to provide local application access. Examples of Grid
specific filesystems include Gfarm [16] and Chirp [17]. These filesystems typically
do not provide traditional I/O semantics and are currently not well supported
by parallel applications. For example, in Gfarm, files are basically write-once
and parallel read-write I/O has to be emulated through versioning and creating
new files[15].

In addition to these Grid specific filesystems, traditional HPC filesystems
such as Lustre and GPFS have been adapted for Grid environments. While
these do offer familiar parallel I/O facilities, the high latencies and large number
of filesystem clients severely limits their performance and stability.

3.2 I/O Forwarding in a Grid environment

When designing IOFSL, portability and modularity was an important goal.
IOFSL does not make any assumptions about operating system kernels, inter-



connects, filesystems or machine architectures. A such, it can be easily retargeted
to other environments, such as computational Grids.

In large HPC systems, I/O forwarding isolates local compute clients,
connected by a high bandwidth, low latency interconnect from the more distant,
higher latency parallel filesystem. At the same time, it protects the filesystem
from being crippled by a storm of requests, by aggregating and merging
requests before sending them to the filesystem. From the viewpoint of the
remote filesystem, this reduces the number of visible clients and requests, hence
increasing performance.

In a Grid environment, these optimizations are also applicable, albeit on a
different scale. While latencies might be much higher, the same discontinuity
exists when an application, running on a local Grid resource needs to fetch data
from a remote data store. As is the case in large HPC systems, a large number
of simultaneous requests to a remote site might adversely affect the stability
and throughput of the remote file server. This observation is valid both for data
staging and wide area Grid filesystems.

Figure 2 shows the location of I/O forwarding in a Grid environment. Being
located at the gateway between the local compute resources and the remote data,
IOFSL acts as both a connection and request aggregator: local applications can
share the same set of outgoing connections, increasing efficiency and reducing
the load on the remote filesystem. For example, if GridFTP is used as a data
transport between the site where data is stored and the site where data is
consumed or generated, when using IOFSL, the number GridFTP connections
will not depend on the number of clients. Instead, each I/O forwarder can be
configured to use an optimal number of GridFTP connections to obtain the
data. Clients interacting with the I/O forwarder will transparently share existing
connections when possible.

Another important advantage of deploying I/O forwarding in a Grid
environment is that, to the client software, IOFSL can offer a more familiar
access API. Currently, IOFSL implements two client side APIs: POSIX and
MPI-IO. For POSIX, there is a FUSE and SYSIO implementation. The former
enables redirecting I/O accesses of unmodified binary applications. While the
latter requires relinking applications with the SYSIO library, it provides support
on platforms that do not support FUSE (for example, minimal OS kernels such
as Cray’s Catamount kernel[9] or IBM BG/P’s compute node kernel).

By directly supporting MPI-IO, the defacto I/O API for parallel MPI
programs, IOFSL enables unmodified MPI applications (such as parallel analysis
or visualization software) to transparently access remote data using GridFTP or
other protocols not normally supported by HPC software. In this case, IOFSL
effectively acts as a bridge between a local HPC programs and remote Grid-style
storage.

Dedicating some nodes as I/O forwarders also helps with high latency
network links, a typical problem when spanning multiple remote sites using a
POSIX-like filesystem such as Lustre or GPFS. By using local system memory of
the I/O forwarders for buffering read and write data, IOFSL is able to transform
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Fig. 2. I/O Forwarding in a Grid environment

synchronous client accesses into asynchronous remote accesses, reducing the
detrimental effects high latency links. Often requested data can be buffered
locally, where it can be accessed over a low-latency high bandwidth network.
As IOFSL transparently captures all file accesses, I/O requests from multiple
programs can be optimized if they are requesting the same data. For example,
several independent requests to the same data can be coalesced to a single
request.

3.3 IOFSL GridFTP Module Implementation

IOFSL provides access to remote data using the GridFTP driver. This driver
is similar to other IOFSL drivers because it bridges generalized application I/O
requests to a specific I/O subsystem. This IOFSL driver maps the GridFTP API
to the ZoidFS API. The driver manages all GridFTP file handles in red–black
trees and provides the application with portable, opaque IOFSL file handles.
Using this driver, IOFSL servers can proxy application I/O requests to remote
GridFTP servers when application cannot directly access the data because of IP
routing constraints or other connection limitations. There were several challenges
when implementing this driver and it contains several features that existing
IOFSL drivers do not have. We currently use the GridFTP 4.2 client library to
provide GridFTP support.



In order to access remote data, the location of the data must be encoded
into the I/O request. For other IOFSL drivers, such as the POSIX and PVFS2
drivers, the file path is sufficient for IOFSL to locate the data since those file
systems are locally available to the nodes hosting IOFSL software. To access
remote data with the IOFSL GridFTP driver, we require that applications prefix
the file path with the remote access protocol to use, the remote host address,
and the port the GridFTP server is using. For example, an application that
requires access to the /etc/group file hosted on server 192.168.1.100 that hosts
a GridFTP server listening on port 12345 using the ftp protocol will construct
a file path /ftp/192.168.1.100/12345/etc/group.

Unlike other IOFSL drivers, the GridFTP client uses an asynchronous
operation model. The existing IOFSL drivers use synchronous data management
operations and these operations are easier to adapt to the synchronous ZoidFS
interface. To map the asynchronous GridFTP operations to the synchronous
ZoidFS interfaces, we developed a set of callbacks and monitors that poll the
GridFTP client library for operation completion. Supporting these operations
also required additional locking within the ZoidFS driver operations to protect
the GridFTP library from concurrent requests. Without additional optimiza-
tions, the additional locking within this driver can limit the performance of the
IOFSL because of reductions in parallelism. Fortunately, higher level IOFSL
optimizations that can aggregate multiple operations into a single request will
reduce the number of pending GridFTP operations and lock contention with the
IOFSL GridFTP driver.

The GridFTP 4.2 client library used by the IOFSL driver did not full support
the ZoidFS capabilities and interface. Several operations, including link and
symlink, are not available through GridFTP and IOFSL can not support these
operations for applications. GridFTP cannot provide all file attributes, including
file access times and group identifiers. For attribute retrieval operations, the
ZoidFS GridFTP backend will fetch the available attributes and assumes that
application is aware that other attributes are invalid. List I/O capabilities are
supported for GridFTP writes operations, but are not supported for GridFTP
read operations. The IOFSL GridFTP driver must treat all read list I/O requests
as individual requests, which increases the number of requests inflight that the
server must manage.

4 Evaluation

4.1 Test Setup Description

To demonstrate the basic capability of this driver, we performed several
experiments to evaluate the GridFTP driver functionality and the baseline
performance of the GridFTP driver compared to an existing IOFSL driver. We
used the Argonne Leadership Computing Facility’s Eureka Linux cluster. Eureka
is a 100-node Linux cluster that uses a Myricom 10G interconnect. Each node
in the cluster contains 8 Intel-based cores and 16GB or RAM. In these tests, the
compute nodes of this cluster executed the application code and the login nodes



hosted our GridFTP and IOFSL servers. All network communication in these
experiments use TCP/IP.

4.2 Comparison with POSIX I/O

In the following tests, we evaluated the write performance of the GridFTP driver
to a local file system (accessed through a GridFTP server) on the Eureka cluster
login node. We also collected data for these experiments using the POSIX IOFSL
driver. The POSIX driver experiments accessed the data directly. When using
the IOFSL GridFTP driver, application I/O requests are forwarded to the IOFSL
server and the IOFSL server delegates the application requests to the GridFTP
server.

(a) POSIX (b) GridFTP

Fig. 3. Effect of request scheduling on POSIX and GridFTP access methods

From these experiments, we observed that the request merging optimization
increased the performance of the GridFTP driver as the number of application
processes increased. Figure 3 illustrates the results of these experiments.
Without request merging, the overhead for issuing each I/O request is large
due to the GridFTP server overhead and the additional locking within the
IOFSL GridFTP driver. The request merging optimization is able to aggregate
multiple I/O requests into a single list I/O request to the GridFTP server.
For high latency network connections or I/O requests, this optimization can
improved performance through the reduction of I/O requests. We observe this
improvement when using the optimization with the GridFTP driver for IOFSL.
For the POSIX access method, having a lower per-request cost, the effect is less
clear.

Note that figure 3 is not meant to compare the performance of the GridFTP
access method with that of the POSIX access method. These methods each
serve distinct purposes and typically only one of them will be available for
accessing a specific file. For example, while almost all compute nodes fully



support POSIX I/O, GridFTP access from a compute node will rarely be
available, due to network limitations (the compute nodes do not have direct
outside access) or software restrictions (microkernel operating systems limit what
software portability). The primary contribution of the IOFSL GridFTP module
is that it provides a remote data access capability for systems that limit remote
connectivity to compute nodes or other internal infrastructure.

5 Related Work and Conclusions

5.1 Related Work

In [3], a method is described to allow MPI-IO access to GridFTP stores. It
differs from our work in that the MPI application itself makes the GridFTP
connection, as opposed to the I/O forwarder node when IOFSL is used. This
precludes optimizations such as request merging or link aggregation.

Stork [10] tries to improve I/O access time by explicitly scheduling data
staging. While IOFSL will also buffer data using local temporary storage, it does
this transparently – without explicit data staging – and on a sub-file granularity.

Condor [18] enables remote I/O by shipping I/O operations back to the
submission site. It requires application to relink with the condor library.While
our approach also uses function call forwarding, the calls are not shipped to the
remote site but to local aggregators.

5.2 Conclusions

In this paper, we provide an overview of the IOFSL project and how the I/O
forwarding layer can be used to bridge HPC and Grid file I/O requests. We
describe the concept of I/O forwarding in HPC systems and show how the
same technique can be applied to Grid computing environments. We discuss
its advantages and disadvantages, and show how it enables connecting existing
HPC and posix applications with Grid data stores.

We demonstrate how our work enables transparent GridFTP access. We
evaluated our initial GridFTP driver using the IOR benchmark to simulate
an I/O bound application accessing remote data within a cluster. This driver
demonstrates that we can effectively bridge HPC and Grid file I/O requests
and service remote data requests of applications without modifications to the
applications. Our current work includes improving the performance of the driver
by reducing lock contention within the GridFTP driver and evaluating the use
of this driver to proxy I/O requests from the compute nodes of an IBM Blue
Gene/P system to remote data sources.
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