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Abstract We investigate efficient algorithms and a practical implemen-
tation of an explicit-type high-order timestepping method based on Krylov
subspace approximations, for possible application to large-scale engineer-
ing problems in electromagnetics. We consider a semi-discrete form of the
Maxwell equations resulting from a high-order spectral-element discontin-
uous Galerkin discretization in space whose solution can be expressed ana-
lytically by a large matrix exponential of dimension n× n. We project the
matrix exponential into a small Krylov subspace by the Arnoldi process
based on the modified Gram-Schumidt algorithm and perform a matrix
exponential operation with a much smaller matrix of dimension m × m
(m ≪ n). For computing the matrix exponential, we obtain eigenvalues
of the m × m matrix using available library packages and compute an
ordinary exponential function for the eigenvalues. The scheme involves
mainly matrix-vector multiplications, and its convergence rate is generally
O(∆tm−1) in time so that it allows taking a larger timestep size as m in-
creases. We demonstrate CPU time reduction compared with results from
the five-stage fourth-order Runge-Kutta method for a certain accuracy. We
also demonstrate error behaviors for long-time simulations. Case studies
are also presented, showing loss of orthogonality that can be recovered by
adding a low-cost reorthogonalization technique.
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1 Introduction

For many applications arising in electromagnetics, such as designing mod-
ern accelerator devices [22, 23, 26] and advanced nanomaterials [20, 21,
24, 25] that are governed by the Maxwell equations, realistic simulations
often require computing the solutions for long-time propagation distance.
For example, in particle accelerator physics applications, because of the
orders of magnitude difference in the lengths between the beam and accel-
erator devices, very long time integrations are necessary to get the total
effect of the electromagnetic radiations while the beam is passing through
the whole device. For exploring light interaction with advanced nanopho-
tonic materials featured by strongly enhanced surface scattering fields, it
is more reliable to get accurate time-averaged energy fields or transmission
properties of nanosystems by running simulations over several hundreds of
wavelengths of traveling distance. With the motivation for solving such ap-
plication problems more efficiently and accurately, we consider a high-order
time integration method, especially an exponential time integration method
based on Krylov subspace approximation, which can possibly enhance the
computational performance as well as improve the solution accuracy.

Many studies in the literature on exponential time integration methods
have focused on convergence theory, efficient implementation of algorithms,
and their applications for solving systems of equations. In [2], a theoretical
analysis of some Krylov subspace approximations to the matrix exponential
operator was presented with a priori and a posteriori error estimates based
on rational approximations for computing the resulting small matrix expo-
nential. In [3, 4], Krylov subspace methods were applied to solve large linear
systems on supercomputers with preconditionings and parabolic equations
with time-varying forcing terms. In [6], converegence analysis and an effi-
cient timestep-size control technique based on the Arnoldi algorithm was
shown for integrating large-dimensional linear initial-value problems with
source terms. In [7], exponential time integration methods were discussed
for solving large systems of nonlinear differential equations. However, few
studies have been done on applying an exponential time integration method
for high-order spatial approximations for solving problems in electromag-
netics.

In this paper, we consider applying such a method combined with a
spectral-element discontinuous Galerkin (SEDG) approximation [24, 25,
26, 27] in space for solving the Maxwell equations [28]. We simplify our
governing equation by using the Maxwell equations in free space with no
source term as a primary step. We focus on a practical implementation and
algorithms for an exponential time integration method based on Krylov
subspace approximation. The main idea is to project a large matrix expo-
nential operation onto a small dimension of Krylov subspace by the Arnoldi
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process [1] and compute the matrix exponential of the resulting Hessenberg
matrix in a small dimension. In our implementation, instead of carrying
out a matrix exponential based on Padé rational or Chebyshev approx-
imations [2, 6] for the resulting Hessenberg matrix, we use eigensolvers
from existing library packages [18] and compute an ordinary exponential
function for the eigenvalues of the Hessenberg matrix. Other than diag-
onalizing or computing matrix exponential for a very small-dimensional
Hessenberg matrix, the algorithm requires only matrix-vector multiplica-
tions with the information of the field values at the current time. For this
reason, the method can be easily parallelized, and we consider the method
as an explicit-type timestepping method.

High-order spatial approximations are known to be more attractive than
the conventional lower-order finite-difference method [28] for long-time in-
tegration, because the errors are proportional to the linear growth of the
spatial error in time [17]. We discuss a SEDG discretization in space that
uses a tensor-product basis of the one-dimensional Lagrange interpolation
polynomials with the Gauss-Lobatto-Legendre grids [16] for quadrilateral
and hexahedral elements. For time evolution of the SEDG approxima-
tions for the Maxwell’s equations, the five-stage fourth-order Runge-Kutta
timestepping method [30], simply denoted RK4 throughout the paper, has
been commonly used because of its low storage and larger stability re-
gion [12]. Thus, many computational results obtained by our exponential
time integration method are compared with those of RK4.

We describe practical implementations for the Krylov approximation
with the Arnoldi process. We demonstrate examples showing loss of orthog-
onality in the Arnoldi vectors obtained by the modified Gram-Schumidt
algorithm [1, 8], resulting in nonconvergence in their solutions as the spa-
tial approximation order N increases. We use a reorthogonalization tech-
nique [1, 11] at low cost that recovers full orthogonality of the Arnoldi
vectors and achieves spectral convergence for the solutions up to machine
accuracy. We provide convergence studies for time-harmonic solutions in
one dimension and waveguide solutions in two and three dimensions, in-
cluding parallel computations. We demonstrate a high-order convergence
rate in space and time, depending on the approximation orders N and
m. We examine error behaviors for long-time simulations and investigate
maximum allowable timestep sizes as m increases. For the exponential
time integration method, maximum allowable timestep sizes can be larger
as the Krylov subspace dimension m increases. Although the computa-
tional cost increases linearly with increasing order m, the gain from taking
larger timestep sizes for larger m and reducing the total number of time
steps is much larger, so that one can still achieve cost reduction. Most of
our computational results are compared with the results obtained by RK4.

The paper is organized as follows. In Section 2, we discuss the Krylov
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approximation and the Arnoldi algorithm, present our implementation, and
apply it to a system of ordinary differential equations. In Section 3, we
specify a weak formulation of the Maxwell equations using a discontinu-
ous Galerkin approach and describe spatial discretizations. In Section 4
we demonstrate convergence studies for the exponential time integration
method and error behaviors for long-time integrations. We demonstrate
the efficiency of the exponential time integration method provided with
timestep reduction and CPU time comparisons. We give conclusions in
Section 5.

2 Exponential Time Integration Method

We approximate the matrix exponential operation eAq̄ as

eAq̄ ≈ pm−1(A)q̄, (1)

where A ∈ Rn×n, q̄ ∈ Rn, and pm−1 is a polynomial of degree m − 1.
All possible polynomial approximations of degree at most m − 1 can be
represented by the Krylov subspace Km(A, q̄), defined as

Km(A, q̄) = span{q̄, Aq̄, A2q̄, ..., Am−1q̄}. (2)

The Arnoldi process [1, 8] generates an upper Hessenberg matrix Hm =
[hij ] ∈ Rm×m and an orthonormal matrix Vm ∈ Rn×m whose columns con-
sist of vectors {v1, ..., vm} that are a basis of the Krylov subspace Km(A, q̄)
such that

hj+1,jvj+1 = Avj −

j
∑

i=1

hijvi for j = 1, 2, ...,m while hj+1,j 6= 0, (3)

where hij = vTi Avj , that is, Hm = V T
mAVm. This leads to an approxima-

tion for the matrix exponential in (1) by

eAq̄ ≈ Vme
HmV T

m q̄. (4)

Note that usually n ≫ m and we approximate a large matrix exponential
calculation eA for an n × n matrix A by a lower-dimensional matrix ex-
ponential calculation eHm for an m ×m matrix Hm through a projection
onto the Krylov subspace.

Now we describe a practical implementation for computing the right-
hand side of Eq. (4) that can be expressed in several forms as

Vme
HmV T

m q̄ = ‖q̄‖Vme
HmV T

m v1 = ‖q̄‖Vme
Hme1 = ‖q̄‖VmXe

ΛmX−1e1, (5)
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where v1 = q̄/‖q̄‖, V T
m v1 = e1 = (1, 0, ..., 0)T ∈ Rm, and Hm = XΛmX

−1

for a diagonalizerX and a diagonal matrix Λm (‖·‖ is the Euclidean norm).
In particular, we address two ways of computing V T

m q̄=‖q̄‖V T
mv1:

(i) V T
m q̄ = ‖q̄‖e1, (6)

(ii) V T
m q̄ = |q̄‖ẽ1 = ‖q̄‖(vT1 v1, v

T
1 v2, ..., v

T
1 vm)T , (7)

where (i) is using the theoretical fact based on perfect orthonormality of
Vm, namely, V T

mVm = Im for an identity matrix Im of m×m, and (ii) is us-
ing the numerical value ẽ1 for V T

m v1. Although e1 is commonly used [1, 7],
we take the numerical value ẽ1 to get a fully numerical solution. Theoret-
ically, ẽ1 and e1 should give similar results. However, computed quanti-
ties can greatly deviate from their theoretical counterparts. Although the
modified Gram-Schumidt Arnoldi algorithm shown in Table 1 is known to
be a more reliable orthogonalization procedure than the standard Arnoldi
algorithm [1], it can still show numerical difficulty in practice. The orthog-
onality of Vm can be destroyed by round-off so that the resulting quantity
V T
m v1 = ẽ1 is not close to e1. In Section 4.1, we demonstrate some exam-

ples showing nonconverging solution when using ẽ1, because of the loss of
orthogonality in the Arnoldi vectors Vm obtained from the modified Gram-
Schumidt Arnoldi algorithm. We ensure full orthogonality for Vm when
using ẽ1 in order to guarantee reliable numerical scheme for accurate solu-
tions. We show that a reorthogonalization technique described in Table 1
with onlym(m+1)/2 additional vector multiplications recovers full orthog-
onality of Vm and gives converging solutions to a machine accuracy. One
might consider the Householder algorithm [1] as an alternative; however,
that causes some additional cost in computation.

To compute matrix exponential eHm , one can use Padé and Cheby-
shev rational approximations, discussed in detail in [2, 6]. In our imple-
mentation, we compute the eigenvalues of the Hessenberg matrix Hm us-
ing available library packages and compute an ordinary exponential func-
tion for the eigenvalues. For large-scale computations, we carry out our
implementation in Fortran. We consider computing eHm by diagonaliz-
ing Hm = XmΛmX

−1
m with a diagonalizer Xm and a diagonal matrix

Λm = diag{λ1, λ2, ..., λm}, so that it involves computing only an ordinary
exponential function eλk for each k instead of computing a matrix exponen-
tial. Matlab is useful for solving and analyzing small-scale problems with
easy implementation. Matlab has a function for computing the eigenvalues
Λm and the diagonalizer Xm for Hm. We summarize our implementation
for Eq. (4) as follows:

1. To compute eHm using the relation Hm = Xme
ΛmX−1

m ,

(a) In Fortran: use LAPACK package from Netlib [18].
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Table 1: Algorithms for the Arnoldi process based on the modified Gram-
Schumidt [1] and reorthogonalization [11] methods.

Modified Gram-Schumidt Reorthogonalization Added

[Hm, Vm] = arnoldi (A, q̄) [H̃m, Ṽm] = arnoldi (A, q̄)
v1 = q̄/‖q̄‖ ṽ1 = q̄/‖q̄‖
do j = 1, ...,m do j = 1, ...,m
w = Avj w̃ = Aṽj
do i = 1, ..., j do i = 1, ..., j

hi,j = (w, vi) h̃i,j = (w̃, ṽi)

w = w − hi,jvi w̃ = w̃ − h̃i,j ṽi
enddo enddo

do i = j : −1 : 1
(no reorthogonalization) w̃ = w̃ − (ṽi, w̃)ṽi

enddo

hj+1,j = ‖w‖2 (if 6= 0) h̃j+1,j = ‖w̃‖2 (if 6= 0)

vj+1 = w/hj+1,j ṽj+1 = w̃/h̃j+1,j

enddo enddo

i. call zgeev: get a diagonalizer Xm and a diagonal matrix
Λm of Hm such that HmXm=XmΛm.

ii. call zgetrf: get an LU factorized matrix X̃m for Xm.

iii. call zgetri: get the inverse matrix (Xm)−1 of Xm.

(b) In Matlab: use existing Matlab functions.

i. [Xm,Λm] = eig(Hm): get a diagonalizerXm and a diagonal
matrix Λm of Hm such that HmXm=XmΛm.

ii. [Y ] = inv(Xm): get the inverse matrix Y=(Xm)−1 of Xm.

2. Compute ẽ1 = V T
m v1 ∈ Rm by setting ẽ1 = (vT1 v1, v

T
2 v1, ..., v

T
mv1)

T .

3. Compute Vme
HmV T

m q̄ = ‖q̄‖VmXme
ΛmX−1

m ẽ1 = ‖q̄‖Vm(XmC) where
C = diag{βeλk}mk=1 for a scalar β = Y (1, :)ẽ1.

We apply the Krylov approximation for solving a system of time-dependent
linear ordinary differential equations given as

q′(t) = Aq(t), t > 0, (8)

whose analytic solution is q(t) = eAtq(0), where q(t) = (q1, q2, ..., qn)
T is

a vector and A ∈ Rn×n is an SEDG spatial discretization operator. For a
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Table 2: Exponential time integration based on the Krylov approximation.

do n̄ = 0, 1, 2,..., # of timesteps
q̄ = qn̄

[Hm, Vm] = arnoldi (A, q̄)
ẽ1 = (vT1 v1, ..., v

T
mv1)

T

q̄ = ‖q̄‖Vme
∆tHm ẽ1

qn̄+1 = q̄
enddo

given ∆t, the solution at t = (n̄+ 1)∆t can be expressed as

qn̄+1 = e∆tAqn̄, (9)

where qn̄ = q(n̄∆t) for t = n̄∆t (n̄ = 0, 1, 2, ...).
We summarize our exponential time integration scheme in Table 2. For

the Arnoldi process, in general one can use the modified Gram-Schumidt
algorithm in the first column of Table 1 to obtain the Arnoldi vectors and
Hessenberg matrix. When the orthogonality of the Arnoldi vectors breaks
down, one can add the reorthogonalization loop as in the second column of
Table 1. The error arising from the approximation (4) for e∆tA is strictly
dependent on the spectral properties of A that can be bounded with respect
to ∆t [2, 7] as follows:

‖e∆tAq̄ − Vme
∆tHmV T

m q̄‖ ≤ C∆tm, (10)

where the constant C is a function of A and m.

3 Spatial Discretization

We consider applying the exponential time integration method to the SEDG
scheme in space for solving the Maxwell equations. In this section we
describe a weak formulation using discontinuous Galerkin approach and
spectral-element discretizations. Consider the nondimensional form of the
source-free Maxwell’s equations in free space defined on Ω as

∂q

∂t
+∇ ·F(q) = 0, ∇ ·H = 0, ∇ ·E = 0, (11)

where the field vectors H = (Hx, Hy, Hz)
T and E = (Ex, Ey, Ez)

T with

q =

[

H

E

]

and F(q) =

[

FH

FE

]

=

[

−ei ×E

ei ×H

]

, (12)

where ei (i = x, y, z) are ex = (1, 0, 0), ey = (0, 1, 0), and ez = (0, 0, 1).
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3.1 Discontinuous Galerkin Formulation

We begin by formulating a weak form of the Maxwell equations defined on
Ω with nonoverlapping elements Ωe such that Ω = ∪E

e=1Ω
e. Multiplying a

local test function φ to Eq. (11) and integrating by parts, we have
∫

Ωe

φ
∂q

∂t
dΩ−

∫

Ωe

F(q) · ∇φdΩ = −

∫

∂Ωe

φn · F(q)dΩ̄, (13)

where Ω̄ represents the surface boundary of the element Ωe (i.e., ∂Ωe)
and n = (nx, ny, nz) is the unit normal vector pointing outward. In the
discontinuous Galerkin approach, we define a numerical flux F∗ that is
a function of the local solution q and the neighboring solution q+ at the
interfaces between neighboring elements. The numerical flux combines the
two solutions that are allowed to be different at the interfaces. Replacing
F(q) in (13) by the numerical flux F∗(q) as

∫

Ωe

φ
∂q

∂t
dΩ−

∫

Ωe

F(q) · ∇φdΩ = −

∫

∂Ωe

φn · F∗(q)dΩ̄, (14)

and integrating by parts again, we obtain a weak formulation as
(

∂q

∂t
+∇ ·F(q), φ

)

Ωe

= (n · [F(q)− F∗(q)] , φ)∂Ωe . (15)

With a properly chosen numerical flux F∗, either a central or an upwind
flux as in [12], we have the integrand for the right-hand side of (15) as

n · (FH − F ∗
H
) = 1/2(−n× [E]− αn× n× [H]) (16)

n · (FE − F ∗
E
) = 1/2(n× [H]− αn× n× [E]), (17)

where [E] = E+ − E and [H] = H+ − H, and α = 0 for the central flux
and α = 1 for the upwind flux. Boundary conditions are weakly imposed
through the surface integration for the flux term. We consider problems
with periodic and perfect electric boundary conditions.

3.2 Spectral Element Discretizations

We define a local approximate solution in Ωe for each component of the
fields expressed by

qN (x, y, z, t) =

N
∑

i,j,k=0

qNijkψijk(ξ, η, γ) for (ξ, η, γ) ∈ [−1, 1]3, (18)

where qNijk = qN (xi, yj , zi, t) and ψijk(ξ, η, γ) = li(ξ(x))lj(η(y))lk(γ(z)) us-
ing the one-dimensional Lagrange interpolation basis li(ξ) based on the
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Gauss-Lobatto-Legendre quadrature nodes {ξ0, ξ1, ..., ξN}. The Gordon-
Hall mapping transforms the physcial domain (x, y, z) ∈ Ωe into the refer-
ence domain (ξ, η, γ) ∈ [−1, 1]3, and all the computations are carried out
in the reference domain [16].

For time and spatial derivatives, we have

∂qN

∂t
=

N
∑

i,j,k=0

dqNijk
dt

ψijk ,
∂qN

∂x
=

N
∑

i,j,k=0

qNijk
∂ψijk

∂x
, (19)

∂qN

∂y
=

N
∑

i,j,k=0

qNijk
∂ψijk

∂y
,

∂qN

∂z
=

N
∑

i,j,k=0

qNijk
∂ψijk

∂z
, (20)

where the chain rule gives

∂ψijk

∂x
=

∂ψijk

∂ξ

∂ξ

∂x
+
∂ψijk

∂η

∂η

∂x
+
∂ψijk

∂γ

∂γ

∂x
, (21)

∂ψijk

∂y
=

∂ψijk

∂ξ

∂ξ

∂y
+
∂ψijk

∂η

∂η

∂y
+
∂ψijk

∂γ

∂γ

∂y
, (22)

∂ψijk

∂z
=

∂ψijk

∂ξ

∂ξ

∂z
+
∂ψijk

∂η

∂η

∂z
+
∂ψijk

∂γ

∂γ

∂z
. (23)

We define the Jacobian J for the coordinate transformation as in [16] by

J =

∣

∣

∣

∣

∣

∣

∣

∂ξ
∂x

∂ξ
∂y

∂ξ
∂z

∂η
∂x

∂η
∂y

∂η
∂z

∂γ
∂x

∂γ
∂y

∂γ
∂z

∣

∣

∣

∣

∣

∣

∣

(24)

from the following relation:







∂ξ
∂x

∂ξ
∂y

∂ξ
∂z

∂η
∂x

∂η
∂y

∂η
∂z

∂γ
∂x

∂γ
∂y

∂γ
∂z













∂x
∂ξ

∂x
∂η

∂x
∂γ

∂y
∂ξ

∂y
∂η

∂y
∂γ

∂z
∂ξ

∂z
∂η

∂z
∂γ






≡





1 0 0
0 1 0
0 0 1



 . (25)

We denote our approximate solution vector q = (HN,EN) by HN =
(HN

x , H
N
y , H

N
z )T and EN = (EN

x , E
N
y , E

N
z )T . We express each field com-

ponent in the form of (18), plug them into the weak formulation (15) with
a test function φ = ψ

îĵk̂
, and apply the Gauss quadrature rule to get the

following semidiscrete form:

M
dHN

x

dt
= −(DyE

N
z −DzE

N
y )−R(HN )x, (26)

M
dHN

y

dt
= −(DzE

N
x −DxE

N
z )−R(HN )y, (27)
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M
dHN

z

dt
= −(DxE

N
y −DyE

N
x )−R(HN)z , (28)

M
dEN

x

dt
= (DyH

N
z −DzH

N
y )−R(EN )x, (29)

M
dEN

y

dt
= (DzH

N
x −DxH

N
z )−R(EN )y, (30)

M
dEN

z

dt
= (DxH

N
y −DyH

N
x )−R(EN)z , (31)

where the mass and stiffness matrices are defined as

M = (ψijk , ψîĵk̂
)Ωe , Dx =

(

∂ψijk

∂x
, ψ

îĵk̂

)

Ωe

, (32)

Dy =

(

∂ψijk

∂y
, ψ

îĵk̂

)

Ωe

, Dz =

(

∂ψijk

∂z
, ψ

îĵk̂

)

Ωe

, (33)

and the surface integration as

R(HN) =
(

n · [FH − F ∗
H
] , φîĵ

)

∂Ωe
, (34)

R(EN) =
(

n · [FE − F ∗
E
] , φîĵ

)

∂Ωe
. (35)

Applying the Gauss quadrature rule to (32)-(35), we have

(ψijk, ψîĵk̂
)Ωe

=

N
∑

l,m,n=0

Jlmnρlmn l̂i(ξl)li(ξl)lĵ(ηm)lj(ηm)l
k̂
(γn)lk(γn)

= J(M̂ ⊗ M̂ ⊗ M̂), (36)
(

∂ψijk

∂x
, ψ

îĵk̂

)

Ωe

=

N
∑

l,m,n=0

Gξx
lmnJlmnρlmn l̂i(ξl)l

′
i(ξl)lĵ(ηm)lj(ηm)l

k̂
(γn)lk(γn)

+
N
∑

l,m,n=0

Gηx

lmnJlmnρlmn l̂i(ξl)li(ξl)lĵ(ηm)l′j(ηm)l
k̂
(γn)lk(γn)

+

N
∑

l,m,n=0

Gγx

lmnJlmnρlmn l̂i(ξl)li(ξl)lĵ(ηm)lj(ηm)l
k̂
(γn)l

′
k(γn)

= (GξxJDξ +GηxJDη +GγxJDγ), (37)
(

∂ψijk

∂y
, ψ

îĵk̂

)

Ωe
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=

N
∑

l,m,n=0

Gξy
lmnJlmnρlmn l̂i(ξl)l

′
i(ξl)lĵ(ηm)lj(ηm)l

k̂
(γn)lk(γn)

+

N
∑

l,m,n=0

G
ηy

lmnJlmnρlmn l̂i(ξl)li(ξl)lĵ(ηm)l′j(ηm)l
k̂
(γn)lk(γn)

+

N
∑

l,m,n=0

G
γy

lmnJlmnρlmn l̂i(ξl)li(ξl)lĵ(ηm)lj(ηm)l
k̂
(γn)l

′
k(γn)

= (GξyJDξ +GηyJDη +GγyJDγ), (38)
(

∂ψijk

∂z
, ψ

îĵk̂

)

Ωe

=
N
∑

l,m,n=0

Gξz
lmnJlmnρlmn l̂i(ξl)l

′
i(ξl)lĵ(ηm)lj(ηm)l

k̂
(γn)lk(γn)

+

N
∑

l,m,n=0

Gηz

lmnJlmnρlmn l̂i(ξl)li(ξl)lĵ(ηm)l′j(ηm)l
k̂
(γn)lk(γn)

+
N
∑

l,m,n=0

Gγz

lmnJlmnρlmn l̂i(ξl)li(ξl)lĵ(ηm)lj(ηm)l′k(γn)lk̂(γn)

= (GξzJDξ +GηzJDη +GγzJDγ), (39)

where ρlmn = wlwmwn using one-dimensional weight wi, J = diag{Jlmn}

represents the Jacobian at each node, and M̂îi =
∑N

k=0 li(ξk)l̂i(ξk)wk =
diag{wi} is the mass matrix associated with the one-dimensional reference
domain [−1, 1]. The stiffness matrices are also represented in a tensor
product form of the one-dimensional differentiation matrix D̂ji = l′i(ξj)

as Dξ = M̂ ⊗ M̂ ⊗ M̂D̂, Dη = M̂ ⊗ M̂D̂ ⊗ M̂ , and Dγ = M̂D̂ ⊗ M̂ ⊗

M̂ . The geometric factors Gξx = ∂ξ/∂x = diag{Gξx
lmn}, G

ηy = ∂η/∂y =
diag{Gηy

lmn}, andG
γz = ∂γ/∂z = diag{Gγz

lmn} represent their values at each
node (ξl, ηm, γn), and similarily for Gξy , Gξz , Gηx, Gηz , Gγx, and Gγy. The
two-dimensional surface integrations in Eqs. (34)-(35) are written as

R(HN ) =
6

∑

f=1

N2d
∑

s=1

1

2
(−n×Rf

s {[E
N
ijk]} − n× n×Rf

s{[H
N
ijk]})wsJ

f
s , (40)

R(EN) =
6

∑

f=1

N2d
∑

s=1

1

2
(n×Rf

s{[H
N
ijk]} − n× n×Rf

s{[E
N
ijk]})wsJ

f
s , (41)

where Rf
s {·} extracts the information of {·} at the nodes situated on each

face of the local element for the face number f ; ws is the weight on the

11
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surface, Jf
s is the surface Jacobian at the nodes on each face, and N2d =

(N + 1)2. To define the unit normal vector n corresponding to the face
in the reference element with respect to ξ, η, and γ (i.e., nξη, nηγ , and
nγξ, respectively), we consider the infinitesimal displacement x = (x, y, z)
on the tangential plane along the boundary ∂Ωe, which can be written as
ǫξ = ∂x

∂ξ
dξ, ǫη = ∂x

∂η
dη, and ǫγ = ∂x

∂γ
dγ. Then, the normal vectors are

defined as

nξη =
1

Jξη

(

∂x

∂ξ
×
∂x

∂η

)

,nηγ =
1

Jηγ

(

∂x

∂η
×
∂x

∂γ

)

,nγξ =
1

Jγξ

(

∂x

∂γ
×
∂x

∂ξ

)

,

where the surface Jacobians are defined for Jf
s as

Jξη =

∥

∥

∥

∥

∂x

∂ξ
×
∂x

∂η

∥

∥

∥

∥

, Jηγ =

∥

∥

∥

∥

∂x

∂η
×
∂x

∂γ

∥

∥

∥

∥

, Jγξ =

∥

∥

∥

∥

∂x

∂γ
×
∂x

∂ξ

∥

∥

∥

∥

. (42)

Finally, we can express the semidiscrete scheme of Eqs. (26)-(31) in matrix
form as

dq

dt
= Aq, (43)

where the solution vector is q = (HN
x , H

N
y , H

N
z , E

N
x , E

N
y , E

N
z )T ∈ Rn with

the spatial operator A = M̄−1(D̄ − R̄) ∈ Rn×n for the total degree of
freedom n = 6E(N +1)3 and the mass and stiffness matices are defined as

M̄ = diag{M,M,M,M,M,M}, (44)

D̄ =

















0 0 0 0 −Dz Dy

0 0 0 −Dz 0 Dx

0 0 0 Dy −Dx 0
0 −Dz Dy 0 0 0
Dz 0 −Dx 0 0 0
−Dy Dx 0 0 0 0

















, (45)

and R̄ is the surface integration acting on the boundary face of the local
element obtained from Eqs. (40)-(41). This gives the same form as in
Eq. (8).

3.3 Spatial Operator and Stability

We examine the structures and eigenvalue spectra of the SEDG spatial op-
erator A of Eq. (43) in two dimensions for the cases of the central and up-
wind fluxes. Figure 1 shows a two-dimensional waveguide simulation with
a periodic boundary in the x-direction and a perfect electric conducting

12
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Figure 1: Structures of the SEDG spatial operators and eigenvalue distri-
butions for the central and upwind fluxes in two dimensions with E=32

and N=5, n=3E(N + 1)2.

(PEC) boundary in the y-direction. We consider a mesh having elements
E=3× 3 with a fixed order of approximation N=5, so that the dimension
of A is n×n for n=3E(N +1)2 in two dimensions. The eigenvalues for the
central flux reside on the imaginary axis and those for the upwind flux on
the negative half-plane.

The solution of Eq. (43) can be expressed by (9). Applying the Arnoldi
agorithm at each timestep, we obtain the upper Hessenberg matrix Hm and
Arnoldi vectors that satisfies Hm=V T

mAVm. Then, defining the logarithmic
norm µ for a square matix as in [9], we have the following relation [6]:

‖Vme
∆tHmV T

m‖2 ≤ ‖e∆tHm‖2 ≤ eµ(∆tHm) ≤ eµ(∆tA) ≤ 1, (46)

if the eigenvalues of the spatial operator A are in the negative half-plane.
This implies that the exponential time integration scheme can be suitable
for our SEDG spatial approximations described in the previous section.
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4 Computational Results

This section presents computational results of the exponential time inte-
gration method with our SEDG approximation (often denoted by EXP
throughout this paper) for simulating a periodic solution in 1D and wave
guide solutions in 2D and 3D [29], defined as follows:

Example 1. One-dimensional periodic solution:

Hy = − sin kx sinwt, Ez = cos kx coswt on Ω = [−π, π], (47)

where k and w are integers with k = w.

Example 2. Two-dimensional waveguide solution:

Hx = 2(ky/w) sin(kyy) sin(kxx+ wt),

Hy = 2(kx/w) cos(kyy) cos(kxx+ wt), (48)

Ez = 2 cos(kyy) cos(kxx+ wt),

where kx=2π, ky=π, and w=
√

k2x + k2y for Ω = [−0.5, 0.5]2. The solution

represents the periodic boundary in x and PEC boundary in y.

Example 3. Three-dimensional waveguide solution:

Hx = −kywπγ
−2 sin(kxπx) cos(kyπy) sin(wt − kzz),

Hy = kxwπγ
−2 cos(kxπx) sin(kyπy) sin(wt− kzz),

Hz = 0,

Ex = kxkzπγ
−2 cos(kxπx) sin(kyπy) sin(wt − kzz), (49)

Ey = kykzπγ
−2 sin(kxπx) cos(kyπy) sin(wt − kzz),

Ez = sin(kxπx) sin(kyπy) cos(wt− kzz),

where w=
√

k2z + γ2 and γ=π
√

k2x + k2y on Ω = [0, 1]2×[0, 2π]. The solution

represents the PEC boundary in x and y and periodic boundary in z.

4.1 Cases on Loss of Orthogonality for V
m

A practical implementation for computing eHm and Vme
HmV T

m q was ad-
dressed in Section 2. Here we focus on case studies showing nonconver-
gence behaviors of computing Vme

HmV T
m q by using the numerical quantity

ẽ1 = V T
m v1 based on the modified Gram-Schumidt algorithm. Consider the

one- and two-dimensional solutions defined in Eqs. (47) and (48). We in-
vestigate the closeness of V T

m+1Vm+1 to an identity matrix Im+1 in a matrix

14
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Figure 2: ‖V T
m+1Vm+1−Im+1‖1 as a function of N and loss of orthogonality

for Vm+1: 1D Matlab implementation with m=3,5,7 and E=3 (left) and
2D Fortran implementation with m=3,7,11 and E=32 (right).

Table 3: Loss of orthogonality of Vm by showing each component of the
matrix Ĩ=[Ĩij ]=V

T
m+1Vm+1∈R

(m+1)×(m+1) for m=3 with N=5,10,15, con-
sidering the solution in Eq. (47) with k=1.

Ĩ = V T
mVm by modified Gram-Schumidt Arnoldi algorithm

Order Ĩ(i, j) Ĩ(:, 1) Ĩ(:, 2) Ĩ(:, 3) Ĩ(:, 4)

Ĩ(1, :) 1.00e+00 0 2.74e-14 5.60e-14

N=5 Ĩ(2, :) 0 1.00e+00 6.77e-20 4.42e-17

Ĩ(3, :) 2.74e-14 6.77e-20 1.00e+00 7.31e-16

Ĩ(4, :) 5.60e-14 4.42e-17 7.31e-16 1.00e+00

Ĩ(1, :) 1.00e+00 0 -1.91e-09* -4.02e-09*

N=10 Ĩ(2, :) 0 1.00e+00 -2.77e-17 -1.12e-17

Ĩ(3, :) -1.91e-09* -2.77e-17 1.00e+00 6.79e-16

Ĩ(4, :) -4.02e-09* -1.12e-17 6.79e-16 1.00e+00

Ĩ(1, :) 1.00e+00 0 1.31e-04* 3.12e-04*

N=15 Ĩ(2, :) 0 1.00e+00 -1.04e-17 -3.20e-17

Ĩ(3, :) 1.31e-04* -1.04e-17 1.00e+00 -6.66e-16

Ĩ(4, :) 3.12e-04* -3.20e-17 -6.66e-16 1.00e+00

norm ‖K‖1=max1≤j≤m+1

∑m+1
i=1 |kij | for K=[kij ]. In Figure 2, we demon-

strate the orthogonality of Vm+1 for varying N=3,4,5,...,24. We consider
m=3,5,7 with E=3 in one dimension, and m=3,7,11 with E=32 in two
dimensions. We observe that orthogonality breaks down severely as the
spatial approximation order N increases for both 1D and 2D implemen-
tations in Matlab and Fortran, respectively. In Table 3, we demonstrate
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Table 4: Spatial convergence for Eq. (47) using the modified Gram-
Schumidt algorithm with m=2,3,4 for a fixed mesh with E=3 and
N=5,10,15,20 after 100 timesteps with ∆t=0.001.

Order m=2 m=3 m=4
N= 5 2.3201e-04 2.3328e-04 2.3328e-04
N=10 2.2220e-09 1.6375e-09 5.7495e-09
N=15 8.3266e-15 2.3154e-05 9.8542e-05
N=20 7.5495e-15 7.2517e-06 8.7112e-06

Table 5: Spatial convergence for Eq. (47) using the modified Gram-
Schumidt with reorthogonalization algorithm form=5, E=3, N=5,10,15,20
after 100 timesteps with ∆t=0.001.

Order m=5
N= 5 4.2691e-05
N=10 1.1471e-10
N=15 1.0935e-14
N=20 1.0377e-14

each component of the matrix Ĩ = V T
m+1Vm+1 depending on N=5,10,15 for

m=3 for the one-dimensional example (47) with k=1. It shows that Vm+1

rapidly loses orthogonality as N increases. For the case of Table 3, the
analytic solution (47) can be expressed by q=c1z1 + c2z2 + ...+ cmzm with
z1=(sinx sin t, 0)T and z2=(0, cosx cos t)T , z3=...=zm=0. If the orthognal-
ization algorithm is not good, the algorithm does not provide good Arnoldi
vectors that are orthogonal to the previously computed Arnoldi vectors af-
ter two iterations during Arnoldi procedure. Table 3 shows nonzero values
for Ĩ(3, 1), Ĩ(4, 1), Ĩ(1, 3), Ĩ(1, 4) asN increases, meaning that v1 and v3 are
not orthogonal; the same is true for v1 and v4. We examine convergence
behaviors of the solution (47) for N=5,10,15,20 after 100 timesteps with
∆t=0.001, where ∆t is small enough not to influence the spatial errors.
Table 4 shows that the scheme does not converge further as N increases,
because of the loss of orthogonality in the Arnoldi vectors as shown in
Figure 2, especially for m ≥ 3. For m=2, however, the modified Gram-
Schumidt algorithm gives reasonable orthogonal Arnoldi vectors for the
first two iterations in the Arnodi process and stops the iteration. Hence,
spectral convergence can be observed in Table 4 for m=2. For m ≥ 3, we
can recover full orthogonality and obtain converging solution by adding a
reorthogonalization technique to the modified Gram-Schumidt algorithm
as in Table 1; the results are shown in Table 5 for m=5.
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Figure 3: Errors depending on point per wavelength (ppw = n/k) for
varying wavenumber k with n = E(N + 1) = 120 at time t=100 with
∆t=0.0005 (left). Errors depending on the Krylov dimension m=2,3,...,6
for solutions with multiple eigenmodes (right).

4.2 Convergence and Eigenmodes

In this section, we first investigate the error behaviors depending on points
per wavelength, which can indicate how many grids points per wavelength
and what approximation order N are required for a desired level of accu-
racy. We consider the one-dimensional solution (47) of varying wavenum-
ber k propagating the domain 15.9 times. We fix the resolution with a total
number of grid points n=E(N+1)=120 but with varyingN=1,2,3,4,5,11,14.
In Figure 3, the left panel shows that, for a fixed Krylov subspace dimension
m=5 with ∆t=0.0005, the error drops rapidly with increasing N for a large
number of points per wavelength (ppw = n/k), but accurate propagation
for ppw < 8 requires N > 8.

In order to represent solution accurately by a linear combination of the
orthogonal basis of the Krylov subspace of dimension m, it is necessary to
choose the approximation order m greater than the number of eigenmodes
in the solution. Here we examine error behaviors depending on m for the
solution including multiple modes, which is defined by

Hy = −

6−k̄0
∑

k̄=6

sin k̄x sinwt and Ez =

6−k̄0
∑

k̄=6

cos k̄x coswt, (50)

where k̄0 = 0, 1, ..., 4. Equation (50) is represented by 2(k̄0 + 1) eigenso-
lutions. In Figure 3, the right panel shows that, for a single mode k̄ = 6
by setting k̄0=0, Krylov subspace dimension m=2 is enough to get an ac-
curate solution. For the solution represented by multimode eigensolutions,
however, at least m ≥ 2(k̄0 + 1) are needed to get the best approximate
solution at a fixed resolution.
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Figure 4: Top (RK4): spatial convergence (left) and CPU time per core
(right) after 1,000 timesteps on 32 cores of Linux clusters with E=43 to
163 and N=5 to 16 for a periodic solution. Bottom (EXP,m=11): spatial
convergence (left) and CPU time per core (right) after 10,000 timesteps on
the number of cores P=24, 27, 210 on Argonne Blue Gene/P with E=33,
63, 123, respectively, and N=4 to 14.

4.3 Convergence in Space and Time

This section demonstrates convergence in space and time for the exponen-
tial time integration method applied to our SEDG method in higher dimen-
sions. We also include results from parallel computations. No additional
parallel implementation is required for the EXP scheme other than the flux
communication between neighboring elements in the spatial operator.

Figure 4 shows spatial convergence for different problem sizes with vary-
ing approximation order N for RK4 and EXP with m=11. For RK4,
simulations are carried out for a three-dimensional periodic solution with
N=5–16 and E=43–163 on 32 cores of Linux clusters at Argonne. For EXP,
simulations are performed for a waveguide solution with N=4,6,8,10,12,14
and E=32,62,122 on P=24, 27, 210 cores on the Argonne BG/P. The figures
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Figure 5: Long-time integrations for 2D waveguide simulations on
Ω=[−0.5, 0.5]2. Traveling distance is 666.66 wavelengths at time t=1000.
Error behaviors in time for RK4 and EXP(m) with m=5,7,9 and
N=4,6,8,10,12,14 for a fixed E=32.

on the left show exponential convergence as N increases. We observe that
for a fixed resolution, the accuracy is better with a larger N .

It is equally important that high-order methods be competitive in terms
of computational costs. We demonstrate the CPU time per core for 1,000
and 10,000 timesteps for RK4 and EXP, respectively. We observe that the
CPU time per core increases linearly depending on the total number of
grid points n=E(N + 1)3, but not solely depending on the approximation
order N . This ensures that higher-order approximation N is not a source
of increasing computational cost in space. We also note that a larger N
generally affords less resolution for the same accuracy, particularly suitable
for long-time integrations.

Figures 5-6 demonstrate error behaviors in time and space for long-
time integration with traveling distance of more than 666 and 238 wave-
lengths in 2D and 3D, respectively, for the monochromatic wave solu-
tions in Eqs. (48)-(49). We consider the EXP scheme for m=5,7,9 with
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Figure 6: Long-time integrations for 3D rectangular waveguide simulations
on Ω=[−0.5, 0.5]2×[0, 2π]. Traveling distance is 238.73 wavelengths at time
t=1000. Error behaviors in time for RK4 and EXP(m) with m=5,7,9 and
N=3,4,6,8,10,12 for a fixed E=33.

a maximum allowable timestep size for each m and examine convergence
for N=4,6,8,10,12,14 and E=32 in 2D and E=33 in 3D. We choose a
timestep size ∆t = CFL*dxmin by defining CFL= c∆t

dxmin with c = 1 and

dxmin=minN,E {∆}, where ∆ = 1
2

√

∆x2 +∆y2 +∆z2. We find the CFL
number numerically that gives the maximum allowable ∆t for a stable so-
lution. For comparison, we carried out the same simulations with RK4 (5-
stage). For RK4, we use CFL≈0.75. Although our EXP scheme is expected
to have bounded solutions because of the A-stable property, the timestep
size has to be reasonably small to get accurate solutions. For the EXP
scheme, the maximum allowable timestep increases as m increases. We
use CFL≈0.8,1.5,2.8 for m=5,7,9 in 2D and CFL≈0.8,1.5,2.6 for m=5,7,9
in 3D. According to the theoretical studies showing convergence rate of
O(∆tm−1) for the EXP scheme [2, 6], we consider EXP(m=5) as the fourth-
order scheme that can be compared to RK4. We observe that the CFL
numbers are very close to each other for EXP(m=5) and RK4, but the
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Figure 7: Convergence in time for variable CFL numbers for 2D waveguide
simulations with E=42 and N=10 at time t=100 for a traveling distance of
66.66 wavelengths. Error comparison for RK4 and EXP with m=5,7,9,11
for a monochromatic solution (left) and a solution represented by 25 dif-
ferent wavemodes (right).

EXP scheme shows superconvergence for the monochromatic wave solu-
tions, with several orders of magnitude difference as N increases.

4.4 Computational Costs

This section demonstrates convergence rate depending on the timestep size
and the computational cost depending on m, provided with comparisons
between RK4 and EXP.

Figure 7 shows convergence in time with respect to CFL/m for EXP
and CFL/5 for RK4, based on the same cost (recall that the five-stage RK4
involves five times the spatial operation per timestep and EXP requires m
times the spatial operation per timestep, but neglecting vector-vector mul-
tiplications and additions in the Arnoldi process). For a monochromatic
wave solution, we observe superconvergence for the EXP scheme. In prac-
tice, however, many physics problems involve more complicated wave phe-
nomena than a single-mode wave structure. Thus, in general, convergence
as a function of timestep size typically behaves as illustrated in the right
side of Figure 7. In particular, considering an accuracy of 1e-7, EXP allows
a CFL number 8 to 9 times larger with m= 7 to 9, compared with RK4.

Figure 8 demonstrates the CPU cost between RK4 and the EXP scheme
by examining (CPU time per timestep)/m per core depending on the total
number of grid points for N=4,6,8,10,12,16,18 with E=42 on P=8 cores in
two dimensions and E=43 on P=32 in three dimensions. In 2D, for problem
sizes greater than 103, the CPU cost per timestep per core divided by m
is about 2 times larger with the EXP scheme compared with that divided
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Figure 8: CPU time: comparison between RK4 and EXP with E=42, P=8
in 2D (left) and with E=43, P=32 in 3D (right) for N=4,6,8,10,12,14,16,18
and m=5,7,9,11. Parallel runs are performed on the Argonne BG/P.

by 5 with RK4. This implies that one can get cost reduction when using
m=7,9,11 by taking a 10 to 12 times larger timestep size for a single-mode
solution and an 8 to 9 times larger timestep size for multimode solutions
from the analysis of Figure 7. For the problem sizes of less than 103, one can
still gain cost reduction for single-mode solutions. In 3D, the CPU time per
timestep per core divided by m increases 2 to 4 times larger for problem
sizes of 104–105 and almost no significant difference for larger problems
with >105. This promises that the EXP scheme can deliver dramatic cost
reduction, allowing a larger timestep compared with RK4 as the problem
size increases beyond 106 for very large-scale application problems.

Let us denote tEXP and tRK4 as the CPU time per timestep per core
divided by m and 5, respectively, with tEXP=a ∗ tRK4. Assuming that, for a
fixed resolution, the EXP scheme allows a timestep size b times larger than
does RK4 (i.e., ∆tEXP=b ∗∆tRK4), the total CPU time of RK4 and the EXP
scheme for nsteps can be written as

Tc
RK4

= 5 ∗ tRK4 ∗ nsteps, (51)

Tc
EXP

= m ∗ a ∗ tRK4 ∗
nsteps

b
, (52)

which implies that one can expect a cost reduction when b > m∗a
5 for the

timestep size ∆tEXP for EXP(m). For large-scale problems, a≈1, so that
one can estimate the CPU cost for EXP(m) as

(

m
5b

)

% of RK4. For the case
of the right panel in Figure 7 with relatively small n=E(N + 1)2=1,936,
we observe a ≈ 2 and b ≈ 9 for m=9 so that total CPU time reduction can
be estimated as 60% from the CPU time ratio Tc

EXP
/Tc

RK
≈ 40.

Figure 9 compares the total CPU time at a certain accuracy for single-
mode solutions in 2D and 3D. The figure shows superconvergence with the
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Figure 9: Comparable errors and corresponding order N for EXP(m) and
RK4 for E=32 in 2D (top left) and E=33 in 3D (bottom left) for long-
time integration up to time t=1000. CPU time ratio EXP(m)/RK4 for the
comparable level of accuracy with m=3(◦), m=5(△), m=7(�), m=9(▽),
and m=11(⋄) in 2D for E=42 (top right) and 3D for E=43 (bottom right).
Simulations are performed on P=24 cores on the Argonne BG/P.

EXP scheme using low resolution compared with RK4. The figures in the
left panels show that the errors after long-time integration are approxi-
mately similar to the cases of RK4 with N=3–20 using EXP(m=3) and
N=3–7. In such cases, we observe much higher reduction in cost, as shown
in the right panels. For example, at the level of accuracy at 1e-5, one can
achieve more than 70-90% cost reduction for m=3,5,7,9,11 with the EXP
scheme in two and three dimensions.

5 Conclusions

We have presented an efficient high-order time integration method based
on the Krylov subspace approximation using the modified Gram-Schmidt
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algorithm and a reorthogonalization technique for the Arnoldi process. For
the spatial approximation, we used a SEDG scheme based on hexahedral
spectral elements, which gives a fully diagonal mass matrix. We considered
the source-free Maxwell equations in nondimensional form. Computational
results are shown for periodic solutions and waveguide simulations in 1D,
2D, and 3D. We demonstrate the convergence behaviors, long-time inte-
grations, and the CPU cost of the SEDG scheme, compared with the RK4
(5-stage) and exponential time integration methods. Our numerical exper-
iments show that the exponential time integration method allows a larger
timestep size, compared with RK4, with significant cost reduction up to 70-
90% for single-mode solutions using Krylov subspace dimension m=3–11
and about 60% CPU time reduction for a two-dimensional solution con-
taining 25 multiple modes with m=9.
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